TY - THES A1 - Holzmeister, Ib T1 - Branched silica precursors as additives for mineral bone cements T1 - Verzweigte Silica-Vorläufer als Additive für mineralische Knochenzemente N2 - Mineral biocements are brittle materials, which usually results in catastrophic failure during mechanical loading. Here, previous works demonstrated the feasibility of reducing brittleness by a dual-setting approach, in which a silica sol was simultaneously gelled during the setting of a brushite forming cement. The current thesis aimed at further improving this concept by both using a novel silicate based cement matrix for an enhanced bonding between cement and silica matrix as well as multifunctional silica precursors to increase the network density of the gel. Due to its well-known biocompatibility and osteogenic regeneration capacity, baghdadite was chosen as mineral component of such composites. This required in a first approach the conversion of baghdadite ceramics into self-setting cement formulations. This was investigated initially by using baghdadite as reactive filler in a brushite forming cement (Chapter 4). Here, the ß-TCP component in a equimolar mixture of ß-TCP and acidic monocalcium phosphate anhydrous was subsequently replaced by baghdadite at various concentrations (0, 5, 10, 20, 30, 50, and 100 wt%) to study the influence on physicochemical cement properties such as mechanical performance, radiopacity, phase composition and microstructure. X-ray diffraction profiles demonstrated the dissolution of baghdadite during the cement reaction without affecting the crystal structure of the precipitated brushite phase. In addition, EDX analysis showed that calcium is homogeneously distributed in the cement matrix, while zirconium and silicon form cluster-like aggregates ranging in size from a few micrometers to more than 50 µm. X-ray images and µ-CT analyses indicate improved X-ray visibility with increased incorporation of baghdadite in brushite cement, with an aluminum equivalent thickness nearly doubling at a baghdadite content of 50 wt%. At the same time, the compressive strength of brushite cement increased from 12.9 ± 3.1 MPa to 21.1 ± 4.1 MPa at a baghdadite content of 10 wt%. Cell culture medium conditioned with powdered brushite cement approached physiological pH values when increasing amounts of baghdadite were added to the cement (pH = 6.47 for pure brushite, pH = 7.02 for brushite with 20 wt% baghdadite substitution). Baghdadite substitution also affected the ion content in the culture medium and thus the proliferation activity of primary human osteoblasts in vitro. The results demonstrated for the first time the suitability of baghdadite as a reactive cement additive for improving the radiopacity, mechanical performance, and cytocompatibility of brushite cements. A second approach (Chapter 5) aimed to produce single component baghdadite cements by an increase of baghdadite solubility to initiate a self-setting cement reaction. For this, the material was mechanically activated by longer grinding times of up to 24h leading to both a decrease in particle and crystallite size as well as a partial amorphization of baghdadite. Baghdadite cements were formed by adding water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were determined to be ~2 MPa after 3 days of setting for a 24-hour ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of the set cements, with preferential dissolution of calcium and only minor release of zirconium ions. Cement formation occurs under alkaline conditions, with the unground raw powder resulting in a pH of 11.9 during setting, while prolonged grinding increases the pH to about 12.3. Finally, mechanically activated baghdadite cements were combined with inorganic silica networks (Chapter 6) to create dual-setting cements with a further improvement of mechanical performance. While a modification of the cement pastes with a TEOS derived sol was already thought to improve strength, it was hypothesized that using multi-arm silica precursors can further enhance their mechanical performance due to a higher network density. In addition, this should also reduce pore size of both gels and cement and hence will be able to adjust the release kinetics of incorporated drugs. For this, multi-armed silica precursors were synthesized by the reaction of various multivalent alcohols (ethylene glycol, glycerine, pentaerythrit) with an isocyanate modified silica precursor. After hydrolysis under acidic conditions, the sols were mixed with baghdadite cement powders in order to allow a simultaneous gel formation and cement setting. Since the silica monomers have a high degree of linkage sites, this resulted in a branched network that interpenetrated with the growing cement crystals. In addition to minor changes in the crystalline phase composition as determined by X-ray diffraction, the novel composites exhibited improved mechanical properties with up to 20 times higher compressive strength and further benefit from an about 50% lower overall porosity than the reference pure baghdadite cement. In addition, the initial burst release of the model drug vancomycin was completely inhibited by the added silica matrix. This observation was verified by testing for the antimicrobial activity with Staphylococcus aureus by measuring the inhibition zones of selected samples after 24 h and 48 h, whereas the antimicrobial effectiveness of a constant vancomycin release could be demonstrated. The current thesis clearly demonstrated the high potential of baghdadite as a cement formulation for medical application. The initially poor mechanical properties of such cements can be overcome by special processing techniques or by combination with silica networks. The achieved mechanical performance is > 10 MPa and hence suitable for bone replacement under non-load bearing conditions. The high intrinsic radiopacity as well as the alkaline pH during setting may open the way ahead to further dental applications, e.g. as root canal sealers or filler in dental composites. Here, the high pH is thought to lead to antimicrobial properties of such materials similar to commonly applied calcium hydroxide or calcium silicates, however combined with an intrinsic radiopacity for X-ray imaging. This would simplify such formulations to single component materials which are less susceptible to demixing processes during transport, storage or processing. N2 - Mineralische Biozemente sind spröde Materialien, die bei mechanischer Belastung in der Regel ein katastrophales Versagen zeigen. In früheren Arbeiten konnte die Sprödigkeit durch einen dual-härtenden Materialansatz verringert werden, bei dem ein dem Zement zugesetztes Kieselsol während des Aushärtens eines Bruschit-bildenden Zements simultan geliert und so die Matrix verstärkt. Die vorliegende Arbeit zielte darauf ab, dieses Konzept weiter zu verbessern, indem sowohl eine neuartige Zementmatrix auf Silikatbasis für eine verbesserte Bindung zwischen Zement und Kieselsäurematrix als auch multifunktionale Kieselsäure Precursoren zur Erhöhung der Netzwerkdichte des Gels verwendet wurden. Aufgrund der nachgewiesenen Biokompatibilität und osteogenen Regenerationsfähigkeit wurde Baghdadit als mineralischer Bestandteil solcher Komposite gewählt. Dies erforderte in einem ersten Ansatz die Umwandlung von Baghdadit-Keramik in selbsthärtende Zementformulierungen. Dies wurde zunächst durch die Verwendung von Baghdadit als reaktiver Füllstoff in einem Bruschit-bildenden Zement untersucht (Kapitel 4). Dabei wurde die β-TCP-Komponente in einem äquimolaren Gemisch aus β-TCP und saurem Monocalciumphosphat sukzessive durch Baghdadit in verschiedenen Konzentrationen (0, 5, 10, 20, 30, 50 und 100 Gew.-%) ersetzt, um den Einfluss auf die physikalisch-chemischen Zementeigenschaften, wie mechanische Festigkeit, Röntgenopazität, Phasenzusammensetzung und Mikrostruktur zu untersuchen. Röntgenbeugungsprofile zeigten die Auflösung von Baghdadit während der Zementreaktion, ohne die Kristallstruktur der ausgefällten Bruschitphase zu beeinträchtigen. Darüber hinaus zeigte die EDX-Analyse, dass Calcium homogen in der Zementmatrix verteilt ist, während Zirkon und Silizium clusterartige Aggregate mit einer Größe von einigen Mikrometern bis zu mehr als 50 µm bilden. Röntgenbilder und µ-CT-Analysen zeigen eine verbesserte Röntgensichtbarkeit bei erhöhtem Baghdadit-Anteil im Bruschit-Zement, wobei sich die Aluminium-Äquivalentdicke bei einem Baghdadit-Gehalt von 50 Gew.-% nahezu verdoppelt. Gleichzeitig stieg die Druckfestigkeit von Bruschitzement von 12,9 ± 3,1 MPa auf 21,1 ± 4,1 MPa bei einem Baghdaditgehalt von 10 Gew.-%. Zellkulturmedium, das mit pulverförmigem Bruschitzement konditioniert wurde, näherte sich physiologischen pH-Werten an, wenn dem Zement steigende Mengen an Baghdadit zugesetzt wurden (pH = 6,47 für reinen Bruschitzement, pH = 7,02 für Bruschitzement mit 20 Gew.-% Baghdadit-Substitution). Die Baghdadit-Substitution wirkte sich auch auf den Ionengehalt im Kulturmedium und damit auf die Proliferationsaktivität von primären menschlichen Osteoblasten in vitro aus. Die Ergebnisse zeigten zum ersten Mal die Eignung von Baghdadit als reaktives Zementadditiv zur Verbesserung der Röntgenopazität, der mechanischen Eigenschaften und der Zytokompatibilität von Bruschitzementen. Ein zweiter Ansatz (Kapitel 5) zielte auf die Herstellung einkomponentiger Baghdadit-Zemente durch eine Erhöhung der Baghdadit-Löslichkeit ab, um eine Zementreaktion zu initiieren. Dazu wurde das Material durch längere Mahlung von bis zu 24 Stunden mechanisch aktiviert, was sowohl zu einer Abnahme der Partikel- und Kristallitgröße, als auch zu einer teilweisen Amorphisierung von Baghdadit führte. Baghdadit-Zemente wurden durch Zugabe von Wasser bei einem Verhältnis von Pulver zu Flüssigkeit von 2,0 g/ml erhalten. Die maximalen Druckfestigkeiten wurden mit ~2 MPa nach 3 Tagen Aushärtung für ein 24 Stunden gemahlenes Material ermittelt. Massenspektrometrische Messungen mit induktiv gekoppeltem Plasma (ICP-MS) ergaben ein inkongruentes Auflösungsprofil der abgebundenen Zemente mit einer bevorzugten Auflösung von Calcium und einer nur geringen Freisetzung von Zirkonium-Ionen. Die Zementbildung erfolgt unter alkalischen Bedingungen, wobei das ungemahlene Rohpulver während des Abbindens einen pH-Wert von 11.9 aufweist, während ein längeres Mahlen den pH-Wert auf etwa 12.3 erhöht. Abschließend wurden mechanisch aktivierte Baghdadit-Zemente mit anorganischen Silica-Netzwerken kombiniert (Kapitel 6), um dual härtende Zemente mit einer weiteren Verbesserung der mechanischen Eigenschaften zu erhalten. Während eine Modifikation der Zementpasten mit einem TEOS-abgeleiteten Sol bereits die Festigkeit verbessern sollte, wurde angenommen, dass die Verwendung von mehrarmigen Kieselsäure-Precursoren die mechanische Festigkeit aufgrund einer höheren Netzwerkdichte weiter verbessern kann. Darüber hinaus sollte sich auch die Porengröße von Gelen und Zement verringern, so dass die Freisetzungskinetik von inkorporierten Wirkstoffen angepasst werden kann. Zu diesem Zweck wurden mehrarmige Kieselsäure-Precursoren durch die Reaktion verschiedener mehrwertiger Alkohole (Ethylenglykol, Glycerin, Pentaerythrit) mit einem isocyanatmodifizierten Kieselsäure-Precursor synthetisiert. Nach der Hydrolyse unter sauren Bedingungen wurden die Sole mit Baghdadit-Zementpulvern gemischt, um eine gleichzeitige Gelbildung und Zementabbindung zu ermöglichen. Da die Kieselsäuremonomere einen hohen Grad an Verknüpfungsstellen aufweisen, führte dies zu einem verzweigten Netzwerk, das die ausfallenden Zementkristalle durchdrang. Neben geringfügigen Veränderungen in der Zusammensetzung der durch Röntgenbeugung bestimmten kristallinen Phasen, wiesen die neuartigen Komposite verbesserte mechanische Eigenschaften mit einer bis zu 20-fach höheren Druckfestigkeit auf und profitierten außerdem von einer um etwa 50 % geringeren Gesamtporosität als der reine Baghdadit-Referenzzement. Darüber hinaus wurde die anfängliche starke Freisetzung („burst release“) des Modellwirkstoffs Vancomycin durch die zugesetzte Silica-Matrix vollständig gehemmt. Diese Beobachtung wurde durch Prüfung der antimikrobiellen Aktivität mit Staphylococcus aureus durch Messung des Hemmhofs im Agar-Diffusionstest ausgewählter Proben nach 24 h und 48 h verifiziert, wobei die antimikrobielle Wirksamkeit einer konstanten Vancomycin-Freisetzung nachgewiesen werden konnte. Die vorliegende Arbeit zeigte deutlich das hohe Potenzial von Baghdadit Zementformulierungen für medizinische Anwendungen. Die anfänglich schlechten mechanischen Eigenschaften solcher Zemente können durch spezielle Verarbeitungstechniken oder durch die Kombination mit Silicanetzwerken überwunden werden. Die erzielten mechanischen Eigenschaften liegen bei > 10 MPa und die Materialien eignen sich daher für den Knochenersatz unter nicht-lasttragenden Bedingungen. Die hohe intrinsische Röntgenopazität sowie der alkalische pH-Wert während der Aushärtung könnten den Weg für weitere dentale Anwendungen öffnen, z. B. als Wurzelkanal-Zemente oder Füllstoff in Dentalkompositen. Hier ist davon auszugehen, dass der hohe pH-Wert zu antimikrobiellen Eigenschaften solcher Materialien führt, ähnlich wie bei den üblicherweise verwendeten Calciumhydroxiden oder Calciumsilikaten, jedoch in Kombination mit einer intrinsischen Röntgenopazität. Dies würde solche Formulierungen zu einkomponentigen Systemen vereinfachen, die weniger anfällig für Entmischungsprozesse während Transport, Lagerung oder Verarbeitung sind. KW - Zement KW - Sol-gel KW - Baghdadite KW - Cement KW - Silica precursor KW - Dual-setting Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275044 ER -