TY - JOUR A1 - Tian, Yuehui A1 - Yang, Shang A1 - Gao, Shiqiang T1 - Advances, perspectives and potential engineering strategies of light-gated phosphodiesterases for optogenetic applications JF - International Journal of Molecular Sciences N2 - The second messengers, cyclic adenosine 3′-5′-monophosphate (cAMP) and cyclic guanosine 3′-5′-monophosphate (cGMP), play important roles in many animal cells by regulating intracellular signaling pathways and modulating cell physiology. Environmental cues like temperature, light, and chemical compounds can stimulate cell surface receptors and trigger the generation of second messengers and the following regulations. The spread of cAMP and cGMP is further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular microdomain signaling. However, localized intracellular cAMP and cGMP signaling requires further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities for spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin phosphodiesterase genes from protists established a new and direct biological connection between light and PDEs. Light-regulated PDEs are under development, and of demand to complete the toolkit for cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and cons of artificial and natural light-regulated PDEs, and discuss potential new strategies of developing light-gated PDEs for optogenetic manipulation. KW - cyclic nucleotides KW - phosphodiesterases (PDEs) KW - optogenetics KW - cAMP KW - cGMP Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236203 SN - 1422-0067 VL - 21 IS - 20 ER - TY - THES A1 - Nikolaev, Viacheslav T1 - Development and application of fluorescent cAMP und cGMP biosensors T1 - Entwicklung und Anwendung fluoreszierender Biosensoren für cAMP und cGMP N2 - The cyclic nucleotides cAMP and cGMP are two ubiquitous important second messengers, which regulate diverse physiological responses from vision and memory to blood pressure and thrombus formation. They act in cells via cAMP- and cGMP-dependent protein kinases (PKA and GK), cyclic nucleotide-gated channels and Epac. Although the concept of cyclic nucleotide signalling is well developed based on classical biochemical studies, these techniques have not allowed to analyze cAMP and cGMP in live cells with high temporal and spatial resolution. In the present study fluorescence resonance energy transfer was used to develop a technique for visualization of cAMP and cGMP in live cells and in vitro by means of fluorescent biosensors. Ligand-induced conformational change in a single nucleotide-binding domain flanked with green fluorescent protein mutants was used for dynamic, highly sensitive measurements of cAMP and cGMP. Such biosensors retained binding properties and chemical specificity of unmodified domains, allowing to image cyclic nucleotides in a physiologically relevant range of concentrations. To develop cAMP-sensors, binding domains of PKA, Epac and cAMP-gated HCN-channel were used. cGMP-sensors were based on single domains of GK and phosphodiesterases (PDEs). Sensors based on Epac were used to analyze spatio-temporal dynamics of cAMP in neurons and macrophages, demonstrating that cAMP-gradients travel with a high speed (~ 40 μm/s) throughout the entire cytosol. To understand the mechanisms of cAMP-compartmentation, kinetics properties of phosphodi-esterase (PDE2) were, next, analyzed in aldosterone producing cells. PDE2 is able to rapidly hydrolyze extensive amounts of cAMP, so that the speed of cAMP-hydrolysis is much faster than that of its synthesis, which might serve as a basis of compartmentation. cAMP-sensors were also used to develop a clinically relevant diagnostic method for reliable detection of β1-adrenergic receptor autoantibodies in cardiac myopathy patients, which has allowed to significantly increase the sensitivity of previously developed diagnostic approaches. Conformational change in a single binding domain of GK and PDE was, next, used to create novel fluorescent biosensors for cGMP. These sensors demonstrated high spatio-temporal resolution and were applied to analyze rapid dynamics of cGMP production by soluble and particulate guanylyl cyclases as well as to image cGMP in mesangial cells. In summary, highly sensitive biosensors for cAMP and cGMP based on single cyclic nucleotide-binding domains have been developed and used in various biological and clinically relevant applications. N2 - Die zyklischen Nukleotide cAMP and cGMP sind zwei ubiquitäre Botenstoffe, die verschiedene physiologische Prozesse regulieren, vom Sehen und Gedächtnis bis zu Blutdruck und Thrombusbildung. Sie wirken über cAMP- und cGMP-abhängige Kinasen (PKA und GK), Kanäle und Epac. Obgleich die Funktionen von zyklischen Nukleotiden in klassischen biochemischen Studien gut untersucht sind, ermöglichen diese Methoden nicht, cAMP und cGMP in lebenden Zellen mit hoher zeitlicher und räumlicher Auflösung zu analysieren. In dieser Arbeit wurde Fluoreszenzresonanzenergietransfer benutzt, um eine Technik für die Visualisierung von cAMP and cGMP in lebenden Zellen und in vitro zu entwickeln. Ligand-induzierte Konformationsänderung in einer einzelnen, mit Grünfluoreszenzproteinmutanten fusionierten Bindungsdomäne diente als Grundlage für Biosensoren, die dynamische, hochsensitive Messungen von cAMP und cGMP ermöglichen. Bei solchen Sensoren wurden die chemischen und Bindungseigenschaften von unmodifizierten Domänen aufrechterhalten, was die cAMP- und cGMP-Messungen im physiologischen Konzentrationsbereich in lebenden Zellen ermöglicht. Für die Entwicklung der cAMP-Sensoren wurden die Domänen von PKA, Epac und von einem cAMP- gesteuerten HCN-Kanal benutzt. cGMP-Sensoren beruhen sich auf den Bindungsdomänen von GK und Phosphodiesterasen (PDEs). Mit Hilfe der auf Epac-basierten Sensoren wurde die cAMP-Dynamik in Neuronen und Makrophagen zeitlich und räumlich aufgelöst. In diesen Zellen diffundiert cAMP mit hoher Geschwindigkeit (~ 40 μm/s) frei durch das ganze Zytosol. Um die Mechanismen der cAMP-Kompartimentierung besser zu verstehen, wurden die kinetischen Eigenschaften der PDE2 in aldosteronproduzierenden Zellen analysiert. PDE2 ist imstande, große Mengen von cAMP äußerst schnell zu hydrolisieren, so dass die Geschwindigkeit der cAMP-Hydrolyse viel höher ist als von cAMP-Synthese, was eine Grundlage der cAMP-Kompartimentierung sein könnte. cAMP-Sensoren wurden auch benutzt, um eine klinisch relevante diagnostische Methode zu entwickeln, die Autoantikörper gegen β1-adrenergen Rezeptoren bei Herzinsuffizienzpatienten zuverlässig nachweist. Diese Methode hat ermöglicht, die Sensitivität der früher entwickelten Techniken zu verbessern. Konformationsänderung in einzelnen Bindungsdomänen von GK und PDE wurde als nächstes benutzt, um ein Reihe neuer fluoreszierender Biosensoren für cGMP zu entwickeln. Diese Sensoren zeigten hohe räumliche und zeitliche Auslösung und wurden zur Analyse schneller Dynamik von cGMP-Synthese und für cGMP-Imaging in Mesangialzellen angewandt. Zusammenfassend wurden hochsensitive Biosensoren für cAMP und cGMP auf Grund einzelner, mit Grünfluoreszenzproteinmutanten fusionierter Bindungs-domäne entwickelt und in verschiedenen biologischen und klinisch relevanten Applikationen eingesetzt. KW - Cyclo-AMP KW - Cyclo-GMP KW - Biosensor KW - Fluoreszenz KW - Fluoreszenz-Resonanz-Energie-Transfer KW - cAMP KW - cGMP KW - FRET KW - Fluoreszenz KW - Sensor KW - cAMP KW - cGMP KW - FRET KW - fluorescence KW - sensor Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15673 ER - TY - JOUR A1 - Maiellaro, Isabella A1 - Lohse, Martin J. A1 - Kitte, Robert J. A1 - Calebiro, Davide T1 - cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons JF - Cell Reports N2 - The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons. KW - cAMP KW - synaptic plasticity KW - PDE KW - octopamine KW - FRET KW - active zone KW - dunce KW - GPCR Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162324 VL - 17 IS - 5 ER - TY - THES A1 - Jha, Mithilesh Kumar T1 - Protein Kinase A regulates GATA-3 dependent Activation of IL-5 Gene Expression in T Helper Lymphocytes T1 - XX N2 - Die durch Agentien wie IL-1α, Prostaglandine oder Forskolin induzierte Erhöhung von intrazellulärem zyklischem Adenosin-Monophosphat (cAMP) in T-Lymphozyten inhibiert die Synthese Th1-typischer Zytokine und stimuliert die Synthese Th2-typischer Zytokine. Die für die cAMP-vermittelte Induktion von Th2-Zytokinen verantwortlichen Signaltransduktionskaskaden sind bisher nur unvollständig aufgeklärt. Deshalb konzentrierte sich meine Dissertation auf die Erforschung des cAMP-Signalweges in primären T-Helferzellen. Während die Induktion muriner EL-4 T-Zellen mit Forskolin sowohl zur Aktivierung Th2-typischer als auch zur Inhibierung Th1-typischer Lymphokine führt, kann die ektopische Expression einer katalytisch aktiven Proteinkinase A (PKA) zwar die Synthese von Th2-typischen Lymphokinen stimulieren, nicht jeder die Expression Th1-typischer Lymphokine inhibieren. Dies bedeutet, dass die Aktivierung von PKA selektiv an der Stimulation der Th2-Lymphokinexpression beteiligt ist, während andere, cAMP-abhängige Signaltransduktionswege zur Inhibierung Th1-typischer Lymphokine führen. Durch vergleichende Analysen verschiedener Th-Zellen konnte im Rahmen dieser Arbeit gezeigt werden, dass durch aktive PKA in Th0- und Th2, nicht jeder in Th1-Zellen die Expression von IL-5 erhöht wird. Dieses Phänomen ist wahrscheinlich auf die unterschiedliche Konzentration des Transkriptionsfaktors GATA-3 zurückzuführen. So kommt GATA-3 in Th2-Zellen in hoher, in Th0-Zellen in geringerer und in Th1-Zellen in sehr geringer Konzentration vor. Die ektopische Expression von GATA-3 in Th1-Zellen induziert die Synthese Th2- typischer Lymphokine, die durch erhöhte cAMP-Konzentration oder durch aktive PKA noch verstärkt werden kann. Untersuchungen bezüglich des Einflusses erhöhter cAMP-Spiegel auf Th2- Lymphokine in der Th2-Zelllinie D10 zeigten, dass erhöhte cAMP-Konzentrationen nicht die PKA-Aktivität, sondern vielmehr die Aktivität der p38-Kinase stimuliert. Diese Aktivierung führt zur Phosphorylierung von GATA-3 und dadurch zur Induktion der IL-5- und IL-13-Expression (Chen et al., 2000). In primären T-Helferzellen, die im Mittelpunkt der hier vorgelegten Arbeit standen, konnte beobachtet werden, dass bereits die Expression der katalytischen Untereinheit α der PKA ausreichend für eine optimale IL-5-Expression in Th0-Zellen ist. Die Beobachtung, dass primäre Th2-Zellen sowohl auf die Behandlung mit dem spezifischen PKA-Inhibitor H-89 als auch auf die ektopische Expression der negativ wirkenden Untereinheit 1 der PKA mit signifikant verminderter IL-5-Produktion reagierten, unterstreicht die wichtige Rolle aktiver PKA bei der Regulation des IL-5 Gens. Zusammenfassend konnte in dieser Arbeit durch die Untersuchung verschiedener primärer CD4+ T-Lymphozyten, einschließlich der auch in vivo IL-5 produzierenden Th2-Zellen, gezeigt werden, dass der Adenylzyklase/cAMP/PKASignaltransduktionsweg bedeutend für die IL-5 Genexpression in primären Th2-Zellen und somit auch wichtig für deren Effektorfunktion ist. N2 - Elevation of intracellular cAMP in T lymphocytes, induced by agents such as IL-1α, prostaglandins or forskolin, inhibits Th1-type cytokine production but stimulates Th2-type cytokine production. The signaling pathway engaged in cAMP-mediated induction of Th2 lymphokines remains obscure and therefore my doctoral work was focused on the elucidation of cAMP pathway in primary Th lymphocytes. While forskolin treatment of EL-4 cells led both to an activation of Th2 lymphokines and inhibition of Th1 lymphokines, ectopic expression of catalytically active PKA stimulated Th2 lymphokines but failed to inhibit Th1 lymphokine expression. Thus, the PKA activity is selectively involved in the stimulation of Th2 lymphokine expression whereas other cAMP-dependent pathway(s) appears to downregulate Th1 lymphokines. By investigating different types of primary murine Th cells, it was found that active PKA enhanced IL-5 expression only in Th0 and Th2 but not in Th1 cells. This is likely due to the different levels of GATA-3 whose expression is high in Th2, moderate in Th0 and very low in Th1 cells. Ectopic expression of GATA-3 in Th1 cells induced Th2 lymphokine expression which could be further enhanced by increased cAMP levels or PKA activity. Investigations on the role of increased cAMP levels on Th2 lymphokines in D10 cells, a Th2-type cell line, led to the conclusion that elevated cAMP concentrations do not stimulate PKA but p38 activity which, through phosphorylation of GATA-3, appeared to induce IL-5 and IL-13 expression (Chen et al., 2000). While focusing on primary Th lymphocytes, it was observed that expression of the catalytic subunit α of PKA is sufficient for optimal IL-5 expression in primary Th0 cells. In addition, downregulation of IL-5 production in primary Th2 cells by the treatment with low concentrations of H-89, a PKA specific inhibitor, as well as by the ectopic expression of a negatively acting version of regulatory PKA subunit I demonstrates that active PKA plays an important role in IL-5 gene regulation. These findings using different types of primary CD4+ T lymphocytes, including Th2 cells, the one likely to represent the native IL-5 producers in vivo, demonstrates that the adenylyl cyclase/cAMP/PKA signaling pathway plays an important role in IL-5 gene expression in primary Th2 cells. Thus the importance of cAMP/PKA signaling pathway in Th2 effector function was established during this doctoral research work. KW - PKA KW - IL-5 KW - cAMP KW - Th KW - Forskolin KW - PKA KW - IL-5 KW - cAMP KW - Th KW - Forskolin Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5281 ER - TY - THES A1 - Herz, Michaela T1 - Molecular characterization of the serotonin and cAMP-signalling pathways in Echinococcus T1 - Molekulare Charakterisierung der Serotonin- und cAMP-Signalwege in Echinococcus N2 - Alveolar and cystic echinococcosis, caused by Echinococcus multilocularis and Echinococcus granulosus respectively, are severe zoonotic diseases with limited treatment options. The sole curative treatment is the surgical removal of the complete parasite material. Due to late diagnosis, chemotherapeutic treatment often is the only treatment option. Treatment is based on benzimidazoles, which merely act parasitostatic and often display strong side effects. Therefore, new therapeutic drugs are urgently needed. Evolutionarily conserved signalling pathways are known to be involved in hostparasite cross-communication, parasite development and survival. Moreover, they represent potential targets for chemotherapeutic drugs. In this context the roles of the serotonin- and cAMP-signalling pathways in Echinococcus were studied. Genes encoding serotonin receptors, a serotonin transporter and enzymes involved in serotonin biosynthesis could be identified in the E. multilocularis and E. granulosus genomes indicating that these parasites are capable of synthesizing and perceiving serotonin signals. Also the influence of exogenous serotonin on parasite development was studied. Serotonin significantly increased metacestode vesicle formation from primary cells and re-differentiation of protoscoleces. Inhibition of serotonin transport with citalopram significantly reduced metacestode vesicle formation from primary cells and caused death of protoscoleces and metacestodes. Furthermore, it could be shown that serotonin increased phosphorylation of protein kinase A substrates. Taken together, these results show that serotonin and serotonin transport are essential for Echinococcus development and survival. Consequently, components of the serotonin pathway represent potential drug targets. In this work the cAMP-signalling pathway was researched with focus on G-protein coupled receptors and adenylate cyclases. 76 G-protein coupled receptors, including members of all major families were identified in the E. multilocularis genome. Four genes homologous to adenylate cyclase IX were identified in the E. multilocularis genome and three in the E. granulosus genome. While glucagon caused no significant effects, the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor 2’, 5’ didesoxyadenosine influenced metacestode vesicle formation from primary cells, re-differentiation of protoscoleces and survival of metacestodes. It was further shown that forskolin increases phosphorylation of protein kinase A substrates, indicating that forskolin activates the cAMP-pathway also in cestodes. These results indicate that the cAMP signalling pathway plays an important role in Echinococcus development and survival. To complement this work, the influence of different media and additives on E. granulosus protoscoleces was investigated. Anaerobic conditions and the presence of FBS prolonged protoscolex survival while different media influenced protoscolex activation and development. Taken together, this work provided important insights into developmental processes in Echinococcus and potential drug targets for echinococcosis chemotherapy. N2 - Alveoläre und zystische Echinokokkose, hervorgerufen durch Echinococcus multilocularis und Echinococcus granulosus, sind schwere zoonotische Erkrankungen mit eingeschränkten Behandlungsmöglichkeiten. Die einzig kurative Therapie besteht in der chirurgischen Entfernung des gesammten Parasitenmaterials. Aufgrund später Diagnosestellung stellt Chemotherapie oft die einzige Behandlungsmöglichkeit dar. Die derzeitige Therapie basiert auf Benzimidazolen, welche nur parasitostatisch wirken und oft schwere Nebenwirkungen hervorrufen. Neue Medikamente werden daher dringend benötigt. Evolutionär konservierte Signalwege sind bekanntermaßen an Wirt-Parasit Kreuzkommunikation, Parasitenentwicklung und deren Überleben beteiligt. Darüber hinaus stellen sie auch mögliche Angriffspunkte für Chemotherapeutika dar. In diesem Zusammenhang wurden die Rollen des Serotonin- und des cAMP-Signalwegs in Echinococcus untersucht. Gene für Serotoninrezeptoren, einen Serotonintransporter und für Enzyme, die in der Serotoninsynthese involviert sind, konnten in den E. multilocularis und E. granulosus Genomen identifiziert werden, was darauf schließen lässt, dass diese Parasiten in der Lage sind, Serotonin selbst herzustellen und zu sensieren. Des Weiteren wurde der Einfluss von exogenem Serotonin auf die Parasitenentwicklung untersucht. Serotonin förderte die Bildung von Metazestodenvesikeln aus Primärzellen und die Rückdifferenzierung von Protoskolizes signifikant. Die Hemmung des Serotonintransports mit Citalopram reduzierte die Bildung von Metazestodenvesikeln aus Primärzellen signifikant und führte zum Absterben von Protoskolizes undMetazestoden. Des Weiteren konnte gezeigt werden, dass Serotonin die Posphorylierung von Proteinkinase A Substraten erhöht. Zusammengefasst zeigen diese Ergebnisse, dass Serotonin und Serotonintransport essentiell f¨ur die Entwicklung und das Überleben von Echinococcus sind. Folglich stellen Komponenten des Serotoninsignalwegs potentielle Angriffspunkte für Medikamente dar. In dieser Arbeit wurde der cAMP-Signalweg mit Schwerpunkt auf G-Protein gekoppelte Rezeptoren und Adenylatzyklasen untersucht. 76 G-Protein gekoppelte Rezeptoren, inclusive Mitglieder aller Hauptfamilien, wurden im E. multilocularis-Genom identifiziert. Vier Homologe zur Adenylatzyklase IX wurden im E. multilocularis- Genom und drei im E. granulosus-Genom identifiziert. Während Glukagon keine signifikanten Effekte hervorrief, beeinflussten der Adenylatzyklase-Aktivator Forskolin und der Adenylatzyklase-Inhibitor 2’, 5’-Didesoxyadenosin die Bildung von Metazestodenvesikeln aus Primärzellen, die Rückdifferenzierung von Protoskolizes und das Überleben vonMetazestoden. Zudem wurde gezeigt, dass Forskolin die Phosphorylierung von Proteinkinase A-Substraten erhöht. Dies bestätigt, dass Forskolin den cAMP-Signalweg aktiviert. Diese Ergebnisse legen nahe, dass der cAMP-Signalweg eine wichtige Rolle in der Entwicklung und dem Überleben von Echinococcus spielt. Um diese Arbeit zu vervollständigen, wurde der Einfluss von verschiedenen Medien und Zusätzen auf E. granulosus Protoskolizes untersucht. Anaerobe Bedingungen und die Anwesenheit von FBS verlängerten das Überleben von Protoskolizes, während verschiedene Medien die Aktivierung und die Entwicklung von Protoskolizes beeinflussten. Insgesamt gibt diese Arbeit wichtige Einblicke in Entwicklungsprozesse von Echinococcus und zeigt potentielle Angriffspunkte für Medikamente auf. KW - Serotonin KW - Cyclo-AMP KW - Fuchsbandwurm KW - cAMP KW - Echinococcus Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139249 ER - TY - JOUR A1 - Beck, Sebastian A1 - Yu-Strzelczyk, Jing A1 - Pauls, Dennis A1 - Constantin, Oana M. A1 - Gee, Christine E. A1 - Ehmann, Nadine A1 - Kittel, Robert J. A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Synthetic light-activated ion channels for optogenetic activation and inhibition JF - Frontiers in Neuroscience N2 - Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons. KW - optogenetics KW - calcium KW - potassium KW - bPAC KW - CNG channel KW - cAMP KW - Drosophila melanogaster motoneuron KW - rat hippocampal neurons Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177520 VL - 12 IS - 643 ER - TY - THES A1 - Anton, Selma T1 - Characterization of cAMP nanodomains surrounding the human Glucagon-like peptide 1 receptor using FRET-based reporters T1 - Charakterisierung der Rezeptor-assoziierten cAMP Nanodomänen des humanen Glucagon-like peptide 1 Rezeptors mittels FRET-basierter Sensoren N2 - Cyclic adenosine monophosphate (cAMP), the ubiquitous second messenger produced upon stimulation of GPCRs which couple to the stimulatory GS protein, orchestrates an array of physiological processes including cardiac function, neuronal plasticity, immune responses, cellular proliferation and apoptosis. By interacting with various effector proteins, among others protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), it triggers signaling cascades for the cellular response. Although the functional outcomes of GSPCR-activation are very diverse depending on the extracellular stimulus, they are all mediated exclusively by this single second messenger. Thus, the question arises how specificity in such responses may be attained. A hypothesis to explain signaling specificity is that cellular signaling architecture, and thus precise operation of cAMP in space and time would appear to be essential to achieve signaling specificity. Compartments with elevated cAMP levels would allow specific signal relay from receptors to effectors within a micro- or nanometer range, setting the molecular basis for signaling specificity. Although the paradigm of signaling compartmentation gains continuous recognition and is thoroughly being investigated, the molecular composition of such compartments and how they are maintained remains to be elucidated. In addition, such compartments would require very restricted diffusion of cAMP, but all direct measurements have indicated that it can diffuse in cells almost freely. In this work, we present the identification and characterize of a cAMP signaling compartment at a GSPCR. We created a Förster resonance energy transfer (FRET)-based receptor-sensor conjugate, allowing us to study cAMP dynamics in direct vicinity of the human glucagone-like peptide 1 receptor (hGLP1R). Additional targeting of analogous sensors to the plasma membrane and the cytosol enables assessment of cAMP dynamics in different subcellular regions. We compare both basal and stimulated cAMP levels and study cAMP crosstalk of different receptors. With the design of novel receptor nanorulers up to 60nm in length, which allow mapping cAMP levels in nanometer distance from the hGLP1R, we identify a cAMP nanodomain surrounding it. Further, we show that phosphodiesterases (PDEs), the only enzymes known to degrade cAMP, are decisive in constraining cAMP diffusion into the cytosol thereby maintaining a cAMP gradient. Following the discovery of this nanodomain, we sought to investigate whether downstream effectors such as PKA are present and active within the domain, additionally studying the role of A-kinase anchoring proteins (AKAPs) in targeting PKA to the receptor compartment. We demonstrate that GLP1-produced cAMP signals translate into local nanodomain-restricted PKA phosphorylation and determine that AKAP-tethering is essential for nanodomain PKA. Taken together, our results provide evidence for the existence of a dynamic, receptor associated cAMP nanodomain and give prospect for which key proteins are likely to be involved in its formation. These conditions would allow cAMP to exert its function in a spatially and temporally restricted manner, setting the basis for a cell to achieve signaling specificity. Understanding the molecular mechanism of cAMP signaling would allow modulation and thus regulation of GPCR signaling, taking advantage of it for pharmacological treatment. N2 - G Protein gekoppelte Rezeptoren (GPCRs) stellen eine große und sehr vielfältige Familie an Membranproteinen dar, deren primäre Funktion die Signalübertragung von extrazellulären Stimuli in intrazelluläre Signale ist. Dank ihrer breiten Expression im gesamten menschlichen Körper regulieren sie unterschiedliche zelluläre Prozesse und damit deren physiologische Funktion, unter anderem die Sinnesempfindung, zelluläre Kommunikation und Neurotransmission. GPCRs stehen im Zusammenhang mit unterschiedlichen Erkrankungen wie Herzinsuffizienz, Krebs, neurologischen Funktionsstörungen und diverser metabolischer Krankheiten, weswegen sie als Ziele („Targets“) zur Behandlung verschiedener Erkrankungen erforscht und genutzt werden. Aufgrund ihrer Expression auf der Zelloberfläche sind sie leicht zugänglich, und die Diversität ihrer Liganden begünstigt zusätzlich ihre Nutzung als pharmakologische Targets. Heutzutage vermitteln bereits 30% aller weltweit zugelassenen Arzneistoffe ihre Wirkung an GPCRs. GPCRs üben ihre Funktion aus, indem sie hauptsächlich an G Proteine binden, welche wiederum die Produktion sogenannter second messenger in Gang setzen. cAMP ist das Hauptsignalmolekül der Rezeptoren, welche an das stimulatorische GS Protein koppeln. cAMP überträgt hunderte ankommende Signale in einer hochspezifischen Weise, indem es an unterschiedliche Effektorproteine bindet, welche sich in bestimmten zellulären Regionen befinden. Dadurch koordiniert dieses Signalmolekül eine Vielzahl zellulärer Prozesse, angefangen bei der Regulierung von Ionenkanalaktivität über die Kontraktilität glatter- und quergestreifter Muskulatur bis hin zur Genexpression, Zellproliferation und Apoptose. Durch die pleiotropen Effekte, welche durch cAMP reguliert werden, stellt sich die Frage, wie GS-gekoppelte Rezeptoren Signalspezifität erreichen, obwohl sie ihre Funktion durch dieses eine Signalmolekül ausführen. Ursprünglich ging man von einer uneingeschränkten Diffusion und dadurch homogenen Verteilung von cAMP in der Zelle aus. Diese Vorstellung ist jedoch nicht mit der Signalisierungsspezifität von GPCRs vereinbar, da unter diesen Umständen cAMP unselektiv all seine Effektorproteine in der gesamten Zelle aktivieren könnte. Daher entstand die Hypothese der cAMP-Kompartimentierung, wobei die Zelle lokal begrenzte Bereiche mit hohen oder niedrigen cAMP Konzentrationen umfassen würde. Jedoch gab es bisher keinerlei Beweise für die Existenz und die molekulare Zusammensetzung mutmaßlicher Domänen. Folglich setzten wir uns als Ziel, hochkonzentrierte cAMP-Kompartimente in der Zelle zu lokalisieren, ihre räumliche Dimension aufzuklären und ihre Rolle zur Realisierung zellulärer Signalisierungsspezifität zu ermitteln. Im Rahmen der vorliegenden Studie setzten wir einen Förster resonance energy transfer (FRET)-basierten cAMP Sensor ein, fusionierten ihn mit dem humanen glucagone-like peptide 1 Rezeptor (hGLP1R) als Prototyp eines GS-koppelnden Rezeptors, um cAMP am Ursprung des Signals zu messen. Mittels dieser Sensoren weisen wir eine Rezeptor-umgebende begrenzte cAMP Domäne nach, welche eine erhöhte cAMP Konzenztration aufweist (Figure ‎3.10). Bei Stimulation des Rezeptors mit GLP1 Konzenztrationen beginnend bei 10 fM entsteht eine Rezeptordomäne mit lokal erhöhten cAMP Konzentrationen, welche getrennt von Plasmamembran und Cytosol ist. Wir zeigen, dass das hGLP1R-Kompartiment geschützt ist vor cAMP Signalen, welche an weiteren, unabhängigen GS-gekoppelten Rezeptoren ihren Ursprung haben (Figure ‎3.11). Um die räumliche Dimension dieser Domäne zu untersuchen, verwendeten wir Nanolinker der Länge 30- und 60 nm als Abstandhalter zwischen Rezeptor und Sensor (Figure ‎3.12) und zeigen dabei, dass sich die Domäne über eine Länge von 60 Nanometern erstreckt, wobei ein abnehmender cAMP-Gradient erkennbar ist. Weiterhin beweisen wir, dass Phosphodiesterasen (PDEs) Schlüsselfaktoren für die Bildung des cAMP-Gradienten um den Rezeptor herum sind, indem sie die Diffusion ins Cytosol beschränken (Figure ‎3.13). Darüber hinaus zeigen wir (Figure ‎3.15), dass Rezeptor-spezifische cAMP Signale PKA-Phosphorylierung in der Rezeptordomäne auslösen und, dass AKAPs elementar für nanodomänen PKA-Aktivität sind, wohingegen die cytosolische PKA-Phosphorylierung unabhängig von AKAP-Targeting der PKA ist (Figure ‎3.16). Zusammenfassend beweisen unsere Ergebnisse die Existenz einer Rezeptor-umgebenden Nanodomäne mit erhöhten cAMP Spiegeln eines GS-gekoppelten Rezeptors. Zeitgleiche Studien in unserer Gruppe zeigen, dass cAMP in der Zelle weitgehend gebunden vorliegt und diffusionslimitiert ist. Dies stellt den Nachweis für eine eingeschränkte Diffusion als molekulare Voraussetzung für die Bildung von Signalkompartimenten dar. Wir gehen davon aus, dass unsere Ergebnisse ein Ausgangspunkt für die Aufklärung von Rezeptoren als Quelle für Signalkompartimente darstellen, jedoch bedarf es weiterer Studien, um die präzise molekulare Zusammensetzung und die beteiligten Proteine dieser Signaldomäne zu untersuchen. Das Grundverständnis der Signalisierungskaskaden auf molekularer Ebene könnte es uns ermöglichen, die zellulären Reaktionen zu manipulieren, um eine Fehlfunktion der Signalisierung in erkrankten Zellen wiederherzustellen. Da der hGLP1R entscheidend für Aufrechterhaltung ausgeglichener Blutglucosespiegel ist, würde die Erfassung der molekularen Details der kompartimentalisierten Signalübertragung die Feinabstimmung der Rezeptorsignale ermöglichen, um ihn als spezifisches Target zur Behandlung von Diabetes Mellitus einzusetzen. KW - FRET KW - cAMP KW - compartments KW - GPCR Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190695 ER -