TY - THES A1 - Zink, Johannes T1 - Algorithms for Drawing Graphs and Polylines with Straight-Line Segments T1 - Algorithmen zum Zeichnen von Graphen und Polygonzügen mittels Strecken N2 - Graphs provide a key means to model relationships between entities. They consist of vertices representing the entities, and edges representing relationships between pairs of entities. To make people conceive the structure of a graph, it is almost inevitable to visualize the graph. We call such a visualization a graph drawing. Moreover, we have a straight-line graph drawing if each vertex is represented as a point (or a small geometric object, e.g., a rectangle) and each edge is represented as a line segment between its two vertices. A polyline is a very simple straight-line graph drawing, where the vertices form a sequence according to which the vertices are connected by edges. An example of a polyline in practice is a GPS trajectory. The underlying road network, in turn, can be modeled as a graph. This book addresses problems that arise when working with straight-line graph drawings and polylines. In particular, we study algorithms for recognizing certain graphs representable with line segments, for generating straight-line graph drawings, and for abstracting polylines. In the first part, we first examine, how and in which time we can decide whether a given graph is a stick graph, that is, whether its vertices can be represented as vertical and horizontal line segments on a diagonal line, which intersect if and only if there is an edge between them. We then consider the visual complexity of graphs. Specifically, we investigate, for certain classes of graphs, how many line segments are necessary for any straight-line graph drawing, and whether three (or more) different slopes of the line segments are sufficient to draw all edges. Last, we study the question, how to assign (ordered) colors to the vertices of a graph with both directed and undirected edges such that no neighboring vertices get the same color and colors are ascending along directed edges. Here, the special property of the considered graph is that the vertices can be represented as intervals that overlap if and only if there is an edge between them. The latter problem is motivated by an application in automated drawing of cable plans with vertical and horizontal line segments, which we cover in the second part. We describe an algorithm that gets the abstract description of a cable plan as input, and generates a drawing that takes into account the special properties of these cable plans, like plugs and groups of wires. We then experimentally evaluate the quality of the resulting drawings. In the third part, we study the problem of abstracting (or simplifying) a single polyline and a bundle of polylines. In this problem, the objective is to remove as many vertices as possible from the given polyline(s) while keeping each resulting polyline sufficiently similar to its original course (according to a given similarity measure). N2 - Graphen stellen ein wichtiges Mittel dar, um Beziehungen zwischen Objekten zu modellieren. Sie bestehen aus Knoten, die die Objekte repräsentieren, und Kanten, die Beziehungen zwischen Paaren von Objekten abbilden. Um Menschen die Struktur eines Graphen zu vermitteln, ist es nahezu unumgänglich den Graphen zu visualisieren. Eine solche Visualisierung nennen wir Graphzeichnung. Eine Graphzeichnung ist geradlinig, wenn jeder Knoten als ein Punkt (oder ein kleines geometrisches Objekt, z. B. ein Rechteck) und jede Kante als eine Strecke zwischen ihren beiden Knoten dargestellt ist. Eine sehr einfache geradlinige Graphzeichnung, bei der alle Knoten eine Folge bilden, entlang der die Knoten durch Kanten verbunden sind, nennen wir Polylinie. Ein Beispiel für eine Polylinie in der Praxis ist eine GPS-Trajektorie. Das zugrundeliegende Straßennetzwerk wiederum kann als Graph repräsentiert werden. In diesem Buch befassen wir uns mit Fragen, die sich bei der Arbeit mit geradlinigen Graphzeichnungen und Polylinien stellen. Insbesondere untersuchen wir Algorithmen zum Erkennen von bestimmten mit Strecken darstellbaren Graphen, zum Generieren von geradlinigen Graphzeichnungen und zum Abstrahieren von Polylinien. Im ersten Teil schauen wir uns zunächst an, wie und in welcher Zeit wir entscheiden können, ob ein gegebener Graph ein Stickgraph ist, das heißt, ob sich seine Knoten als vertikale und horizontale Strecken auf einer diagonalen Geraden darstellen lassen, die sich genau dann schneiden, wenn zwischen ihnen eine Kante liegt. Anschließend betrachten wir die visuelle Komplexität von Graphen. Konkret untersuchen wir für bestimmte Graphklassen, wie viele Strecken für jede geradlinige Graphzeichnung notwendig sind, und, ob drei (oder mehr) verschiedene Streckensteigungen ausreichend sind, um alle Kanten zu zeichnen. Zuletzt beschäftigen wir uns mit der Frage, wie wir den Knoten eines Graphen mit gerichteten und ungerichteten Kanten (geordnete) Farben zuweisen können, sodass keine benachbarten Knoten dieselbe Farbe haben und Farben entlang gerichteter Kanten aufsteigend sind. Hierbei ist die spezielle Eigenschaft der betrachteten Graphen, dass sich die Knoten als Intervalle darstellen lassen, die sich genau dann überschneiden, wenn eine Kanten zwischen ihnen verläuft. Das letztgenannte Problem ist motiviert von einer Anwendung beim automatisierten Zeichnen von Kabelplänen mit vertikalen und horizontalen Streckenverläufen, womit wir uns im zweiten Teil befassen. Wir beschreiben einen Algorithmus, welcher die abstrakte Beschreibung eines Kabelplans entgegennimmt und daraus eine Zeichnung generiert, welche die speziellen Eigenschaften dieser Kabelpläne, wie Stecker und Gruppen von zusammengehörigen Drähten, berücksichtigt. Anschließend evaluieren wir die Qualität der so erzeugten Zeichnungen experimentell. Im dritten Teil befassen wir uns mit dem Abstrahieren bzw. Vereinfachen einer einzelnen Polylinie und eines Bündels von Polylinien. Bei diesem Problem sollen aus einer oder mehreren gegebenen Polylinie(n) so viele Knoten wie möglich entfernt werden, wobei jede resultierende Polylinie ihrem ursprünglichen Verlauf (nach einem gegeben Maß) hinreichend ähnlich bleiben muss. KW - Graphenzeichnen KW - Algorithmische Geometrie KW - Algorithmus KW - Algorithmik KW - Polygonzüge KW - graph drawing KW - complexity KW - algorithms KW - straight-line segments KW - polylines KW - graphs KW - Strecken KW - Graphen Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354756 ER - TY - THES A1 - Schelter, Jörg T1 - The Aharonov-Bohm effect and resonant scattering in graphene T1 - Aharonov-Bohm-Effekt und resonante Streuung in Graphen N2 - In this thesis, the electronic transport properties of mesoscopic condensed matter systems based on graphene are investigated by means of numerical as well as analytical methods. In particular, it is analyzed how the concepts of quantum interference and disorder, which are essential to mesoscopic devices in general, are affected by the unique electronic and transport properties of the graphene material system. We consider the famous Aharonov–Bohm effect in ring-shaped transport geometries, and, besides providing an overview over the recent developments on the subject, we study the signatures of fundamental phenomena such as Klein tunneling and specular Andreev reflection, which are specific to graphene, in the magnetoconductance oscillations. To this end, we introduce and utilize a variant of the well-known recursive Green’s function technique, which is an efficient numerical method for the calculation of transport observables in effectively non-interacting open quantum systems in the framework of a tight binding model. This technique is also applied to study the effects of a specific kind of disorder, namely short-range resonant scatterers, such as strongly bound adatoms or molecules, that can be modeled as vacancies in the graphene lattice. This numerical analysis of the conductance in the presence of resonant scatterers in graphene leads to a non-trivial classification of impurity sites in the graphene lattice and is further substantiated by an independent analytical treatment in the framework of the Dirac equation. The present thesis further contains a formal introduction to the topic of non-equilibrium quantum transport as appropriate for the development of the numerical technique mentioned above, a general introduction to the physics of graphene with a focus on the particular phenomena investigated in this work, and a conclusion where the obtained results are summarized and open questions as well as potential future developments are highlighted. N2 - In dieser Arbeit werden die elektronischen Transporteigenschaften von Graphen-basierten mesoskopischen Festkörpersystemen mittels numerischer und analytischer Methoden untersucht. Im Besonderen wird analysiert, wie Konzepte von Quanteninterferenz und Unordnung, die eine wesentliche Rolle für mesoskopische Systeme spielen, durch die einzigartigen elektronischen und Transporteigenschaften von Graphen beeinflusst werden. Wir betrachten den berühmten Aharonov-Bohm-Effekt in ringförmigen Transportgeometrien, geben einen Überblick über die Entwicklung dieses Themas in den letzten Jahren und befassen uns mit den charakteristischen Merkmalen, die fundamentale Phänomene wie Klein-Tunneln und gerichtete Andreev-Reflexion, welche spezifisch für Graphen sind, in den Magnetooszillationen der elektrischen Leitfähigkeit aufweisen. Dazu führen wir eine Variante der Methode der rekursiven Greenschen Funktionen ein, die ein effizientes numerisches Verfahren zur Berechnung von Transportobservablen in effektiv nicht-wechselwirkenden, offenen Quantensystemen im Rahmen eines „tight binding“-Modells darstellt. Diese Methode wird desweiteren zur Erforschung eines speziellen Typs von Unordnung herangezogen, nämlich kurzreichweitiger, resonanter Streuzentren wie stark gebundene Adatome oder Moleküle, die als Fehlstellen in der Graphen-Gitterstruktur modelliert werden können. Diese numerische Analyse der elektrischen Leitfähigkeit bei Anwesenheit resonanter Streuzentren in Graphen führt zu einer nicht-trivialen Klassifizierung von Fremdatom-Gitterplätzen innerhalb des Graphen-Gitters und wird durch eine unabhängige analytische Behandlung im Rahmen der Dirac-Gleichung bekräftigt. Die vorliegende Arbeit enthält weiterhin eine formale Einführung in das Thema des Nichtgleichgewichts-Quantentransports, wie es für die Entwicklung der genannten numerischen Methode dienlich ist, eine allgemeine Einführung in die Physik von Graphen mit Fokus auf die speziellen Aspekte, die in dieser Arbeit untersucht werden, sowie eine abschließende Darstellung, in der die erhaltenen Ergebnisse zusammengefasst und offene Fragen sowie mögliche zukünftige Entwicklungen hervorgehoben werden. KW - Graphen KW - Aharonov-Bohm-Effekt KW - Resonanzstreuung KW - graphene KW - Aharonov-Bohm effect KW - resonant scattering KW - recursive Green's functions KW - Direkte numerische Simulation KW - Festkörperphysik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74662 ER - TY - THES A1 - Pakkayil, Shijin Babu T1 - Towards ferromagnet/superconductor junctions on graphene T1 - Ein Weg zu Ferromagnet/Supraleiter Grenzflächen auf Graphen N2 - This thesis reports a successful fabrication and characterisation of ferromagnetic/superconductor junction (F/S) on graphene. The thesis preposes a fabrication method to produce F/S junctions on graphene which make use of ALD grown Al2O3 as the tunnel barrier for the ferromagnetic contacts. Measurements done on F/G/S/G/F suggests that by injecting spin polarised current into the superconductor, a spin imbalance is created in the quasiparticle density of states of the superconductor which then diffuses through the graphene channel. The observed characteristic curves are similar to the ones which are already reported on metallic ferromagnet/superconductor junctions where the spin imbalance is created using Zeeman splitting. Further measurements also show that the curves loose their characteristic shapes when the temperature is increased above the critical temperature (Tc) or when the external magnetic field is higher then the critical field (Hc) of the superconducting contact. But to prove conclusively and doubtlessly the existence of spin imbalance in ferromagnet/superconductor junctions on graphene, more devices have to be made and characterised preferably in a dilution refrigerator. N2 - Diese Arbeit berichtet über die erfolgreiche Herstellung und Charakterisierung eines Ferromagnet-Supraleiter (F/S)-Kontaktes. Die Arbeit schlägt eine Herstellungsmetode vor, um F/S-Kontake auf Graphen zu erstellen, welche ALD wachsendes Al2O3 als Tunnelbarriere für die ferromagnetischen Kontakte verwendet. Messungen an F/G/S/G deuten darauf hin, dass durch Injektion eines spinpolarisierten Stroms in den Supraleiter ein Spinungleichgewicht in der Quasiteilchendichte der Zustände des Supraleiters erzeugt wird, welche dann durch die Graphenkanäle diffundieren. Die beobachteten charakteristischen Kurven sind vergleichbar mit solchen, über die bereits in metallischen Ferromagnet/Supraleiter-Kontakten berichtet wurde, in denen das Spinungleichgewicht durch die Zeemann Aufspaltung erzeugt wird. Weitere Messungen zeigen auch, dass die Kurven ihre charakteristische Form verlieren, wenn die Temperatur über die kritische Temperatur erhöht wird oder das äußere Magnetfeld größer als das kritische Magnetfeld (HC) des supraleitenden Kontakts ist. Um die Existenz des Spinungleichgewichts in Ferromaget/Supraleiter-Kontakten auf Graphen schlussfolgernd und zweifelsfrei zu beweisen, wurden mehrere Proben hergestellt und bevorzugt in einem Mischungskryostaten charakterisiert. KW - Graphen KW - Ferromagnetikum KW - Supraleiter KW - Spintronics KW - Graphene KW - Superconductor KW - Ferromagnet KW - Spintronik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153863 ER - TY - THES A1 - Kiesel, Maximilian Ludwig T1 - Unconventional Superconductivity in Cuprates, Cobaltates and Graphene: What is Universal and what is Material-Dependent in strongly versus weakly Correlated Materials? T1 - Unkonventionelle Supraleitung in Kupraten, Cobaltaten und Graphen: Was ist universell und was ist material-abhängig in stark- gegenüber schwach-korrelierten Materialien? N2 - Eine allgemeingültige Theorie für alle unterschiedlichen Arten von unkonventionellen Supraleitern ist immer noch eine der ungelösten Kernfragen der Festkörperphysik. Momentan ist es nicht einmal bewiesen, dass es überhaupt einen gemeinsamen grundlegenden Mechanismus gibt, sondern es müssen vielleicht mehrere verschiedene Ursachen für unkonventionelle Supraleitung berücksichtigt werden. Der Einfluss der Elektron-Phonon-Wechselwirkung ist dabei noch nicht abschließend geklärt. In dieser Dissertation wird ein rein elektronischer Paarungsmechanismus untersucht, in welchem die Paarung durch Spin-Fluktuationen vermittelt wird, was nach dem aktuellen Stand der Forschung auf dem Gebiet der unkonventionellen Supraleiter am wahrscheinlichsten ist. Der Schwerpunkt liegt dabei auf der Bestimmung von Material-unabhängigen Eigenschaften der supraleitenden Phase. Diese können durch eine Auswahl sehr unterschiedlicher Systeme herausgearbeitet werden. Eine Untersuchung der Phasendiagramme gibt außerdem Auskunft darüber, welche konkurrierenden Quantenfluktuationen den supraleitenden Zustand abschwächen oder verstärken. Für diese Analyse von sehr unterschiedlichen supraleitenden Materialien ist der Einsatz einer einzelnen numerischen Lösungsmethode unzureichend. Für diese Dissertation ist dies aber kein Nachteil, sondern vielmehr ein großer Vorteil, da der Einsatz verschiedener Techniken die Abhängigkeit der Ergebnisse von der verwendeten Numerik reduziert und dadurch der grundlegende Mechanismus besser untersucht werden kann. Im speziellen werden in dieser Dissertation die Kuprate mit der Variationellen Clusternäherung ausgewertet, weil die Elektronen hier eine starke Wechselwirkung untereinander besitzen. Besonders die Frage eines möglichen Klebstoffs für die Cooper-Paare wird ausführlich diskutiert, auch mit einer Unterscheidung in retardierte und nicht-retardierte Beträge. Den Kupraten werden das Kobaltat NaCoO sowie Graphen gegenübergestellt. Diese Materialien sind jedoch schwach korrelierte Systeme, so dass hier die Funkionelle Renormierungsgruppe als numerisches Grundgerüst dient. Die Ergebnisse sind reichhaltige Phasendiagramme mit vielen verschiedenen langreichweitigen Ordnungen, wie zum Beispiel d+id-wellenartige Supraleitung. Diese bricht die Zeitumkehr-Symmetrie und besitzt eine vollständige Bandlücke, welche im Falle von NaCoO jedoch eine stark Dotierungs-abhängige Anisotropie aufweist. Als letztes wird das Kagome-Gitter allgemein diskutiert, ohne ein konkretes Material zu beschreiben. Hier hat eine destruktive Interferenz zwischen den Elektronen auf verschiedenen Untergittern drastische Auswirkungen auf die Instabilitäten der Fermi-Fläche, so dass die übliche Spin-Dichte-Welle und die damit verbundene d+id-wellenartige Supraleitung unterdrückt werden. Dadurch treten ungewöhnliche Spin- und Ladungsdichte-Ordnungen sowie eine nematische Pomeranchuck Instabilität hervor. Zusammengefasst bietet diese Dissertation einen Einblick in unterschiedliche Materialklassen von unkonventionellen Supraleitern. Dadurch wird es möglich, die Material-spezifischen Eigenschaften von den universellen zu trennen. N2 - A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate NaCoO and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on the kagome lattice are completing the discussion, where a sublattice interference dramatically affects the Fermi-surface instabilities, suppressing the usual spin-density wave and d+id-wave superconductivity. Thereby, some different fascinating charge and bond orders as well as a nematic are observable. In short, this thesis provides an insight to distinct classes of unconventional superconductors with appropriate simulation techniques. This facilitates to separate the material specific properties from the universal ones. KW - Supraleitung KW - Kuprate KW - Cobaltate KW - Superconductivity KW - Cuprates KW - Cobaltates KW - Graphene KW - functional Renormalization Group KW - Graphen KW - Keramischer Supraleiter KW - Cluster-Entwicklung KW - Renormierungsgruppe Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76421 ER - TY - THES A1 - Herrmann, Oliver T1 - Graphene-based single-electron and hybrid devices, their lithography, and their transport properties T1 - Lithographie und Transporteigenschaften auf Graphen basierender Einzelelektronentransistoren und Hybridbauteilen N2 - This work explores three different aspects of graphene, a single-layer of carbon atoms arranged in a hexagonal lattice, with regards to its usage in future electronic devices; for instance in the context of quantum information processing. For a long time graphene was believed to be thermodynamically unstable. The discovery of this strictly two-dimensional material completed the family of carbon based structures, which had already been subject of intensive research with focus on zero-dimensional fullerenes and one-dimensional carbon nanotubes. Within only a few years of its discovery, the field of graphene related research has grown into one of today’s most diverse and prolific areas in condensed matter physics, highlighted by the award of the 2010 Nobel Prize in Physics to A.K. Geim and K. Noveselov for “their groundbreaking experiments regarding the two-dimensional material graphene”. From the point of view of an experimental physicist interested in the electronic properties of a material system, the most intriguing characteristic of graphene is found in the Dirac-like nature of its charge carriers, a peculiar fact that distinguishes graphene from all other known standard semiconductors. The dynamics of charge carriers close to zero energy are described by a linear energy dispersion relation, as opposed to a parabolic one, which can be understood as a result of the underlying lattice symmetry causing them to behave like massless relativistic particles. This fundamentally different behavior can be expected to lead to the observation of completely new phenomena or the occurrence of deviations in well-known effects. Following a brief introduction of the material system in chapter 2, we present our work studying the effect of induced superconductivity in mesoscopic graphene Josephson junctions by proximity to superconducting contacts in chapter 3. We explore the use of Nb as the superconducting material driven by the lack of high critical temperature and high critical magnetic field superconductor technology in graphene devices at that time. Characterization of sputter-deposited Nb films yield a critical transition temperature of \(T_{C}\sim 8{\rm \,mK}\). A prerequisite for successful device operation is a high interface quality between graphene and the superconductor. In this context we identify the use of an Ti as interfacial layer and incorporate its use by default in our lithography process. Overall we are able to increase the interface transparency to values as high as \(85\%\). With the prospect of interesting effects in the ballistic regime we try to enhance the electronic quality of our Josephson junction devices by substrate engineering, yet with limited success. We achieve moderate charge carrier mobilities of up to \(7000{\rm \,cm^2/Vs}\) on a graphene/Boron-nitride heterostructure (fabrication details are covered in chapter 5) putting the junction in the diffusive regime (\(L_{device}