TY - THES A1 - Schmitt, Thomas T1 - Communication in the hymenoptera : chemistry, ecology and evolution T1 - Kommunikation bei Hymenopteren - Chemie, Ökologie und Evolution N2 - Insects exhibit complex systems of communication with chemical signalling being the most important mode. Although there are many studies on chemical communication in insects, the evolution of chemical signals is not well understood. Due to the conflict of interests between individuals, different selective pressures might act on sender and receiver. In this thesis I investigate different types of communication where either the sender, the receiver or both parties yield benefits. These studies were conducted with one digger wasp species, honeybees, one chrysidid wasp, and three ant species. Senders might benefit by exploiting existing preferences of receivers. Such sensory exploitation might influence the evolution of male signals that are designed to attract females. The sex pheromone of male European beewolves Philanthus triangulum (Hymenoptera, Crabronidae) might have evolved according to the sensory exploitation hypothesis. A three-step scenario is supported by our studies. First, a major component of the honeybee alarm pheromone, (Z)-11-eicosen-1-ol, is also found on the cuticles and in the air surrounding foraging honeybees. Second, it could be shown, that (Z)-11- eicosen-1-ol plays a crucial role as kairomone for prey identification of honeybees by beewolf females. Third, a reanalysis of the beewolf male sex pheromone shows a remarkable similarity of compounds between the pheromone and the honeybee cuticle, besides the co-occurrence of (Z)-11-eisosen-ol. The majority of the cuticular hydrocarbons of honeybees occur also in the headspace of foraging workers. These results strongly support the hypothesis that beewolf males evolved a pheromone that exploits the females’ pre-existing sensory sensitivity. In addition, the male sex pheromone shows a significantly higher similarity among brothers than among non-related individuals, which might enable beewolf females to discriminate against brothers and avoid detrimental effects of breeding. Together with the studies on the possible sensory exploitation this result shows that both, male and female beewolves probably gain more benefits than costs from the pheromone communication and, thus, the communication system as a whole can be regarded as cooperative. To maintain the reproductive division of labour in eusocial colonies, queens have to signal their presence and fecundity. In the ant Camponotus floridanus (Hymenoptera, Formicidae) queens mark their own eggs with a distinctive pattern of cuticular hydrocarbons. Two different hypotheses have been developed. One suggests a form of worker manipulation by the queen. The alternative hypothesis assumes a cooperative signal that provides information on the condition of the queen. The results of our investigation clearly favour the latter hypothesis. Chemical mimicry is a form of non-cooperative communication that benefits predominantly the sender. We provided conclusive evidence that the cockoo wasp, Hedychrum rutilans (Hymenoptera, Chrysididae), the primary brood parasitoid of Philanthus triangulum, evades recognition by beewolf females most probably by chemical mimicry of the odour of its host. Furthermore, the adaptation of the chemical signature in the social ant parasite Protomognathus americanus (Hymenoptera, Formicidae) to its Leptothorax (Hymenoptera, Formicidae) hosts was investigated. Although this parasite is principally adapted to its hosts’ cuticular hydrocarbon profile, there are still pronounced differences between the profiles of parasites and hosts. This might be explained by the trade-off, which the parasites faces when confronted locally with two host species with different cuticular hydrocarbon profiles. Non-cooperative communication in the sense that only receivers benefit was discovered in the exploitation of honeybees volatile cuticular hydrocarbons by beewolf females. By using emitted (Z)-11-eicosen-1-ol as a kairomone, the receiver, the beewolf female, yields the benefits and the sender, the honeybee prey, bears all the costs. The results of these studies contribute to the understanding of the evolution of cooperative and non-cooperative communication with chemical signals taking into account differential benefits for sender and/or receiver. N2 - Insekten weisen ein komplexes System der Kommunikation auf, wobei chemische Signale die wichtigste Rolle spielen. Obwohl viele Studien über chemische Kommunikation an Insekten durchgeführt wurden, ist die Evolution von chemischen Signalen nicht gut verstanden. Aufgrund von Interessenkonflikten wirken unterschiedliche Selektionsdrücke auf Sender und Empfänger. In dieser Dissertation untersuchte ich verschiedene Typen von Kommunikation, bei denen entweder der Sender, der Empfänger oder beide von der Kommunikation profitieren. Als Modellorganismen wurden eine Grabwespenart (Crabronidae), Honigbienen (Apidae), eine Goldwespenart (Chrysididae) und drei Ameisenarten (Formicidae) studiert. Sender können von der Ausnutzung existierender Präferenzen der Empfänger profitieren. Eine solche Ausnutzung kann die Evolution von Männchensignalen beeinflussen, die entwickelt wurden, um Weibchen anzulocken. Solch eine „sensory exploitation“ könnte die Evolution des Sexualpheromons von Männchen des Europäischen Bienenwolfs Philanthus triangulum (Hymenoptera, Crabronidae) beeinflußt haben. Unsere Studien unterstützen das folgende Drei-Stufen-Szenario: Erstens, eine Hauptkomponente aus dem Honigbienenalarmpheromon, das (Z)-11- Eicosen-1-ol, wurde auf der Kutikula und in der Umgebungsluft furagierender Honigbienen nachgewiesen. Zweitens konnte gezeigt werden, daß (Z)-11-Eicosen-1-ol eine wichtige Rolle als Kairomon bei der Identifizierung der Honigbiene als Beute durch Bienenwolfweibchen spielt. Schließlich zeigte eine detaillierte chemische Analyse des Bienenwolfmännchenpheromons, daß außer dem Auftreten von (Z)-11- Eicosen-1-ol weitere bemerkenswerte Übereinstimmungen zwischen dem Pheromon und der Honigbienenkutikula auftreten. Die meisten der kutikulären Substanzen der Honigbiene finden sich auch in der Umgebungsluft furagierender Honigbienen. Diese Ergebnisse bestätigen, daß bei der Evolution des Pheromons der Bienenwolfmännchen bereits existierende sensorische Fähigkeiten der Weibchen eine wichtige Rolle spielten und somit die „sensory exploitation“ Hypothese unterstützt wird. Das Sexualpheromon der Bienenwolfmännchen zeigt außerdem eine signifikant größere Ähnlichkeit zwischen Brüdern im Vergleich zu nicht verwandten Individuen. Dies könnte den Bienenwolfweibchen ermöglichen, bei der Paarung gegen Brüder zu diskriminieren und damit einen nachteiligen Effekt der Inzucht bei Nachkommen zu vermeiden. Dieses Ergebnis zeigt zusammen mit den Studien zur möglichen „sensory exploitation“, daß Männchen und Weibchen wahrscheinlich mehr Nutzen als Kosten aus diesem Kommunikationssystem erzielen und deshalb das System insgesamt als kooperativ betrachtet werden kann. Um die reproduktive Arbeitsteilung in eusozialen Kolonien aufrecht zu erhalten, müssen Königinnen ihre Anwesendheit und Fekundität signalisieren. Bei der Ameisenart Camponotus floridanus (Hymenoptera, Formicidae) markieren die Königinnen ihre eigenen Eier mit einem unverwechselbaren kutikulären Kohlenwasserstoffmuster. Zwei unterschiedliche Hypothesen, die diese Form der Kommunikation erklären, wurden formuliert. Eine Hypothese schlägt eine Manipulation von Arbeiterinnen durch die Königin vor. Eine Alternativhypothese geht von einem kooperativen Signal aus, das Informationen über den Zustand der Königin übermittelt. Die Ergebnisse unserer Untersuchungen stützen eindeutig letztere Hypothese. Chemische Mimikry ist eine Form von nicht-kooperativer Kommunikation, von der ausschließlich der Sender profitiert. Die Goldwespe, Hedychrum rutilans (Hymenoptera, Chrysididae), der wichtigste Brutparasitoid von Philanthus triangulum, entgeht der Entdeckung durch das Bienenwolfweibchen wahrscheinlich durch Imitierung des Geruchs seines Wirtes. Weiterhin wurde die Anpassung der chemischen Signatur des sozialen Ameisenparasiten Protomognathus americanus (Hymenoptera, Formicidae) an seine Leptothorax Wirtsarten untersucht. Obwohl dieser Parasit prinzipiell an das kutikuläre Kohlenwasserstoffprofil seines Wirtes angepaßt ist, gibt es trotzdem ausgeprägt Unterschiede zwischen den Profilen des Parasits und seines Wirtes. Dies könnte durch einen „trade-off“ erklärt werden, dem die Parasiten ausgesetzt sind, wenn sie lokal mit zwei Wirtsarten mit unterschiedlichen kutikulären Kohlenwasserstoffprofilen konfrontiert werden. Nicht-kooperative Kommunikation im Sinne, daß nur der Empfänger profitiert, wurde bei der Ausnutzung der flüchtigen kutikulären Kohlenwasserstoffen der Honigbiene durch seinen Prädator, das Bienenwolfweibchen, gezeigt. Durch die Nutzung von (Z)- 11-Eicosen-1-ol als Kairomon profitiert nur der Empfänger, das Bienenwolfweibchen, wohingegen der Sender, die Honigbiene (Beute), alle Kosten trägt. Die Ergebnisse dieser Studien tragen zu einem besseren Verständnis der Evolution von kooperativer und nicht-kooperativer Kommunikation mit chemischen Signalen unter Berücksichtigung des unterschiedlichen Nutzens für Sender und/oder Empfänger bei. KW - Hautflügler KW - Chemische Kommunikation KW - Pheromone KW - kutikuläre Kohlenwasserstoffe KW - chemische Kommunikation KW - Hymenopteren KW - pheromones KW - cuticular hydrocarbons KW - chemical communication KW - Hymenoptera Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11267 ER - TY - THES A1 - Endler, Annett T1 - Regulation of reproductive division of labor in the ant Camponotus floridanus : behavioral mechanisms and pheromonal effects T1 - Regulation der reproduktiven Arbeitsteilung bei der Ameise Camponotus floridanus: Verhaltensmechanismen und Einfluss von Pheromonen N2 - A hitherto unresolved problem is how workers are prevented from reproducing in large insect societies. The queen informs about her fertility and health which ensures sufficient indirect fitness benefits for workers. In the ant Camponotus floridanus, I found such a signal located on eggs of highly fertile queens. Groups of workers were regularly provided with different sets of brood. Only in groups with queen eggs workers refrain from reproducing. Thus, the eggs seem to inform the workers about queen presence. The signal on queen eggs is presumably the same that enables workers to distinguish between queen and worker-laid eggs, latter are destroyed by workers. Queen and worker-laid eggs differ in their surface hydrocarbons in a similar way as fertile queens differ from workers in the composition of their cuticular hydrocarbons. When I transferred hydrocarbons from the queen cuticle to worker eggs the eggs were no longer destroyed, indicating that they now carry the signal. These hydrocarbons thus represent a queen signal that regulates worker reproduction in this species. But the signal is not present in all fertile queens. Founding queens with low egg-laying rates differ in the composition of cuticular hydrocarbons from queens with high productivity. Similar differences in the composition of surface hydrocarbons were present on their eggs. The queen signal develops along with an increasing fertility and age of the queen, and this is perceived by the workers. Eggs from founding queens were destroyed like worker eggs. This result shows that founding queens lack the appropriate signal. In these little colony foundations chemical communication of queen status may not be necessary to prevent workers from reproducing, since workers may benefit more from investing in colony growth and increased productivity of large colonies rather than from producing male eggs in incipient colonies. If the queen is missing or the productivity of the queen decreases, workers start laying eggs. There is some evidence from correlative studies that, under queenless conditions, worker police each other because of differences in individual odors as a sign of social status. It can be expressed as either aggressive inhibition of ovarian activity, workers with developed ovaries are attacked by nest-mates, or destruction by worker-laid eggs. I found that in C. floridanus workers, in contrast to known studies, police only by egg eating since they are able to discriminate queen- and worker-laid eggs. Workers with developed ovaries will never attacked by nest-mates. This is further supported by qualitative and quantitative differences in the cuticular hydrocarbon profile of queens and workers, whereas profiles of workers with and without developed ovaries show a high similarity. I conclude that workers discriminate worker eggs on the basis of their hydrocarbon profile, but they are not able to recognize egg-laying nest-mates. Improving our knowledge of the proximate mechanisms of the reproductive division of labor in evolutionary derived species like C. floridanus will help to understand the evolution of extreme reproductive altruism involving sterility as a characteristic feature of advanced eusocial systems. N2 - Es ist eine bisher ungelöste Frage, wie Arbeiterinnen in großen Insektenkolonien von der Reproduktion abgehalten werden. Arbeiterinnen würden einen erheblichen Fitnessvorteil erlangen, falls die Königin über ihre Fertilität und ihren Gesundheitszustand informiert. Bei der Ameise Camponotus floridanus konnte auf den Eiern hochfertiler Königinnen so ein Signal gefunden werden. Gruppen von Arbeiterinnen wurden regelmäßig mit verschiedenen Brutansätzen versorgt. Aber nur in Gruppen, welche Eier der Königin erhielten, wurden die Arbeiterinnen von der Reproduktion abgehalten. Die Eier informieren demnach über die Anwesenheit der Königin. Das Signal der Königineier ermöglicht Arbeiterinnen offensichtlich auch zwischen Eiern von Königin und Arbeiterinnen zu unterscheiden, wobei letztere zerstört werden. Königin- und Arbeiterinneneier unterscheiden sich in ihren Oberflächenkohlenwasserstoffen auf ähnliche Weise wie sich die kutikulären Kohlenwasserstoffprofile von fertilen Königinnen und Arbeiterinnen unterscheiden. Wurden Kohlenwasserstoffe von der Kutikula der Königin auf Eier von Arbeiterinnen übertragen, schützten sie diese vor der Zerstörung. Dies zeigt, dass die Eier das Signal transportieren. Die Kohlenwasserstoffe stellen ein Königinsignal dar, welches die Reproduktion der Arbeiterinnen bei C. floridanus regelt. Allerdings kommt das Signal nicht bei allen fertilen Königinnen vor. Gründungsköniginnen mit einer geringen Eiablagerate unterscheiden sich in der Zusammensetzung der Kohlenwasserstoffe von Königinnen mit einer höheren Produktivität. Ähnliche Unterschiede in der Zusammensetzung der Oberflächenkohlenwasserstoffe finden sich ebenfalls auf den jeweiligen Eiern. Das Königinsignal gewinnt an Stärke mit zunehmender Fertilität und Alter der Königin, was von den Arbeiterinnen erkannt wird. Eier von Gründungsköniginnen werden wie die Eier von Arbeiterinnen zerstört. Das Ergebnis zeigt, dass Gründungsköniginnen das betreffende Signal nicht besitzen. Um Arbeiterinnen von der Reproduktion abzuhalten, scheint es in kleinen Gründungskolonien nicht notwendig über den Zustand der Königin zu informieren. Arbeiterinnen in diesen Kolonien profitieren mehr von der Investition in das Koloniewachstum als von der Produktion von Männchen. Fehlt die Königin oder nimmt ihre Produktivität ab, dann beginnen Arbeiterinnen mit der Eiablage. Es gibt Belege aus anderen Studien, dass unter königinlosen Bedingungen Arbeiterinnen sich gegenseitig von der erfolgreichen Reproduktion abhalten (worker policing). Dabei orientieren sie sich am individuellen Geruch der Tiere je nach sozialem Status. Die Inhibierung der Ovarienaktivität erfolgt über Aggression, indem fertile Arbeiterinnen von ihren Nestgenossinnen attackiert werden, oder über die Zerstörung von Eiern. Arbeiterinnen von C. floridanus policen, im Gegensatz zu den bekannten Studien, nur durch Eifrass, da sie in der Lage sind Eier von Königin und Arbeiterinnen zu unterscheiden. Fertile Arbeiterinnen werden dagegen nie von Nestgenossinnen angegriffen. Dies wird unterstützt durch qualitative und quantitative Unterschiede im kutikulären Kohlenwasserstoffprofil zwischen Königin und Arbeiterinnen, während sich das Profil fertiler und infertiler Arbeiterinnen dagegen nicht unterscheidet. Arbeiterinnen nutzen demnach das Kohlenwasserstoffprofil um Eier zu unterscheiden, sind aber nicht in der Lage fertile Nestgenossinnen zu erkennen. Die Aufklärung der Regulationsmechanismen der reproduktiven Arbeitsteilung bei stark abgeleiteten Arten wie C. floridanus liefert einen Beitrag zum Verständnis, wieso es im Laufe der Evolution zur reproduktiven Degeneration von Arbeiterinnen gekommen ist, einem Charakteristikum hoch entwickelter eusozialer Systeme. KW - Camponotus floridanus KW - Fortpflanzung KW - Pheromon KW - soziale Insekten KW - Ameisen KW - Fertilitätssignal KW - kutikuläre Kohlenwasserstoffe KW - worker policing KW - social insects KW - ants KW - fertility signal KW - cuticular hydrocarbons KW - worker policing Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18872 ER - TY - THES A1 - Brandstaetter, Andreas Simon T1 - Neuronal correlates of nestmate recognition in the carpenter ant, Camponotus floridanus T1 - Neuronale Korrelate der Nestgenossen-Erkennung bei der Rossameise, Camponotus floridanus N2 - Cooperation is beneficial for social groups and is exemplified in its most sophisticated form in social insects. In particular, eusocial Hymenoptera, like ants and honey bees, exhibit a level of cooperation only rarely matched by other animals. To assure effective defense of group members, foes need to be recognized reliably. Ants use low-volatile, colony-specific profiles of cuticular hydrocarbons (colony odor) to discriminate colony members (nestmates) from foreign workers (non-nestmates). For colony recognition, it is assumed that multi-component colony odors are compared to a neuronal template, located in a so far unidentified part of the nervous system, where a mismatch results in aggression. Alternatively, a sensory filter in the periphery of the nervous system has been suggested to act as a template, causing specific anosmia to nestmate colony odor due to sensory adaptation and effectively blocking perception of nestmates. Colony odors are not stable, but change over time due to environmental influences. To adjust for this, the recognition system has to be constantly updated (template reformation). In this thesis, I provide evidence that template reformation can be induced artificially, by modifying the sensory experience of carpenter ants (Camponotus floridanus; Chapter 1). The results of the experiments showed that template reformation is a relatively slow process taking several hours and this contradicts the adaptation-based sensory filter hypothesis. This finding is supported by first in-vivo measurements describing the neuronal processes underlying template reformation (Chapter 5). Neurophysiological measurements were impeded at the beginning of this study by the lack of adequate technical means to present colony odors. In a behavioral assay, I showed that tactile interaction is not necessary for colony recognition, although colony odors are of very low volatility (Chapter 2). I developed a novel stimulation technique (dummy-delivered stimulation) and tested its suitability for neurophysiological experiments (Chapter 3). My experiments showed that dummy-delivered stimulation is especially advantageous for presentation of low-volatile odors. Colony odor concentration in headspace was further increased by moderately heating the dummies, and this allowed me to measure neuronal correlates of colony odors in the peripheral and the central nervous system using electroantennography and calcium imaging, respectively (Chapter 4). Nestmate and non-nestmate colony odor elicited strong neuronal responses in olfactory receptor neurons of the antenna and in the functional units of the first olfactory neuropile of the ant brain, the glomeruli of the antennal lobe (AL). My results show that ants are not anosmic to nestmate colony odor and this clearly invalidates the previously suggested sensory filter hypothesis. Advanced two-photon microscopy allowed me to investigate the neuronal representation of colony odors in different neuroanatomical compartments of the AL (Chapter 5). Although neuronal activity was distributed inhomogeneously, I did not find exclusive representation restricted to a single AL compartment. This result indicates that information about colony odors is processed in parallel, using the computational power of the whole AL network. In the AL, the patterns of glomerular activity (spatial activity patterns) were variable, even in response to repeated stimulation with the same colony odor (Chapter 4&5). This finding is surprising, as earlier studies indicated that spatial activity patterns in the AL reflect how an odor is perceived by an animal (odor quality). Under natural conditions, multi-component odors constitute varying and fluctuating stimuli, and most probably animals are generally faced with the problem that these elicit variable neuronal responses. Two-photon microscopy revealed that variability was higher in response to nestmate than to non-nestmate colony odor (Chapter 5), possibly reflecting plasticity of the AL network, which allows template reformation. Due to their high variability, spatial activity patterns in response to different colony odors were not sufficiently distinct to allow attribution of odor qualities like ‘friend’ or ‘foe’. This finding challenges our current notion of how odor quality of complex, multi-component odors is coded. Additional neuronal parameters, e.g. precise timing of neuronal activity, are most likely necessary to allow discrimination. The lower variability of activity patterns elicited by non-nestmate compared to nestmate colony odor might facilitate recognition of non-nestmates at the next level of the olfactory pathway. My research efforts made the colony recognition system accessible for direct neurophysiological investigations. My results show that ants can perceive their own nestmates. The neuronal representation of colony odors is distributed across AL compartments, indicating parallel processing. Surprisingly, the spatial activity patterns in response to colony are highly variable, raising the question how odor quality is coded in this system. The experimental advance presented in this thesis will be useful to gain further insights into how social insects discriminate friends and foes. Furthermore, my work will be beneficial for the research field of insect olfaction as colony recognition in social insects is an excellent model system to study the coding of odor quality and long-term memory mechanisms underlying recognition of complex, multi-component odors. N2 - Kooperation innerhalb sozialer Gruppen ist vorteilhaft und zeigt sich bei sozialen Insekten in seiner am höchsten entwickelten Form. Besonders eusoziale Hymenopteren, wie Ameisen und Honigbienen, zeigen ein Maß an Kooperation, das nur selten von anderen Tierarten erreicht wird. Um eine effektive Verteidigung der Gruppenmitglieder sicher zu stellen, ist die zuverlässige Erkennung von Feinden unerlässlich. Ameisen verwenden schwerflüchtige, koloniespezifische Profile kutikulärer Kohlenwasserstoffe (Kolonieduft) zur Unterscheidung zwischen Gruppenmitgliedern (Nestgenossen) und fremden Arbeiterinnen (Nestfremdlinge). Man geht davon aus, dass die aus einer Vielzahl von Komponenten bestehenden Koloniedüfte zum Zweck der Kolonieerkennung mit einer neuronalen Schablone, welche sich an bisher unbestimmter Stelle im Nerven-system befindet, abgeglichen werden. Dabei führt eine Diskrepanz zwischen Schablone und Kolonieduft zu Aggression. Eine alternative Hypothese besagt, dass ein sensorischer Filter in der Peripherie des Nervensystems die Aufgabe einer neuronalen Schablone übernimmt. Dies würde mittels sensorischer Adaptation zu spezifischer Anosmie gegenüber Nestgenossen-Kolonieduft führen, so dass die Wahrnehmung von Nestgenossen effektiv verhindert wäre. Allerdings sind Koloniedüfte nicht stabil, sondern verändern sich im Lauf der Zeit aufgrund von Umwelteinflüssen. Um dies zu kompensieren, muss das Erkennungssystem fortwährend aktualisiert werden (Schablonenerneuerung). In dieser Arbeit erbringe ich den Nachweis, dass bei Rossameisen (Camponotus floridanus) die Schablonenerneuerung artifiziell durch Modifizierung der sensorischen Erfahrung induziert werden kann (Kapitel 1). Die Ergebnisse der in Kapitel 1 beschriebenen Experimente zeigen, dass die Schablonenerneuerung ein relativ langsamer Prozess ist, der mehrere Stunden in Anspruch nimmt. Dies widerspricht der Hypothese eines sensorischen Filters, welcher auf sensorischer Adaptation beruht. Dieser Befund konnte mittels erster in-vivo Messungen bestätigt werden, mit Hilfe derer die der Schablonenerneuerung zugrunde liegenden neuronalen Prozesse beschrieben wurden (Kapitel 5). Die neurophysiologischen Messungen wurden zu Beginn dieser Studie durch das Fehlen eines adäquaten Mittels zur Präsentation von Koloniedüften erschwert. In einem Verhaltensversuch konnte ich zeigen, dass taktile Interaktionen für die Kolonieerkennung nicht notwendig sind (Kapitel 2). Ich entwickelte eine neuartige Stimulierungsmethode (Dummy-vermittelte Stimulierung) und testete deren Eignung für neurophysiologische Experimente (Kapitel 3). Meine Experimente zeigten, dass die Dummy-vermittelte Stimulierung besonders für die Präsentation von schwerflüchtigen Düften geeignet ist. Die Konzentration von Koloniedüften im Gasraum konnte durch moderates Aufheizen der Dummys weiter gesteigert werden. Dies erlaubte mir, die neuronalen Korrelate von Koloniedüften im peripheren und im zentralen Nervensystem mittels Elektroantennographie bzw. funktionaler Bildgebung (Calcium Imaging) zu messen (Kapitel 4). Nestgenossen- und Nestfremdlings-Koloniedüfte riefen starke neuronale Antworten in den olfaktorischen Rezeptorneuronen der Antenne und in den funktionalen Einheiten des ersten olfaktorischen Neuropils des Ameisengehirns, den Glomeruli des Antennallobus (AL), hervor. Meine Ergebnisse zeigen, dass Ameisen nicht anosmisch gegenüber Nestgenossen-Koloniedüften sind, womit die vorgeschlagene Hypothese eines sensorischen Filters eindeutig für ungültig erklärt werden kann. Mittels fortschrittlicher Zwei-Photonen-Mikroskopie konnte ich die neuronale Repräsentation von Koloniedüften in verschiedenen neuroanatomischen Kompartimenten des AL messen (Kapitel 5). Obgleich die neuronale Aktivität inhomogen verteilt war, konnte ich keine exklusive Repräsentation finden, die auf ein einzelnes AL-Kompartiment beschränkt gewesen wäre. Dieses Ergebnis weist darauf hin, dass Informationen über Koloniedüfte parallel verarbeitet werden und dies erlaubt die Nutzung der Rechenleistung des kompletten AL-Netzwerkes. Im AL waren die Muster glomerulärer Aktivität (räumliche Aktivitätsmuster) variabel, selbst wenn sie durch wiederholte Stimulierung mit dem gleichen Kolonieduft hervorgerufen wurden (Kapitel 4&5). Dieser Befund ist insofern überraschend, als frühere Studien darauf hinwiesen, dass die räumlichen Aktivitätsmuster im AL widerspiegeln, wie ein Duft von einem Tier wahrge¬nommen wird (Duftqualität). Unter natürlichen Bedingungen stellen Düfte, die aus einer Vielzahl von Komponenten bestehen, variable und fluktuierende Stimuli dar. Höchstwahrscheinlich sind Tiere generell mit dem Problem konfrontiert, dass solche Düfte variable neuronale Antworten hervorrufen. Mittels Zwei-Photonen-Mikroskopie konnte ich zeigen, dass die Variabilität in Antwort auf Nestgenossen-Kolonieduft höher war als in Antwort auf Nestfremdlings-Kolonieduft (Kapitel 5). Möglicherweise spiegelt dies jene Plastizität im AL-Netzwerk wider, welche die Schablonenerneuerung ermöglicht. Aufgrund ihrer hohen Variabilität waren die von verschiedenen Koloniedüften hervorgerufenen räumlichen Aktivierungsmuster nicht hinreichend unterschiedlich, um eine Zuordnung von Duft-qualitäten wie ‚Freund‘ oder ‚Feind‘ zu erlauben. Dieser Befund stellt unsere momentane Auffassung in Frage, wie die Duftqualität komplexer, aus vielen Komponenten bestehender Düfte kodiert wird. Höchstwahrscheinlich sind zusätzliche neuronale Parameter, wie z.B. die präzise, zeitliche Koordinierung neuronaler Aktivität, zur Diskriminierung notwendig. Die geringere Variabilität der von Nestfremdlings-Kolonieduft hervorgerufenen Aktivitätsmuster könnte die Erkennung von Nestfremdlingen auf der nächsten Ebene der olfaktorischen Bahn begünstigen. Meine Forschungsarbeit hat das Kolonieerkennungssystem für direkte neurophysiologische Untersuchungen zugänglich gemacht. Meine Ergebnisse zeigen, dass Ameisen ihre eigenen Nest-genossen wahrnehmen können. Die neuronale Repräsentation von Koloniedüften ist über die AL-Kompartimente verteilt, was auf eine parallele Verarbeitung hinweist. Desweiteren könnte die geringere Variabilität der von Nestfremdlings-Kolonieduft hervorgerufenen Aktivitätsmuster die Erkennung von Nestfremdlingen auf der nächsten Ebene der olfaktorischen Bahn begünstigen. Erstaunlicherweise sind die räumlichen Aktivitätsmuster in Antwort auf Koloniedüfte hochvariabel. Die wirft die Frage auf, wie in diesem System die Duftqualität kodiert wird. Der experimentelle Fortschritt, den ich in dieser Doktorarbeit vorstelle, wird nützlich sein, um weitere Erkenntnisse zu gewinnen, wie soziale Insekten Freunde von Feinden unterscheiden. Desweiteren wird meine Arbeit dem Forschungsbereich Insektenolfaktion zuträglich sein, da die Kolonieerkennung bei sozialen Insekten ein hervorragendes Modelsystem darstellt, um die Kodierung von Duftqualität zu erforschen, sowie Langzeitmechanismen, die der Erkennung komplexer, aus vielen Komponenten bestehender Düfte zugrunde liegen. KW - Neuroethologie KW - Camponotus floridanus KW - Ameisenstaat KW - Kutikula KW - Kohlenwasserstoffe KW - Kolonieerkennung KW - kutikuläre Kohlenwasserstoffe KW - funktionale Bildgebung KW - Verhalten KW - Neurophysiologie KW - Soziobiologie KW - Erkennung KW - Geruch KW - neuroethology KW - colony recognition KW - cuticular hydrocarbons KW - social insects KW - aggressive behavior Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55963 ER -