TY - THES A1 - Steinbacher, Andreas Edgar T1 - Circular dichroism and accumulative polarimetry of chiral femtochemistry T1 - Zirkulardichroismus und akkumulative Polarimetrie chiraler Femtochemie N2 - This work brings forward successful implementations of ultrafast chirality-sensitive spectroscopic techniques by probing circular dichroism (CD) or optical rotation dispersion (ORD). Furthermore, also first steps towards chiral quantum control, i.e., the selective variation of the chiral properties of molecules with the help of coherent light, are presented. In the case of CD probing, a setup capable of mirroring an arbitrary polarization state of an ultrashort laser pulse was developed. Hence, by passing a left-circularly polarized laser pulse through this setup a right-circularly polarized laser pulse is generated. These two pulse enantiomers can be utilized as probe pulses in a pump--probe CD experiment. Besides CD spectroscopy, it can be utilized for anisotropy or ellipsometry spectroscopy also. Within this thesis, the approach is used to elucidate the photochemistry of hemoglobin, the oxygen transporting protein in mammalian blood. The oxygen loss can be triggered with laser pulses as well, and the results of the time-resolved CD experiment suggest a cascade-like relaxation, probably through different spin states, of the metallo-porphyrins in hemoglobin. The ORD probing was realized via the combination of common-path optical heterodyne interferometric polarimetry and accumulative femtosecond spectroscopy. Within this setup, on the one hand the applicability of this approach for ultrafast studies was demonstrated explicitly. On the other hand, the discrimination between an achiral and a racemic solution without prior spatial separation was realized. This was achieved by inducing an enantiomeric excess via polarized femtosecond laser pulses and following its evolution with the developed polarimeter. Hence, chiral selectivity was already achieved with this method which can be turned into chiral control if the polarized laser pulses are optimized to steer an enhancement of the enantiomeric excess. Furthermore, within this thesis, theoretical prerequisites for anisotropy-free pump--probe experiments with arbitrary polarized laser pulses were derived. Due to the small magnitude of optical chirality-sensitve signals, these results are important for any pump--probe chiral spectroscopy, like the CD probing presented in this thesis. Moreover, since for chiral quantum control the variation of the molecular structure is necessary, the knowledge about rearrangement reactions triggered by photons is necessary. Hence, within this thesis the ultrafast Wolff rearrangement of an α-diazocarbonyl was investigated via ultrafast photofragment ion spectroscopy in the gas phase. Though the compound is not chiral, the knowledge about the exact reaction mechanism is beneficial for future studies of chiral compounds. N2 - Ziel der vorliegenden Arbeit war die Entwicklung neuartiger Methoden in der Ultrakurzzeitspektroskopie von chiralen Molekülen, basierend auf den optischen Nachweismethoden Zirkulardichroismus- und optische Rotationsspektroskopie. Zudem sollten die Methoden auch für ihre Eignung hinsichtlich der chiralen Quantenkontrolle, d.h. der selektiven änderung der chiralen Eigenschaften von Molekülen mit Hilfe von kohärentem Licht, beleuchtet werden. Im Falle des Nachweises über den Effekt des Zirkulardichroismus (CD, von engl. circular dichroism) wurde im Rahmen dieser Arbeit ein optischer Aufbau entwickelt, der einen beliebigen Polarisationszustand eines ultrakurzen Laserimpulses spiegeln kann. Mit diesem Aufbau ist es daher möglich, einen links-zirkular polarisierten Laserimpuls zu einem rechts-zirkular polarisierten Laserimpuls zu spiegeln. Die so erzeugten Pulsenantiomere können demnach als Abfragelaserimpulse in einem Anrege-Abfrage-CD-Experiment verwendet werden. Zudem eignet sich der Aufbau auch für Experimente zur Ellipsometriespektroskopie oder für zeitaufgelöste Anisotropiemessungen. In dieser Arbeit wurde die Methode genutzt, um die Photochemie von Hämoglobin zu untersuchen. Hämoglobin ist ein eisenhaltiges Protein, welches für den Sauerstofftransport im Blut aller Wirbeltiere zuständig ist. Die Abgabe von Sauerstoff kann dabei auch mittels Anregung durch einen Laserimpuls erfolgen. Die Auswertung der durchgeführten zeitaufgelösten Anrege-Abfrage-CD-Experimente legt nahe, dass die Relaxation in den Grundzustand in mehreren Schritten, vermutlich verbunden mit änderungen des Spin-Zustands des metallischen Porphyrins, erfolgt. Die entwickelte Spektroskopiemethode für den Nachweis mittels optischer Rotationsdispersion (ORD, von engl. optical rotation dispersion) basiert auf einer Kombination aus optisch einpfadiger Interferometrie und akkumulativer Femtosekundenspektroskopie. Das entwickelte Polarimeter wurde zunächst mittels einer exemplarischen Photoreaktion für Anwendungen in der Ultrakurzzeitspektroskopie getestet. Weiterhin wurde das Polarimeter auch zur Unterscheidung zwischen einer achiralen und einer racemischen Molekül-Lösung genutzt. Anstatt die chiralen Moleküle in Lösung zunächst mittels nicht-optischer Methoden zu separieren, wurde hier auf optischem Weg ein Enantiomerenüberschuss erzeugt. Dazu dienten zirkular polarisierte Laserimpulse, die je nach Händigkeit ein Enantiomer in der Lösung selektiv anreicherten. Die Entstehung des Enantiomerenüberschusses wurde zeitabhängig mit Hilfe des entwickelten Polarimeters detektiert. Dieses Experiment stellt daher gleichzeitig eine Vorstufe zur chiralen Quantenkontrolle dar. In einem nächsten Schritt wäre eine Vergrößerung des Enantiomerenüberschusses durch Anpassung der polarisierten Anregepulse an das molekulare System denkbar. Neben diesen beiden neu entwickelten experimentellen Methoden wurden im Rahmen dieser Arbeit auch die theoretischen Bedingungen für anisotropiefreie Anrege-Abfrage-Experimente für beliebige Polarisationszustände hergeleitet. Da gerade bei der Spektroskopie von chiralen System die Messsignale typischerweise sehr schwach sind, sollten Anisotropie-Effekte vermieden werden. Die Ergebnisse dieser theoretischen Betrachtung fanden daher auch für die oben erwähnte CD-Spektroskopie von Hämoglobin Verwendung. Da im Falle von chiraler Quantenkontrolle eine änderung der chiralen Eigenschaften eines Moleküls von Nöten ist, sind lichtinduzierte ultraschnelle Umlagerungsreaktionen von großer Bedeutung. Daher wurde in dieser Arbeit auch die Wolff-Umlagerung von einer α-Diazocarbonyl-Verbindung mit Hilfe von zeitaufgelöster Massenspektroskopie untersucht. Obwohl das verwendete Molekül nicht chiral ist, sind die Ergebnisse dieses Experiments, wie zum Beispiel der exakte Reaktionsmechanismus, hilfreich für zukünftige Kontrollexperimente mit chiralen Systemen. KW - Ultrakurzzeitspektroskopie KW - femtosecond spectroscopy KW - chirality-sensitive spectroscopy KW - polarimetry KW - circular dichroism spectroscopy KW - ultrafast photochemistry KW - Femtosekundenspektroskopie KW - Chiral-sensitive Specktroskopie KW - Polarimetrie KW - Zirkulardichroismus Spektroskopie KW - Ultraschnelle Photochemie KW - Verbindungen KW - Femtosekundenspektroskopie KW - Chiralität Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116500 ER - TY - THES A1 - Koch, Federico Juan T1 - Structure-Dependent Ultrafast Relaxation Dynamics in Multichromophoric Systems T1 - Strukturabhängigkeit ultraschneller Relaxationsdynamik in multichromophoren Systemen N2 - Time-resolved spectroscopy allows for analyzing light-induced energy conversion and chromophore–chromophore interactions in molecular systems, which is a prerequisite in the design of new materials and for improving the efficiency of opto-electronic devices. To elucidate photo-induced dynamics of complex molecular systems, transient absorption (TA) and coherent two-dimensional (2D) spectroscopy were employed and combined with additional experimental techniques, theoretical approaches, and simulation models in this work. A systematic series of merocyanines, synthetically varied in the number of chromophores and subsitution pattern, attached to a benzene unit was investigated in cooperation with the group of Prof. Dr. Frank Würthner at the University of Würzburg. The global analysis of several TA experiments, and additional coherent 2D spectroscopy experiments, provided the basis to elaborate a relaxation scheme which was applicable for all merocyanine systems under investigation. This relaxation scheme is based on a double minimum on the excited-state potential energy surface. One of these minima is assigned to an intramolecular charge-transfer state which is stabilized in the bis- and tris-chromophoric dyes by chromphore–chromophore interactions, resulting in an increase in excited-state lifetime. Electro-optical absorption and density functional theory (DFT) calculations revealed a preferential chromophore orientation which compensates most of the dipole moment of the individual chromophores. Based on this structural assignment the conformationdependent exciton energy splitting was calculated. The linear absorption spectra of the multi-chromophoric merocyanines could be described by a combination of monomeric and excitonic spectra. Subsequently, a structurally complex polymeric squaraine dye was studied in collaboration with the research groups of Prof. Dr. Christoph Lambert and Prof. Dr. Roland Mitric at the University of Würzburg. This polymer consists of a superposition of zigzag and helix structures depending on the solvent. High-level DFT calculations confirmed the previous assignment that zigzag and helix structures can be treated as J- and H-aggregates, respectively. TA experiments revealed that in dependence on the solvent as well as the excitation energy, ultrafast energy transfer within the squaraine polymer proceeds from initially excited helix segments to zigzag segments or vice versa. Additionally, 2D spectroscopy confirmed the observed sub-picosecond dynamics. In contrast to other conjugated polymers such as MEH-PPV, which is investigated in the last chapter, ultrafast energy transfer in squaraine polymers is based on the matching of the density of states between donor and acceptor segments due to the small reorganization energy in cyanine-like chromophores. Finally, the photo-induced dynamics of the aggregated phase of the conjugated polymer MEH-PPV was investigated in cooperation with the group of Prof. Dr. Anna Köhler at the University of Bayreuth. Our collaborators had previously described the aggregation of MEH-PPV upon cooling by the formation of so-called HJ-aggregates based on exciton theory. By TA measurements and by making use of an affiliated band analysis distinct relaxation processes in the excited state and to the ground state were discriminated. By employing 2D spectroscopy the energy transfer between different conjugated segments within the aggregated polymer was resolved. The initial exciton relaxation within the aggregated phase indicates a low exciton mobility, in contrast to the subsequent energy transfer between different chromophores within several picoseconds. This work contributes by its systematic study of structure-dependent relaxation dynamics to the basic understanding of the structure-function relationship within complex molecular systems. The investigated molecular classes display a high potential to increase efficiencies of opto-electronic devices, e.g., organic solar cells, by the selective choice of the molecular morphology. N2 - Zeitaufgelöste Spektroskopie ermöglicht die Untersuchung lichtinduzierter Energietransferprozesse und molekularer Wechselwirkungen. Derartige Ergebnisse bilden wiederum die Grundlage für die Entwicklung von Synthesestrategien für neuartige Materialien sowie für effizientere optoelektronische Anwendungen. Um die lichtinduzierte Dynamik komplexer molekularer Systeme aufzuklären, wurden die Techniken der transienten Absorption (TA) und der kohärenten zweidimensionalen (2D) Spektroskopie mit weiteren experimentellen Messungen sowie theoretischen Ansätzen und Simulationen kombiniert. In Kooperation mit der Forschungsgruppe von Prof. Dr. FrankWürthner an der Universität Würzburg wurde eine molekulare Serie von Merocyaninen untersucht, die sich in der Anzahl der Chromophore und dem Substitutionsmuster an einem Benzolring unterscheiden. Eine globale Analyse der TA-Experimente für die verschiedenen Moleküle der Serie sowie weitere kohärente 2D-Spektroskopie-Experimente ermöglichten es, ein Relaxationsmodell zu ermitteln, das für alle untersuchten Merocyaninsysteme anwendbar ist. Dieses Relaxationsmodell basiert auf einem doppelten Minimum in der Potentialfläche des ersten angeregten Zustands. Eines dieser Minima wurde einem intramolekularen Ladungstransferzustand zugeordnet, welcher durch die Wechselwirkung benachbarter Chromophore stabilisiert wird und dadurch einen Anstieg der Lebensdauer des angeregten Zustands bewirkt. Zusätzliche elektrooptische Absorptionsmessungen in Kombination mit Ergebnissen der Dichtefunktionaltheorie offenbarten eine bevorzugte relative Chromophororientierung, die das Dipolmoment eines einzelnen Chromophors weitestgehend kompensiert. Basierend auf dieser Strukturbestimmung wurde eine strukturabhängige Exzitonenaufspaltungsenergie ermittelt und mit der Aufspaltung in den linearen Absorptionsspektren verglichen. Die linearen Absorptionsspektren der multichromophoren Merocyanine können durch eine Kombination von monomerischen und exzitonischen Beiträgen beschrieben werden, was eine gewisse strukturelle Flexibilität erfordert. In einer weiteren Kooperation mit den Gruppen von Prof. Dr. Christoph Lambert und Prof. Dr. Roland Mitric der Universität Würzburg wurde ein strukturell komplexer, polymerer Squarainfarbstoff untersucht. Dieses Polymer besteht aus einer Superposition von Zickzack- und Helixstrukturen, welche lösungsmittelabhängig ist. Rechnungen basierend auf neuesten Methoden der Dichtefunktionaltheorie bestätigten die vorherige Zuordnung, dass Zickzack- und Helixstrukturen als J- und H-Aggregate behandelt werden können. Mittels transienter Absorption konnte ermittelt werden, dass in Abhängigkeit des Lösungsmittels sowie der Anregungsenergie ultraschneller Energietransfer innerhalb des Squarain-Polymers entweder von zunächst angeregten Helix- zu Zickzacksegmenten stattfindet oder von Zickzack- zu Helixsegmenten. Zusätzlich konnte die Subpikosekundendynamik durch die kohärente 2D-Spektroskopie bestätigt werden. Im Gegensatz zu anderen konjugierten Polymeren wie MEH-PPV, welches im letzten Kapitel dieser Arbeit behandelt wird, basiert der ultraschnelle Energietransfer in Squarainpolymeren auf dem energetischen Überlapp der Zustandsdichten von Donor- und Akzeptorsegmenten, welcher auf die geringe Reorganisationsenergie in cyaninähnlichen Farbstoffen beruht. Abschließend wurde die lichtinduzierte Dynamik der aggregierten Phase des konjugierten Polymers MEH-PPV in Kooperation mit der Gruppe von Prof. Dr. Anna Köhler von der Universität Bayreuth untersucht. Unsere Kooperationspartner hatten zuvor die Aggregation von MEH-PPV bei Abkühlung durch die Formation von sogenannten HJ-Aggregaten, welche auf der Exzitonentheorie beruhen, beschrieben. Durch transiente Absorptionsmessungen und einer zugehörigen Bandenanalyse konnte zwischen Relaxationsprozessen im angeregten Zustand und zurück zum Grundzustand unterschieden werden. Die Anwendung der kohärenten 2D-Spektroskopie ermöglichte es, Energietransferprozesse zwischen konjugierten Segmenten des aggregierten Polymers aufzuklären. Die anfängliche Exzitonenrelaxation innerhalb der aggregierten Phase deutet auf eine geringe Mobilität der Exzitonen hin, welche im Gegensatz zu den anschließenden Energietransferprozessen zwischen unterschiedlichen Chromophoren innerhalb einiger Pikosekunden steht. Diese Arbeit trägt durch eine systematische Untersuchung der strukturabhängigen Relaxationsdynamik zum grundlegenden Verständnis des Verhältnisses zwischen Struktur und Funktion von komplexen molekularen Systemen bei. Die untersuchten Molekülklassen weisen dabei ein hohes Potential auf, um durch gezielte Wahl der Morphologie zu einer Steigerung von Effizienzen in optoelektronischen Anwendungen, wie beispielsweise organischen Solarzellen, beizutragen. KW - Femtosekundenspektroskopie KW - Ultrakurzzeitspektroskopie KW - Molekülstruktur KW - Ultrafast Spectroscopy KW - Molecular Structure KW - Transient-Absorption Sectroscopy KW - Coherent two-dimensional Spectroscopy KW - Relaxation Dynamics KW - Polychromophores System KW - Verbindungen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136306 ER -