TY - THES A1 - Möller, Florian T1 - Exceptional polynomials and monodromy groups in positive characteristic T1 - Exzeptionelle Polynome und Monodromiegruppen in positiver Charakteristik N2 - We discuss exceptional polynomials, i.e. polynomials over a finite field $k$ that induce bijections over infinitely many finite extensions of $k$. In the first chapters we give the theoretical background to characterize this class of polynomials with Galois theoretic means. This leads to the notion of arithmetic resp. geometric monodromy groups. In the remaining chapters we restrict our attention to polynomials with primitive affine arithmetic monodromy group. We first classify all exceptional polynomials with the fixed field of the affine kernel of the arithmetic monodromy group being of genus less or equal to 2. Next we show that every full affine group can be realized as the monodromy group of a polynomial. In the remaining chapters we classify affine polynomials of a given degree. N2 - In dieser Arbeit werden exzeptionelle Polynome untersucht. Ein über einem endlichen Körper $k$ definiertes Polynom heißt exzeptionell, falls durch dieses auf unendlich vielen endlichen Erweiterungen von $k$ Bijektionen induziert werden. In den ersten Kapiteln legen wir die theoretischen Grundlagen, die uns eine Charakterisierung exzeptioneller Polynome mittels Galoistheorie erlauben. Wir benötigen hierzu insbesondere den Begriff der arithmetischen bzw. geometrischen Monodromiegruppe. In den folgenden Kapiteln behandeln wir schwerpunktmäßig Polynome mit primitiver affiner arithmetischer Monodromiegruppe. Zunächst klassifizieren wir alle exzeptionellen Polynome, die der Bedingung genügen, daß der Fixkörper des affinen Kerns ein Geschlecht kleiner oder gleich 2 besitzt. Danach zeigen wir, daß jede volle affine Gruppe als geometrische Monodromiegruppe eines Polynoms auftritt. In den restlichen Kapiteln klassifizieren wir affine Polynome von vorgegebenem Grad. KW - Algebraischer Funktionenkörper KW - Galois-Feld KW - Galois-Erweiterung KW - Monodromie KW - algebraic function field KW - finite fields KW - galois extensions KW - monodromy groups Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34871 ER - TY - THES A1 - König, Joachim T1 - The inverse Galois problem and explicit computation of families of covers of \(\mathbb{P}^1\mathbb{C}\) with prescribed ramification T1 - Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener Verzweigung N2 - In attempting to solve the regular inverse Galois problem for arbitrary subfields K of C (particularly for K=Q), a very important result by Fried and Völklein reduces the existence of regular Galois extensions F|K(t) with Galois group G to the existence of K-rational points on components of certain moduli spaces for families of covers of the projective line, known as Hurwitz spaces. In some cases, the existence of rational points on Hurwitz spaces has been proven by theoretical criteria. In general, however, the question whether a given Hurwitz space has any rational point remains a very difficult problem. In concrete cases, it may be tackled by an explicit computation of a Hurwitz space and the corresponding family of covers. The aim of this work is to collect and expand on the various techniques that may be used to solve such computational problems and apply them to tackle several families of Galois theoretic interest. In particular, in Chapter 5, we compute explicit curve equations for Hurwitz spaces for certain families of \(M_{24}\) and \(M_{23}\). These are (to my knowledge) the first examples of explicitly computed Hurwitz spaces of such high genus. They might be used to realize \(M_{23}\) as a regular Galois group over Q if one manages to find suitable points on them. Apart from the calculation of explicit algebraic equations, we produce complex approximations for polynomials with genus zero ramification of several different ramification types in \(M_{24}\) and \(M_{23}\). These may be used as starting points for similar computations. The main motivation for these computations is the fact that \(M_{23}\) is currently the only remaining sporadic group that is not known to occur as a Galois group over Q. We also compute the first explicit polynomials with Galois groups \(G=P\Gamma L_3(4), PGL_3(4), PSL_3(4)\) and \(PSL_5(2)\) over Q(t). Special attention will be given to reality questions. As an application we compute the first examples of totally real polynomials with Galois groups \(PGL_2(11)\) and \(PSL_3(3)\) over Q. As a suggestion for further research, we describe an explicit algorithmic version of "Algebraic Patching", following the theory described e.g. by M. Jarden. This could be used to conquer some problems regarding families of covers of genus g>0. Finally, we present explicit Magma implementations for several of the most important algorithms involved in our computations. N2 - Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener Verzweigung KW - Galoistheorie KW - Galois theory KW - Hurwitz-Raum KW - Algebraische Kurve KW - Funktionenkörper KW - Monodromie KW - Hurwitz spaces KW - Algebraic Curves KW - Function Fields KW - Monodromy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100143 ER - TY - THES A1 - Barth, Dominik T1 - Computation of multi-branch-point covers and applications in Galois theory T1 - Berechnung von Mehrpunktüberlagerungen und Anwendungen in der Galoistheorie N2 - We present a technique for computing multi-branch-point covers with prescribed ramification and demonstrate the applicability of our method in relatively large degrees by computing several families of polynomials with symplectic and linear Galois groups. As a first application, we present polynomials over \(\mathbb{Q}(\alpha,t)\) for the primitive rank-3 groups \(PSp_4(3)\) and \(PSp_4(3).C_2\) of degree 27 and for the 2-transitive group \(PSp_6(2)\) in its actions on 28 and 36 points, respectively. Moreover, the degree-28 polynomial for \(PSp_6(2)\) admits infinitely many totally real specializations. Next, we present the first (to the best of our knowledge) explicit polynomials for the 2-transitive linear groups \(PSL_4(3)\) and \(PGL_4(3)\) of degree 40, and the imprimitive group \(Aut(PGL_4(3))\) of degree 80. Additionally, we negatively answer a question by König whether there exists a degree-63 rational function with rational coefficients and monodromy group \(PSL_6(2)\) ramified over at least four points. This is achieved due to the explicit computation of the corresponding hyperelliptic genus-3 Hurwitz curve parameterizing this family, followed by a search for rational points on it. As a byproduct of our calculations we obtain the first explicit \(Aut(PSL_6(2))\)-realizations over \(\mathbb{Q}(t)\). At last, we present a technique by Elkies for bounding the transitivity degree of Galois groups. This provides an alternative way to verify the Galois groups from the previous chapters and also yields a proof that the monodromy group of a degree-276 cover computed by Monien is isomorphic to the sporadic 2-transitive Conway group \(Co_3\). N2 - Wir stellen eine Technik zur Berechnung von Mehrpunktüberlagerungen mit vorgeschriebener Verzweigung vor und demonstrieren die Anwendbarkeit unserer Methode in relativ großen Graden durch die Berechnung mehrerer Familien von Polynomen mit symplektischen und linearen Galoisgruppen. Als erste Anwendung präsentieren wir Polynome über \(\mathbb{Q}(\alpha,t)\) für die primitiven Rang-3-Gruppen \(PSp_4(3)\) und \(PSp_4(3).C_2\) vom Grad 27 und für die 2-fach transitive Gruppe \(PSp_6(2)\) in ihren Operationen auf 28 bzw. 36 Punkten. Außerdem lässt das Polynom vom Grad 28 für \(PSp_6(2)\) unendlich viele total-reelle Spezialisierungen zu. Als Nächstes präsentieren wir die (unseres Wissens nach) ersten expliziten Polynome für die 2-fach transitiven linearen Gruppen \(PSL_4(3)\) und \(PGL_4(3)\) vom Grad 40 und die imprimitive Gruppe \(Aut(PGL_4(3))\) vom Grad 80. Zusätzlich geben wir eine negative Antwort auf die Frage von König, ob es eine rationale Funktion vom Grad 63 mit rationalen Koeffizienten gibt, die über mindestens vier Punkten verzweigt ist und Monodromiegruppe \(PSL_6(2)\) besitzt. Dies wird durch die explizite Berechnung der entsprechenden hyperelliptischen Geschlecht-3 Hurwitzkurve erreicht, die diese Familie parametrisiert, gefolgt von einer Suche nach rationalen Punkten auf ihr. Als Nebenprodukt unserer Berechnungen erhalten wir die ersten expliziten \(Aut(PSL_6(2))\)-Realisierungen über \(\mathbb{Q}(t)\). Schließlich stellen wir eine Technik von Elkies zur Beschränkung des Transitivitätsgrades von Galoisgruppen vor. Diese bietet einen alternativen Weg, die Galoisgruppen aus den vorherigen Kapiteln zu verifizieren und liefert auch einen Beweis dafür, dass die Monodromiegruppe einer von Monien berechneten Grad-276 Überlagerung isomorph zur sporadischen 2-fach transitiven Conway-Gruppe \(Co_3\) ist. KW - Galois-Theorie KW - Hurwitz-Raum KW - Monodromie KW - Überlagerung KW - Belyi map Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277025 ER -