TY - JOUR A1 - Weigand, Annika A1 - Boos, Anja M. A1 - Tasbihi, Kereshmeh A1 - Beier, Justus P. A1 - Dalton, Paul D. A1 - Schrauder, Michael A1 - Horch, Raymund E. A1 - Beckmann, Matthias W. A1 - Strissel, Pamela L. A1 - Strick, Reiner T1 - Selective isolation and characterization of primary cells from normal breast and tumors reveal plasticity of adipose derived stem cells JF - Breast Cancer Research N2 - Background There is a need to establish more cell lines from breast tumors in contrast to immortalized cell lines from metastatic effusions in order to represent the primary tumor and not principally metastatic biology of breast cancer. This investigation describes the simultaneous isolation, characterization, growth and function of primary mammary epithelial cells (MEC), mesenchymal cells (MES) and adipose derived stem cells (ADSC) from four normal breasts, one inflammatory and one triple-negative ductal breast tumors. Methods A total of 17 cell lines were established and gene expression was analyzed for MEC and MES (n = 42) and ADSC (n = 48) and MUC1, pan-KRT, CD90 and GATA-3 by immunofluorescence. DNA fingerprinting to track cell line identity was performed between original primary tissues and isolates. Functional studies included ADSC differentiation, tumor MES and MEC invasion co-cultured with ADSC-conditioned media (CM) and MES adhesion and growth on 3D-printed scaffolds. Results Comparative analysis showed higher gene expression of EPCAM, CD49f, CDH1 and KRTs for normal MEC lines; MES lines e.g. Vimentin, CD10, ACTA2 and MMP9; and ADSC lines e.g. CD105, CD90, CDH2 and CDH11. Compared to the mean of all four normal breast cell lines, both breast tumor cell lines demonstrated significantly lower ADSC marker gene expression, but higher expression of mesenchymal and invasion gene markers like SNAI1 and MMP2. When compared with four normal ADSC differentiated lineages, both tumor ADSC showed impaired osteogenic and chondrogenic but enhanced adipogenic differentiation and endothelial-like structures, possibly due to high PDGFRB and CD34. Addressing a functional role for overproduction of adipocytes, we initiated 3D-invasion studies including different cell types from the same patient. CM from ADSC differentiating into adipocytes induced tumor MEC 3D-invasion via EMT and amoeboid phenotypes. Normal MES breast cells adhered and proliferated on 3D-printed scaffolds containing 20 fibers, but not on 2.5D-printed scaffolds with single fiber layers, important for tissue engineering. Conclusion Expression analyses confirmed successful simultaneous cell isolations of three different phenotypes from normal and tumor primary breast tissues. Our cell culture studies support that breast-tumor environment differentially regulates tumor ADSC plasticity as well as cell invasion and demonstrates applications for regenerative medicine. KW - Normal breast KW - Breast cancer KW - Stem cells plasticity KW - Primary cell lines KW - Tissue engineering Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164759 VL - 18 IS - 32 ER - TY - JOUR A1 - Wagenbrenner, Mike A1 - Heinz, Tizian A1 - Horas, Konstantin A1 - Jakuscheit, Axel A1 - Arnholdt, Jörg A1 - Hermann, Marietta A1 - Rudert, Maximilian A1 - Holzapfel, Boris M. A1 - Steinert, Andre F. A1 - Weißenberger, Manuel T1 - The human arthritic hip joint is a source of mesenchymal stromal cells (MSCs) with extensive multipotent differentiation potential JF - BMC Musculoskeletal Disorders N2 - Background While multiple in vitro studies examined mesenchymal stromal cells (MSCs) derived from bone marrow or hyaline cartilage, there is little to no data about the presence of MSCs in the joint capsule or the ligamentum capitis femoris (LCF) of the hip joint. Therefore, this in vitro study examined the presence and differentiation potential of MSCs isolated from the bone marrow, arthritic hyaline cartilage, the LCF and full-thickness samples of the anterior joint capsule of the hip joint. Methods MSCs were isolated and multiplied in adherent monolayer cell cultures. Osteogenesis and adipogenesis were induced in monolayer cell cultures for 21 days using a differentiation medium containing specific growth factors, while chondrogenesis in the presence of TGF-ss1 was performed using pellet-culture for 27 days. Control cultures were maintained for comparison over the same duration of time. The differentiation process was analyzed using histological and immunohistochemical stainings as well as semiquantitative RT-PCR for measuring the mean expression levels of tissue-specific genes. Results This in vitro research showed that the isolated cells from all four donor tissues grew plastic-adherent and showed similar adipogenic and osteogenic differentiation capacity as proven by the histological detection of lipid droplets or deposits of extracellular calcium and collagen type I. After 27 days of chondrogenesis proteoglycans accumulated in the differentiated MSC-pellets from all donor tissues. Immunohistochemical staining revealed vast amounts of collagen type II in all differentiated MSC-pellets, except for those from the LCF. Interestingly, all differentiated MSCs still showed a clear increase in mean expression of adipogenic, osteogenic and chondrogenic marker genes. In addition, the examination of an exemplary selected donor sample revealed that cells from all four donor tissues were clearly positive for the surface markers CD44, CD73, CD90 and CD105 by flow cytometric analysis. Conclusions This study proved the presence of MSC-like cells in all four examined donor tissues of the hip joint. No significant differences were observed during osteogenic or adipogenic differentiation depending on the source of MSCs used. Further research is necessary to fully determine the tripotent differentiation potential of cells isolated from the LCF and capsule tissue of the hip joint. KW - Hip joint KW - Osteoarthritis KW - MSCs KW - Cartilage regeneration KW - Tissue engineering KW - Ligamentum capitis femoris KW - Joint capsule KW - Bone marrow Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229497 VL - 21 IS - 1 ER - TY - THES A1 - Kessie, David Komla T1 - Characterisation of Bordetella pertussis virulence mechanisms using engineered human airway tissue models T1 - Charakterisierung der Virulenzmechanismen von Bordetella pertussis mit humanen Gewebemodellen der Atemwege N2 - Pertussis is a highly contagious acute respiratory disease of humans which is mainly caused by the gram-negative obligate human pathogen Bordetella pertussis. Despite the availability and extensive use of vaccines, the disease persists and has shown periodic re-emergence resulting in an estimated 640,000 deaths worldwide in 2014. The pathogen expresses various virulence factors that enable it to modulate the host immune response, allowing it to colonise the ciliated airway mucosa. Many of these factors also directly interfere with host signal transduction systems, causing damage to the ciliated airway mucosa and increase mucous production. Of the many virulence factors of B. pertussis, only the tracheal cytotoxin (TCT) is able to recapitulate the pathophysiology of ciliated cell extrusion and blebbing in animal models and in human nasal biopsies. Furthermore, due to the lack of appropriate human models and donor materials, the role of bacterial virulence factors has been extrapolated from studies using animal models infected with either B. pertussis or with the closely related species B. bronchiseptica which naturally causes respiratory infections in these animals and produces many similar virulence factors. Thus, in the present work, in vitro airway mucosa models developed by co-culturing human airway epithelia cells and fibroblasts from the conduction zone of the respiratory tract on a decellularized porcine small intestine submucosa scaffold (SISser®) were used, since these models have a high correlation to native human conducting zone respiratory epithelia. The major aim was to use the engineered airway mucosa models to elucidate the contribution of B. pertussis TCT in the pathophysiology of the disease as well as the virulence mechanism of B. pertussis in general. TCT and lipopolysaccharide (LPS) either alone or in combination were observed to induce epithelial cell blebbing and necrosis in the in vitro airway mucosa model. Additionally, the toxins induced viscous hyper-mucous secretion and significantly disrupted barrier properties of the in vitro airway mucosa models. This work also sought to assess the invasion and intracellular survival of B. pertussis in the polarised epithelia, which has been critically discussed for many years in the literature. Infection of the models with B. pertussis showed that the bacteria can adhere to the models and invade the epithelial cells as early as 6 hours post inoculation. Invasion and intracellular survival assays indicated the bacteria could invade and persist intracellularly in the epithelial cells for up to 3 days. Due to the novelty of the in vitro airway mucosa models, this work also intended to establish a method for isolating individual cells for scRNA-seq after infection with B. pertussis. Cold dissociation with Bacillus licheniformis subtilisin A was found to be capable of dissociating the cells without inducing a strong fragmentation, a problem which occurs when collagenase and trypsin/EDTA are used. In summary, the present work showed that TCT acts possibly in conjunction with LPS to disrupt the human airway mucosa much like previously shown in the hamster tracheal ring models and thus appears to play an important role during the natural B. pertussis infection. Furthermore, we established a method for infecting and isolating infected cells from the airway mucosa models in order to further investigate the effect of B. pertussis infection on the different cell populations in the airway by single cell analytics in the future. N2 - Pertussis ist eine hoch ansteckende akute Atemwegserkrankung des Menschen, die durch das gramnegative obligat humanpathogene Bakterium Bordetella pertussis verursacht wird. Obwohl seit langer Zeit effektive Impfstoffe verfügbar sind und weltweit eingesetzt werden, stellt die Krankheit nach wie vor ein großes Problem dar und tritt seit einiger Zeit auch in Ländern mit guten Impfraten wieder vermehrt auf. Allein in den letzten 10 Jahren wurden weltweit etwa 24 Millionen Neuinfektionen mit 640,000 Todesfällen pro Jahr gezählt. Die Bakterien exprimieren verschiedene Virulenzfaktoren, die es ihnen ermöglichen, die Immunantwort des Wirts zu modulieren, wodurch sie die Schleimhaut der oberen Atemwege besiedeln können. Viele dieser Faktoren stören auch direkt die Signaltransduktionssysteme des Zellen der oberen Atemwege, was zu einer Schädigung des Flimmerepithels der Atemwege und zu einer starken Erhöhung der Schleimproduktion führt. Von den vielen bekannten Virulenzfaktoren von B. pertussis kann soweit bekannt nur das Tracheale Cytotoxin (TCT) die typische Pathophysiologie des Flimmerepithels verursachen, die durch massive Gewebszerstörung gekennzeichnet ist und z.B. das Herauslösen von Epithelzellen aus der Epithelschicht oder die Ausbildung von bläschenförmigen Epithelzellen beinhaltet. Aufgrund des Mangels an geeigneten menschlichen Modellsystemen bzw. an Spendermaterialien wurden die Virulenzeigenschaften des Erregers entweder mit Hilfe von einfachen Zellkultursystemen oder in Tiermodellen untersucht, die keine natürlichen Wirte für B. pertussis darstellen. Alternativ hierzu wurden auch Daten, die mit dem eng verwandten tierpathogenen Bakterium B. bronchiseptica, das viele aus B. pertussis bekannte Virulenzfaktoren produziert, in entsprechenden Tiermodellen erhoben wurden, genutzt, um auf die Virulenzeigenschaften von B. pertussis zu schließen. Die vorliegende Arbeit verwendet In-vitro-Atemwegsschleimhautmodelle, die durch Co-Kultivierung von menschlichen Atemwegsepithelzellen und Fibroblasten auf einem dezellularisierten Schweine-Dünndarm-Submukosa-Gerüst (SISser®) entwickelt wurden. Die in-vitro-Atemwegsschleimhautmodelle weisen eine hohe Korrelation mit nativen menschlichen Epithelien der oberen Atemwege auf. Mithilfe dieser neuartigen Atemwegsschleimhautmodelle sollte der Beitrag von B. pertussis TCT zur Pathophysiologie der Krankheit und die Bedeutung von TCT als relevanter Virulenzfaktor aufgeklärt werden. Es wurde beobachtet, dass TCT und das bakterielle Lipopolysaccharid (LPS) entweder alleine oder in Kombination die Bildung von Epithelzellbläschen und Nekrose in diesen in-vitro-Atemwegsschleimhautmodellen induzieren. Zusätzlich induzierten diese Toxine eine viskose Hyperschleimsekretion und störten die Barriereeigenschaften der in-vitro-Atemwegsschleimhautmodelle signifikant. Zudem wurde in dieser Arbeit versucht, die Invasion und das intrazelluläre Überleben von B. pertussis in den polarisierten Epithelien zu bewerten, das in der einschlägigen Fachliteratur kritisch diskutiert wird. Die Infektion der Modelle mit B. pertussis zeigte, dass die Bakterien bereits 6 Stunden nach der Inokulation an den Modellen adhärieren und in diese eindringen können. Invasions- und intrazelluläre Überlebenstests zeigten, dass die Bakterien bis zu 3 Tage intrazellulär in die Epithelzellen überleben können. Aufgrund der Neuheit der in dieser Arbeit entwickelten in-vitro-Atemwegsschleimhautmodelle sollte auch eine Methode zur Isolierung einzelner Zellen für scRNA-seq Analysen nach Infektion mit B. pertussis etabliert werden. Dabei wurde festgestellt, dass die Inkubation der Modelle mit Subtilisin A von Bacillus licheniformis in der Kälte eine sehr gute Methode darstellt, um die Zellen zu dissoziieren, ohne eine starke Fragmentierung zu induzieren, wie sie unter Verwendung von Kollagenase und Trypsin / EDTA auftritt. Zusammenfassend wird in der vorliegenden Arbeit gezeigt, dass TCT gemeinsam mit LPS eine extrem destruktive Wirkung auf die menschliche Atemwegsschleimhaut besitzt, die der früher gezeigten Wirkung in Tiermodellen stark ähnelt. TCT sollte deshalb tatsächlich als ein wichtiger Virulenzfaktor von B. pertussis eingeschätzt werden. Darüber hinaus wurden Methoden zur Infektion und Isolierung von infizierten Zellen aus den Atemwegsschleimhautmodellen entwickelt, um künftig die Auswirkung einer B. pertussis Infektion auf die verschiedenen Zellpopulationen in den Atemwegen durch Einzelzellanalytik noch besser erforschen zu können. KW - Tissue engineering KW - Pertussis KW - Airway epithelia KW - Bordetella KW - tracheal cytotoxin KW - 3D models Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235717 ER - TY - THES A1 - Derakhshani, Shaghayegh T1 - Measles virus infection enhances dendritic cell migration in a 3D environment T1 - Die Masernvirusinfektion verstärkt die Migration dendritischer Zellen in einer 3D-Umgebung N2 - The respiratory system is amongst the most important compartments in the human body. Due to its connection to the external environment, it is one of the most common portals of pathogen entry. Airborne pathogens like measles virus (MV) carried in liquid droplets exhaled from the infected individuals via a cough or sneeze enter the body from the upper respiratory tract and travel down to the lower respiratory tract and reach the alveoli. There, pathogens are captured by the resident dendritic cells (DCs) or macrophages and brought to the lymph node where immune responses or, as in case of MV, dissemination via the hematopoietic cell compartment are initiated. Basic mechanisms governing MV exit from the respiratory tract, especially virus transmission from infected immune cells to the epithelial cells have not been fully addressed before. Considering the importance of these factors in the viral spread, a complex close-to-in-vivo 3D human respiratory tract model was generated. This model was established using de-cellularized porcine intestine tissue as a biological scaffold and H358 cells as targets for infection. The scaffold was embedded with fibroblast cells, and later on, an endothelial cell layer seeded at the basolateral side. This provided an environment resembling the respiratory tract where MV infected DCs had to transmigrate through the collagen scaffold and transmit the virus to epithelial cells in a Nectin-4 dependent manner. For viral transmission, the access of infected DCs to the recipient epithelial cells is an essential prerequisite and therefore, this important factor which is reflected by cell migration was analyzed in this 3D system. The enhanced motility of specifically MV-infected DCs in the 3D models was observed, which occurred independently of factors released from the other cell types in the models. Enhanced motility of infected DCs in 3D collagen matrices suggested infection-induced cytoskeletal remodeling, as also verified by detection of cytoskeletal polarization, uropod formation. This enforced migration was sensitive to ROCK inhibition revealing that MV infection induces an amoeboid migration mode in DCs. In support of this, the formation of podosome structures and filopodia, as well as their activity, were reduced in infected DCs and retained in their uninfected siblings. Differential migration modes of uninfected and infected DCs did not cause differential maturation, which was found to be identical for both populations. As an underlying mechanism driving this enforced migration, the role of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) was studied in MV-exposed cultures. It was shown in this thesis that MV-infection increased S1P production, and this was identified as a contributing factor as inhibition sphingosine kinase activity abolished enforced migration of MV-infected DCs. These findings revealed that MV infection induces a fast push-and-squeeze amoeboid mode of migration, which is supported by SphK/S1P axis. However, this push-and-squeeze amoeboid migration mode did not prevent the transendothelial migration of MV-infected DCs. Altogether, this 3D system has been proven to be a suitable model to study specific parameters of mechanisms involved in infections in an in vivo-like conditions. N2 - Die respiratorische System ist ein wesentlicher physiologischer Bestandteil. Durch die direkte und konstante Verbindung der Atemwege mit der äußeren Umgebung sind sie einer der häufigsten Pfade für den Eintritt von Krankheitserregern in den Körper. Luftübertragene Krankheitserreger wie das Masern-Virus (MV), das in Flüssigkeitströpfchen mitgeführt und von Patienten durch Husten oder Niesen ausgeatmet wird, können über die oberen Atemwege in den Körper gelangen und sich bis in die unteren Atemwege und bis zu den Alveolen ausbreiten. Dort werden diese Krankheitserreger von den dort residenten dendritischen Zellen (DC) oder Makrophagen erworben und zu sekundären lymphatischen Organen transportiert, in denen sowohl virus-spezifische Immunantworten, aber auch – wie im Falle von MV – die hämatogene Dissemination initiiert wird. Der Austrittsmechanismus des MV aus den Atemwegen, insbesondere dessen Übertragung von infizierten Immunzellen auf die Epithelzellen und die Faktoren, die diesen Ablauf bestimmen, wurden jedoch bisher unzureichend untersucht. In Anbetracht der Bedeutung dieser Faktoren für die Virusausbreitung wurde ein komplexes, realitätsnahes in-vivo 3D-Modell der menschlichen Atemwege erstellt. Dieses Modell wurde unter Verwendung von de-zellularisiertem Schweinedarmgewebe als biologischem Gerüst und H358 Epithelzellen als Empfänger etabliert. Dieses Grundgerüst wurde mit Fibroblastenzellen eingebettet. Später wurde auf der basolateralen Seite der Modelle eine Endothelzellschicht eingebracht, um eine Umgebung zu schaffen, die der der Atemwege ähnelt. Somit mussten die Virus-Donoren, MV-infizierte DC durch das Kollagengerüst wandern und das Virus auf Epithelzellen in einer Nektin-4 abhängigen Weise übertragen. Für die Virusübertragung ist der Zugang infizierter DC zu den Empfänger-Epithelzellen eine wesentliche Voraussetzung, weshalb dieser wichtige Faktor, der sich in der Zellmigration widerspiegelt, in diesem 3D-System analysiert wurde. Eine erhöhte Beweglichkeit spezifisch MV-infizierter DCs wurde in den 3D-Modellen beobachtet. Dies erwies sich als unabhängig von löslichen Faktoren der anderen Zelltypen in den Modellen. Erhöhte Beweglichkeit infizierten DCs wurde auch in 3D-Kollagenmatrizes gesehen, was auf einen infektionsvermittelten zytoskelettalen Umbau hindeutete, der auch anhand von Zytoskelettpolarisation und Uropodbildung bestätigt wurde. Die MV-Infektion induzierte einen schnellen amöboiden Migrationsmodus in den DCs, der sich als sensitiv gegenüber ROCK-Hemmung erwies. Im Gegensatz zu uninfizierten DCs gleichen Reifungsstadiums waren in infizierten DCs Podosomenstrukturen und Filopodien sowie deren Aktivität stark reduziert. Als potentiell zur verstärkten Motilität infizierter DCs beitragender Faktor wurde die Rolle der Sphingosinkinase (SphK) und des Sphingosin-1-phosphats (S1P) in MV-exponierten Kulturen untersucht. In dieser Arbeit wurde gezeigt, dass die S1P-Produktion durch eine MV-Infektion erhöht wurde, und in der Tat zur für infizierte DCs beobachteten erhöhten Geschwindigkeit beitrug, da diese sensitiv gegenüber Hemmung der Sphingosinkinase-Aktivität war. Diese Ergebnisse zeigen, dass die MV-Infektion einen schnellen amöboid-artigen Migrationsmodus induziert, der von der SphK/S1P-Achse unterstützt wird. Dieser Push-and-Squeeze-Amoeboid-Migrationsmodus verhinderte jedoch nicht die transendotheliale Migration von MV-infizierten DCs. Insgesamt hat sich dieses 3D-System als geeignetes Modell erwiesen, um die spezifische Parameter von Mechanismen von Infektionen in einem in-vivo-ähnlichen Zustand zu untersuchen. KW - Dendritische Zelle KW - Zell Migration KW - Masern-Virus KW - 3D-Modell KW - Sphingosine-1-phosphats KW - Dendritic cell KW - Cell migration KW - Measles virus KW - 3D tissue model KW - Tissue engineering KW - Sphingosine-1-phosphate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189182 ER - TY - THES A1 - Behets, Jean Nicolas T1 - Biomimetic calcium phosphate modification of 3D-printed tissue engineering scaffolds using reactive star-shaped macromers T1 - Biomimetische Calcium-Phosphat Modifikation auf 3D-gedruckten tissue engineering Scaffolds mit reaktiven stern-förmigen Makromeren N2 - Biomimetic calcium phosphate (CaP) coatings imitate the trabecular bones surface structure and have shown to promote osteogenic differentiation in multipotent cells. The work of this thesis focused on the problem of former CaP coatings cracking and flaking off when being put on a bendable core structure like a 3D-printed poly (ε-caprolactone) (PCL) scaffold. The aim was to provide a chemical linkage between PCL and CaP using a star-shaped polymer (sPEG) and a phosphonate, 2-aminoethylphosphonic acid (2-AEP). First, a published CaP coating protocol was revised and investigated in terms of etching parameters for the PCL scaffold. Results presented reproducible thick coatings for all groups. The protocol was then broadened to include subsequent scaffold incubation in sPEG and 2-AEP solutions. Homogenous CaP coatings of decreased thickness presented themselves, proving feasibility. However, as is often found with physical CaP coating depositions, there were some irregular outcomes even during the same experimental group. A lower consumption of the chemical 2-AEP, for economic reasons, meant that the protocol was altered to simultaneously incubate scaffolds with sPEG and 2-AEP including preceding calculations for molar ratios. For ratios 1:1, 1:2 and 1:3, again a homogenous CaP coating was produced on most of the samples, although reproducibility issues maintained. However, the mechanical bending to induce surface cracking showed that the CaP did strongly bond to the sPEG/2-AEP, while the control CaP coating flaked off the surface in large pieces. This research demonstrates that chemically-bound CaP coatings resist flaking off the fiber surface. Future investigations should focus on the mechanisms of CaP crystallization, to improve reproducibility. N2 - Biomimetische Calciumphosphat (CaP) - Beschichtungen imitieren die oberflächliche Struktur des spongiösen Knochens und wirkten sich bereits begünstigend auf die osteogene Differenzierung von multipotenten Zellen aus. Diese Dissertation konzentriert sich auf das Problem des Reißens und Abplatzens bisheriger CaP-Beschichtungen, wenn diese sich auf einem biegsamen Kern-Gerüst, wie einem 3D-gedruckten Polycaprolacton (PCL)-Konstrukt befanden. Das Ziel war, durch den Gebrauch eines sternförmigen Polymers (sPEG) und eines Phosphonates, 2-Aminoethylphosphonsäure (2-AEP), eine chemische Verknüpfung zwischen PCL und CaP herzustellen. Zuerst wurde ein bereits publiziertes CaP-Beschichtungs-Protokoll nachgestellt und verschiedene Ätzungsparameter untersucht. Die Ergebnisse zeigten reproduzierbare, dicke Beschichtungen in allen Gruppen. Danach wurde dieses Protokoll erweitert, indem es nun nacheinander gestellte Inkubationen in sPEG- und 2-AEP-Lösungen mit einbezog. Dünnere, homogene Beschichtungen waren das Ergebnis, was beweist, dass die Hypothese realisierbar ist. Jedoch zeigten die Ergebnisse nicht reproduzierbare Resultate. Desweiteren, war der 2-AEP Verbrauch nicht wirtschaftlich. Daher wurde das Protokoll weiterentwickelt, indem die Proben, nach vorherigen Berechnungen zu den molaren Verhältnissen, simultan mit sPEG und 2-AEP inkubiert wurden. Für die Verhältnisse 1:1, 1:2 und 1:3 wurden wiederum homogene CaP-Beschichtungen produziert. Mit der Absicht Reproduzierbarkeit zu erzielen, wurden weitere Parameter untersucht. Dies blieb jedoch erfolglos. Zuletzt wurde ein mechanischer Test durchgeführt, welcher eine verbesserte CaP-Adhäsion zu den PCL-Fasern nahelegt, wenn diese zuvor mit sPEG und 2-AEP inkubiert wurden. Zukünftige Untersuchungen werden jedoch von Nöten sein, um Daten zur Oberflächenanalyse und von weiteren mechanischen Tests bereitzustellen und um das Protokoll in Bezug auf die Reproduzierbarkeit zu verbessern. KW - Tissue engineering KW - Calcium phosphate KW - Melt electrospinning KW - Star-shaped poly(ethylene glycol) KW - 2-Aminoethylphosphonic acid Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171728 ER -