TY - THES A1 - Schmid, Ursula T1 - Protection against oxidative DNA damage by antioxidants, hormone-receptor blockers and HMG-CoA-reductase inhibitors T1 - Schutz vor oxidativen DNA-Schäden durch Antioxidantien, Hormonrezeptorantagonisten und HMG-CoA-Reduktase-Inhibitoren N2 - In the course of this study, several endogenous compounds and model substances were used to mimic the conditions in patients suffering from hypertension. As endogenous compounds, angiotensin II and aldosterone were chosen. As model substances, 4-nitroquinoline-1-oxide (NQO), hydrogen peroxide and phorbol 12-myristate 13-acetate (PMA) were selected. Benfotiamine as well as α-tocopherol proved in the course of the experiments to be able to prevent angiotensin II-induced formation of oxidative DNA strand breaks and micronuclei. This could be due to a prior inhibition of the release of reactive oxygen species and is in contrast to results which were achieved using thiamine. Furthermore, experiments in which cells were pre-incubated with benfotiamine followed by incubation with NQO showed that benfotiamine was not able to prevent the induction of oxidative stress. The hypothesis that benfotiamine has, like α-tocopherol, direct antioxidative capacity was fortified by measurements in cell free systems. In brief, a new working mechanism for benfotiamine in addition to the ones already known could be provided. In the second part of the study, angiotensin II was shown to be dose-dependently genotoxic. This effect is mediated via the angiotensin II type 1 receptor (AT1R) which. Further experiments were extended from in vitro settings to the isolated perfused kidney. Here it could be shown that angiotensin II caused vasoconstriction and DNA strand breaks. Co-perfusion of kidneys with angiotensin II and candesartan prevented vasoconstriction and formation of strand breaks. DNA strand break formation due to mechanical stress or hypoxia could be ruled out after additional experiments with the thromboxane mimetic U 46619. Detailed investigation of the DNA damage in vitro revealed that angiotensin II induces single strand breaks, double strand breaks and 8-hydroxydeoxyguanosine (8-oxodG)-adducts as well as abasic sites. Investigations of the effects of aldosterone-treatment in kidney cells showed an increase of oxidative stress, DNA strand breaks and micronuclei which could be prevented by the steroidal mineralocorticoid receptor antagonist eplerenone. Additional experiments with the non-steroidal mineralocorticoid receptor antagonist (S)-BR-4628 revealed that this substance was also able to prevent oxidative stress and genomic damage and proved to be more potent than eplerenone. In vivo, hyperaldosteronism was imitated in rats by aid of the deoxycorticosteroneacetate (DOCA) salt model. After this treatment, levels of DNA strand breaks and chromosomal aberrations in the kidney could be observed. Furthermore, an increase in the release of ROS could be measured. Treatment of these animals with spironolactone , BR-4628 and enalaprile revealed that all antagonists were effective BR-4628 was the most potent drug. Finally, rosuvastatin was investigated. In HL-60 cells phorbol 12-myristate 13-acetate caused oxidative stress. Rosuvastatin was able to prevent the release of ROS and subsequent oxidative DNA damage when co-incubated with PMA. Furthermore, not only an inhibition of PMA-induced oxidative stress but also inhibition of the unspecific release of ROS induced by hydrogen peroxide was observable. Addition of farnesyl pyrophosphate (FPP), geranylgeranyl pyrophosphate (GGPP), and mevalonate, intermediates of the cholesterol pathway, caused only a marginal increase of oxidative stress in cells treated simultaneously with PMA and rosuvastatin, thus indicating the effect of rosuvastatin to be HMG-CoA-reductase-independent. Investigation of the gene expression of subunits of NAD(P)H oxidase revealed a down-regulation of p67phox following rosuvastatin-treatment. Furthermore, it could be shown that rosuvastatin treatment alone or in combination with PMA increased total glutathione levels probably due to an induction of the gene expression and enzyme activity of γ-glutamylcysteine synthetase (γ-GCS). N2 - Im Zuge dieser Studie wurden sowohl endogene Substanzen als auch Modellsubstanzen eingesetzt, um die pathologischen Verhältnisse in Patienten, die an Bluthochdruck leiden, zu imitieren. Als endogene Substanzen wurden Angiotensin II und Aldosteron ausgewählt. Als Modellsubstanzen wurden 4-Nitrochinolin-1-oxid (NQO), Wasserstoffperoxid und Phorbol-12-myristat-13-gewählt. Der erste Teil dieser Arbeit beschäftigt sich mit zwei Vitaminen, nämlich Benfotiamin und α-Tocopherol. Sowohl Benfotiamin als auch α-Tocopherol zeigten im Laufe der Experimente, dass sie in der Lage sind, durch Angiotensin II verursachte DNA-Strangbrüche und chromosomale Aberrationen zu verhindern. Dies ist möglicherweise auf eine ebenfalls beobachtbare vorausgegangene Inhibition der Freisetzung reaktiver Sauerstoffspezies zurückzuführen. Zusammenfassend konnte ein neuer Wirkmechanismus für Benfotiamin vorgestellt werden. Im zweiten Teil dieser Studie konnte nachgewiesen werden, dass Angiotensin II eine dosisabhängige Gentoxizität verursacht. Dieser Effekt wird durch den Angiotensin II-Rezeptor Typ 1 vermittelt. Im weiteren Verlauf der Studie wurden die in vitro Experimente auf das Modell der isolierten perfundierten Mäuseniere ausgeweitet. Hier konnte gezeigt werden, dass Angiotensin II Vasokonstriktion und DNA-Strangbrüche verursacht. Co-Perfusion der Nieren mit Angiotensin II und Candesartan verhinderte hingegen die Vasokonstriktion und die Bildung von DNA-Strangbrüchen. Die Verursachung von Strangbrüchen durch mechanischen Stress oder Hypoxie konnte ausgeschlossen werden. Die Untersuchung der ex vivo beobachteten DNA-Schäden in vitro ließ erkennen, dass Angiotensin II Einzelstrangbrüche, Doppelstrangbrüche, die Bildung des DNA-Addukts 8-OxodG und abasische Stellen induziert. Ein Reparatur-Comet Assay, parallel durchgeführt mit der Messung des phosphorylierten Histons 2AX (γ-H2AX) über 24 h, zeigte eine vollständige Reparatur der Einzelstrangbrüche, wohingegen die Zahl der Doppelstrangbrüche in diesem Zeitraum sogar zunahm. Untersuchungen der Effekte, die eine Aldosteron-Behandlung auf Nierenzellen hat, zeigten einen Anstieg des oxidativen Stress, der DNA Strangbrüche und der Mikrokerne. Diese Effekte konnten durch Eplerenon verhindert werden. Weitere Experimente mit dem nicht-steroidalen Mineralocorticoid Rezeptor-Antagonisten (S)-BR-4628 zeigten, dass auch diese Substanz oxidativen Stress und DNA Schäden verhindern konnte, im Gegensatz hierzu hatte das (R)-Isomer, das keine Aktivität am Mineralocorticoid Rezeptor zeigt, keine präventiven Effekte. In vivo wurde der Hyperaldosteronismus mit Hilfe des Deoxycorticosteronacetat- (DOCA) Salzmodells nachgeahmt. Unter dieser Behandlung konnten Level an DNA-Strangbrüchen und chromosomalen Aberrationen beobachtet werden. Des Weiteren konnten in den DOCA-Tieren erhöhte Level an oxidativem Stress gemessen werden. Wurden die Versuchstiere zusätzlich zur DOCA-Behandlung mit Spironolacton, BR-4628 und dem Enalapril behandelt, konnte gezeigt werden, dass BR-4628 potenter war als Spironolacton Enalapril. Zuletzt wurde mit Rosuvastatin eine Substanz untersucht, die die antioxidative Abwehr der Zellen aktivieren kann. In der humanen Leukämie-Zelllinie HL-60 verursachte Phorbol-12-myristat-13-acetat (PMA) oxidativen Stress. Rosuvastatin war in der Lage, die Freisetzung von ROS und daraus resultierende DNA-Strangbrüche bei Co-Inkubation mit PMA zu verhindern. Außerdem konnte gezeigt werden, dass Rosuvastatin nicht nur PMA-induzierten oxidativen Stress, sondern auch die unspezifische Wasserstoffperoxid-induzierte Freisetzung von ROS verhinderte. Die Untersuchung der Genexpression von Untereinheiten der NAD(P)H Oxidase ergab, dass p67phox nach Rosuvastatin-Behandlung herabreguliert wurde. Behandlung mit Rosuvastatin allein oder zusammen mit PMA konnte außerdem die Glutathion-Spiegel erhöhen. Dies ist vermutlich auf die Induktion der Genexpression und der Enzymaktivität der γ-Glutamylcystein-Synthetase (γ-GCS), des Schrittmacherenzyms des Glutathionsystems, zurückzuführen. KW - Oxidativer Stress KW - Angiotensin II KW - Angiotensin-II-Blocker KW - Aldosteron KW - Aldosteronantagonist KW - Renin-Angiotensin-System KW - Benfotiamin KW - Statin KW - Di KW - DNA-Schaden KW - Mikrokerne KW - Comet Assay KW - DNA damage KW - Micronuclei KW - Comet Assay Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28379 ER - TY - THES A1 - Fazeli, Gholamreza T1 - Signaling in the induction of genomic damage by endogenous compounds T1 - Signalwege bei der Induktion von Genomschäden durch endogene Substanzen N2 - Reactive oxygen species (ROS) are continuously generated in cells and are involved in physiological processes including signal transduction but also their damaging effects on biological molecules have been well described. A number of reports in the literature implicate excessive oxidative stress and/or inadequate antioxidant defense in the pathogenesis of cancer, atherosclerosis, chronic and age related disorders. Several studies have indicated that activation of the renin-angiotensin-aldosterone-system can lead to the formation of ROS. Epidemiological studies have revealed higher renal cell cancer incidences and also higher cancer mortalities in hypertensive individuals. Recently, our group has shown that perfusion of the isolated mouse kidney with Ang II or treatment of several cell lines with Ang II leads to formation of DNA damage and oxidative base modifications. Here, we tried to scrutinize the pathway involved in genotoxicity of Ang II. We confirmed the genotoxicity of Ang II in two kidney cell lines of human origin. Ang II treatment led to the production of superoxide anions which we could hinder when we used the membrane permeable superoxide dismutase (SOD) mimetic TEMPOL. One of the enzymes which is activated in the cells after Ang II treatment and is able to produce ROS is NADPH oxidase. We demonstrated the activation of NADPH oxidase in response to Ang II by upregulation of its p47 subunit using RT-PCR. Also, pPhosphorylation of p47 subunit of NADPH oxidase after Ang II treatment was enhanced. Using two inhibitors we showed that NADPH oxidase inhibition completely prevents DNA damage by Ang II treatment. To differentiate between Nox2 and Nox4 isoforms of NADPH oxidase subunits in the genotoxicity of Ang II, we performed siRNA inhibition and found a role only for Nox4, while Nox2 was not involved. Next, we investigated PKC as a potential activator of NADPH oxidase. We showed that PKC becomes phosphorylated after Ang II treatment and also that inhibition of PKC hinders Ang II from damaging the cells. Our results from using several inhibitors of different parts of the pathway revealed that PKC activation in this pathway is dependent on the action of PLC on membrane phospholipids and production of IP3. IP3 binds to its receptor at endoplasmic reticulum (ER), opening a channel which allows calcium efflux into the cytoplasm. In this manner, both ER calcium stores and extracellular calcium cooperate so that Ang II can exert its genotoxic effect. PLC is activated by AT1R stimulation. We could also show that the genotoxicity of Ang II is mediated via AT1R signaling using the AT1R antagonist candesartan. In conclusion, here we have shown that Ang II is able to damage genomic damage in cell lines of kidney origin. The observed damage is associated with production of ROS. A decrease in Ang II-induced DNA damage was observed after inhibition of G-proteins, PLC, PKC and NADPH oxidase and interfering with intra- as well as extracellular calcium signaling. This leads to the following preliminary model of signaling in Ang II-induced DNA damage: binding of Ang II to the AT1 receptor activates PLC via stimulation of G-proteins, resulting in the activation of PKC in a calcium dependent manner which in turn, activates NADPH oxidase. NADPH oxidase with involvement of its Nox4 subunit then produces reactive oxygen species which cause DNA damage. Dopamine content and metabolism in the peripheral lymphocytes of PD patients are influenced by L-Dopa administration. The PD patients receiving a high dose of L-Dopa show a significantly higher content of dopamine in their lymphocytes compared to PD patients who received a low dose of L-Dopa or the healthy control. Central to many of the processes involved in oxidative stress and oxidative damage in PD are the actions of monoamine oxidase (MAO), the enzyme which is responsible for the enzymatic oxidation of dopamine which leadsing to production of H2O2 as a by-product. We investigated whether dopamine oxidation can cause genotoxicity in lymphocytes of PD patents who were under high dose L-Dopa therapy and afterward questioned the occurrence of DNA damage after dopamine treatment in vitro and tried to reveal the mechanism by which dopamine exerts its genotoxic effect. The frequency of micronuclei in peripheral blood lymphocytes of the PD patients was not elevated compared to healthy age-matched individuals, although the formation of micronuclei revealed a positive correlation with the daily dose of L-Dopa administration in patients who received L-Dopa therapy together with dopamine receptor agonists. In vitro, we describe an induction of genomic damage detected as micronucleus formation by low micromolar concentrations in cell lines with of different tissue origins. The genotoxic effect of dopamine was reduced by addition of the antioxidants TEMPOL and dimethylthiourea which proved the involvement of ROS production in dopamine-induced DNA damage. To determine whether oxidation of dopamine by MAO is relevant in its genotoxicity, we inhibited MAO with two inhibitors, trans-2-phenylcyclopropylamine hydrochloride (PCPA) and Ro 16-6491 which both reduced the formation of micronuclei in PC-12 cells. We also studied the role of the dopamine transporter (DAT) and dopamine type 2 receptor (D2R) signaling in the genotoxicity of dopamine. Inhibitors of the DAT, GBR-12909 and nomifensine, hindered dopamine-induced genotoxicity. These results were confirmed by treatment of MDCK and MDCK-DAT cells, the latter containing the human DAT gene, with dopamine. Only MDCK-DAT cells showed elevated chromosomal damage and dopamine uptake. Although stimulation of D2R with quinpirole in the absence of dopamine did not induce genotoxicity in PC-12 cells, interference with D2R signaling using D2R antagonist and inhibition of G-proteins, phosphoinositide 3 kinase and extracellular signal-regulated kinases reduced dopamine-induced genotoxicity and affected the ability of DAT to take up dopamine. Furthermore, the D2R antagonist sulpiride inhibited the dopamine-induced migration of DAT from cytosol to cell membrane. Overall, the neurotransmitter dopamine causes DNA damage and oxidative stress in vitro. There are also indications that high dose L-Dopa therapy might lead to oxidative stress. Dopamine exerts its genotoxicity in vitro upon transport into the cells and oxidization oxidation by MAO. Transport of dopamine by DAT has the central role in this process. D2R signaling is involved in the genotoxicity of dopamine by affecting activation and cell surface expression of DAT and hence modulating dopamine uptake. We provided evidences for receptor-mediated genotoxicity of two compounds with different mechanism of actions. The involvement of these receptors in many human complications urges more investigations to reveal whether abnormalities in the endogenous compounds-mediated signaling can play a role in the initiation of new conditions like carcinogenesis. N2 - Reaktive Sauerstoffspezies (ROS) werden kontinuierlich in Zellen generiert und sind an physiologischen Prozessen wie der Signaltransduktion beteiligt. Aber auch ihre schädigenden Auswirkungen auf biologische Moleküle sind seit langem bekannt. Eine Reihe von Literaturberichten sieht einen Zusammenhang zwischen übermäßigem oxidativen Stress oder einer unzureichenden antioxidativen Verteidigung und Krebs, Atherosklerose und chronischen bzw. altersbedingten Erkrankungen. Mehrere Studien haben belegt, dass die Aktivierung des Renin-Angiotensin-Aldosteron-Systems zur Bildung von ROS führen kann. Epidemiologische Studien haben gezeigt, dass Nierenkarzinom-Inzidenzen und -Mortalitäten bei Hypertonikern erhöht sind. Vor kurzem konnte unsere Gruppe zeigen, dass die Perfusion von isolierten Maäusen-Nieren und dieoder Behandlung mehrerer Zelllinien mit Angiotensin II (Ang II) zur Bildung von DNA-Schäden und oxidativen Basenmodifikationen führt. Ziel der vorliegenden Arbeit war es, die Signalwege der Genotoxizität von Ang II zu bestimmen. Wir bestätigten dDie Genotoxiziät von Ang II in zwei Nieren-Zelllinien humaner Herkunft konnte bestätigt werden. Wir zeigten, dass Ang II-Behandlung zur Produktion von Superoxid-Anionen führt, die durch das membrangängige Superoxid-Dismutase-Mimetikum TEMPOL verhindert werden kann. Eines der Enzyme, das in den Zellen nach Ang II-Behandlung aktiviert wird und ROS produzieren kann, ist die NADPH-Oxidase. Die mittels RT-PCR gemessene Hochregulierung von p47 beweist die Aktivierung der NADPH-Oxidase nach Ang II-Behandlung. Auch die Phosphorylierung von p47 nach Ang II-Behandlung wurde gesteigert. Mittels zweier Inhibitoren zeigten wir, dass NADPH-Oxidase-Hemmung DNA-Schäden durch Ang II-Behandlung vollständig verhindert. Wir versuchten, die Rolle der Nox2- und Nox4-Isoformen der NADPH-Oxidase-Untereinheiten bei der Genotoxizität von Ang II zu differenzieren. Hemmung mittels siRNA bestätigte nur eine Beteiligung der Nox4. Anschließend überprüften wir die Rolle der PKC als potentiellem Aktivator der NADPH-Oxidase. Wir zeigten, dass die PKC nach Ang II-Behandlung PKC phosphoryliert wird und durch die Hemmung der PKC Ang II-induzierten Schäden verhindert werdenird. Die Verwendung mehrerer Inhibitoren der verschiedenen Teile des Signalweges zeigte, dass die PKC-Aktivierung von der Reaktion der PLC mit Membranphospholipiden und der Produktion von IP3 und DAG abhängig ist. IP3 bindet an seinen Rezeptor am Endoplasmatischen Retikulum (ER)., dDie in der Folge auftretende Öffnung eines Kanals ermöglicht einen Calcium-Ausstrom in das Cytoplasma. Auf diese Weise sind sowohl ER-Calcium als auch extrazelluläres Calcium an der Ang II-induzierten genotoxische Wirkung beteiligt. PLC wird durch AT1R-Stimulation aktiviert. Wir konnten mit Hilfe des AT1R-Antagonisten Candesartan auch zeigen, dass die Genotoxizität von Ang II über AT1R-Signaltransduktion vermittelt wird. Zusammenfassend haben wir gezeigt, dass Ang II genomische Schäden in humanen Nieren-Zelllinien verursacht. Die Schäden sind mit der Produktion von ROS verbunden. Eine Reduktion der Ang II-induzierten DNA-Schäden wurde nach Hemmung vonder G-Proteinen, der PLC, PKC und NADPH-Oxidase und Beeinflussung intra- sowie extrazellulärer Calium-Signalgebung gezeigt. Dies führt zu folgendem vorläufigen Modell der Signaltransduktion der von Ang II-induzierten DNA-Schäden: Die Bindung von Ang II an den AT1-Rezeptor aktiviert die PLC durch Stimulationerung der G-Proteine und die PKC in Calcium-abhängiger Weise, dies wiederum aktiviert die NADPH-Oxidase. Die NADPH Oxidase unter Beteiligung ihrerseiner Nox4-Untereinheit erzeugt dann reaktive Sauerstoffspezies, die DNA-Schäden verursachen. Dopamingehalt und -stoffwechsel in peripheren Lymphozyten von Parkinson-Patienten werden durch L-Dopa-Gabe beeinflusst. Die Patienten, die eine hohe Dosis L-Dopa erhalten, zeigen einen signifikant höheren Gehalt an Dopamin in den Lymphozyten im Vergleich zu Patienten, die eine niedrige Dosis L-Dopa erhalten oder der gesunden Kontrollgruppe. Im Mittelpunkt vieler Prozesse bei der Entstehung von oxidativem Stress und oxidativer Schäden bei Parkinson-Patienten steht die Monoaminoxidase (MAO), die für die enzymatische Oxidation von Dopamin und in der Folge für die Entstehung von H2O2 verantwortlich ist. Wir untersuchten, ob die Oxidation von Dopamin genotoxische Wirkung in Lymphozyten von Parkinson-Patienten mit hochdosierter L-Dopa-Therapie induzieren kann. Danach überprüftenfragten wir, ob die Behandlung mit Dopamin in vitro DNA-Schäden induzieren kann und versuchten aufzuzeigen, durch welchen Mechanismus Dopamin seine genotoxische Wirkung entfaltet. Die Häufigkeit von Mikrokernen in peripheren Lymphozyten der Parkinson-Patienten war nicht erhöht im Vergleich zur gesunden Kontrollgruppe, allerdings zeigte die Mikrokernfrequenz eine positive Korrelation mit der täglichen L-Dopa-Dosis bei Patienten, die eine L-Dopa-Therapie zusammen mit einem Dopamin-Rezeptor-Agonisten erhielten. In vitro beobachteten wir bei niedrigen mikromolaren Konzentrationen eine Induktion des genomischen Schadens in Zelllinien, die aus verschiedenen Geweben stammten. Die genotoxische Wirkung von Dopamin wurde durch Zugabe der Antioxidantien TEMPOL und DMTU reduziert, wodurch die Beteiligung von ROS gezeigt werden konnte. Um festzustellen, ob die Oxidation von Dopamin durch MAO für die Genotoxizität relevant ist, hemmten wir MAO mit zwei Inhibitoren, trans-2-Phenylcyclopropylamin-Hydrochlorid (PCPA) und Ro 16-6491, die beide die Bildung von Mikrokernen in PC-12-Zellen reduzieren konnten. Wir untersuchten auch die Rolle des Dopamin-Transporters (DAT) und Dopamin-Typ-2-Rezeptor (D2R)-assoziierter Signalwege in der Genotoxizität von Dopamin. Die Inhibitoren des DAT, GBR-12909 und Nomifensin verhinderten die Dopamin-induzierte Genotoxizität. Diese Ergebnisse wurden durch Behandlung von MDCK- und MDCK-DAT- Zellen (die das humane DAT-Gen besitzen) mit Dopamin bestätigt. Nur MDCK-DAT-Zellen zeigten erhöhte chromosomale Schäden und Dopaminaufnahme. Obwohl die Stimulation mit dem D2R-Rezeptor-Agonisten Quinpirol in Abwesenheit von Dopamin keine Genotoxizität in PC-12-Zellen induzierte, reduzierten sowohl ein D2R-Antagonist, wie auch Inhibitoren des in der Signalkaskade involvierten G-Proteins, der Phosphoinositol-3-Kinase und der extrazellulären signalregulierten Kinasen die Aufnahme von Dopamin mittels DAT und die Dopamin-vermittelte Genotoxizität. Der D2R-Antagonist Sulpirid hemmte die Dopamin-induzierte Migration von DAT aus dem Cytosol zur Zellmembran. Insgesamt verursacht der Neurotransmitter Dopamin DNA-Schäden und oxidativen Stress in vitro. Es gibt Hinweise, dass eine hochdosierte L-Dopa-Therapie zu oxidativem Stress führt. In vitro führt Dopamin zu Genotoxizität durch den Transport in die Zellen und Oxidation durch MAO. Der Transport von Dopamin durch DAT spielt eine zentrale Rolle in diesem Prozess. Die D2R-Signalwege sind an der Genotoxizität von Dopamin durch Auswirkung auf die Aktivierung und Membranexpression von DAT und damit der Dopaminaufnahme beteiligt. KW - Angiotensin II KW - Mutagenität KW - DNS-Schädigung KW - DNA-Schaden KW - Genotoxizität KW - genotoxicity KW - DNA damage Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55634 ER -