TY - THES A1 - Tuchscherer, Philip T1 - A Route to Optical Spectroscopy on the Nanoscale T1 - Über Optische Spektroskopie auf der Nanoskala N2 - Time-resolved optical spectroscopy has become an important tool to investigate the dynamics of quantum mechanical processes in matter. In typical applications, a first “pump” pulse excites the system under investigation from the thermal equilibrium to an excited state, and a second variable time-delayed “probe” pulse then maps the dynamics of the excited system. Although advanced nonlinear techniques have been developed to investigate, e.g., coherent quantum effects, all of these techniques are limited in their spatial resolution. The laser focus diameter has a lower bound given by Abbe’s diffraction limit, which is roughly half the optical excitation wavelength—corresponding to about 400nm in the presented experiments. In the time-resolved experiments that have been suggested so far, averaging over the sample volume within this focus cannot be avoided. In this thesis, two approaches were developed to overcome the diffraction limit in optical spectroscopy and to enable the investigation of coherent processes on the nanoscale. In the first approach, analytic solutions were found to calculate optimal polarizationshaped laser pulses that provide optical near-field pump–probe pulse sequences in the vicinity of a nanostructure. These near-field pulse sequences were designed to allow excitation of a quantum system at one specific position at a certain time and probing at a different position at a later time. In the second approach, the concept of coherent two-dimensional (2D) spectroscopy, which has had great impact on the investigation of coherent quantum effects in recent years, was combined with photoemission electron microscopy, which yields a spatial resolution well below the optical diffraction limit. Using the analytic solutions, optical near fields were investigated in terms of spectroscopic applications. Near fields that are excited with polarization-shaped femtosecond laser pulses in the vicinity of appropriate nanostructures feature two properties that are especially interesting in the view of spectroscopic applications: On the one hand, control of the spatial distribution of the optical fields is achieved on the order of nanometers. On the other hand, the temporal evolution of these fields can be adjusted on the order of femtoseconds. In this thesis, solutions were found to calculate the optimal polarizationshaped laser pulses that control the near field in a general manner. The main idea to achieve this deterministic control was to disentangle the spatial and temporal near-field control. First, the spatial distribution of the optical near field was controlled by assigning the correct state of polarization for each frequency within the polarization-shaped laser pulse independently. The remaining total phase—not employed for spatial control—was then used for temporal near-field compression, which, in experimental applications, would lead to an enhancement of the nonlinear signal at the respective location. In contrast to the use of optical near fields, where pump–probe sequences themselves are localized below the diffraction limit and the detection does not have to provide the spatial resolution, a different approach was suggested in this thesis to gain spectroscopic information on the nanoscale. The new method was termed “Coherent two-dimensional (2D) nanoscopy” and transfers the concept of “conventional” coherent 2D spectroscopy to photoemission electron microscopy. The pulse sequences used for the investigation of quantum systems in this method are still limited by diffraction. However, the new key concept is to detect locally generated photoelectrons instead of optical signals. This yields a spatial resolution that is well below the optical diffraction limit. In “conventional” 2D spectroscopy a triple-pulse sequence initiates a four wave mixing process that creates a coherence. In a quantum mechanical process, this coherence is converted into a population by emission of an electric field, which is measured in the experiment. Contrarily, in the developed 2D nanoscopy, four-wave mixing is initiated by a quadruple-pulse sequence, which leaves the quantum system in an electronic population. This electronic population carries coherent information about the investigated quantum system and can be mapped with a spatial resolution down to a few nanometers given by the spatial resolution of the photoemission electron microscope. Hence, 2D nanoscopy can be considered a generalization of time-resolved photoemission experiments. In the future, it may be of similar beneficial value for the field of photoemission research as “conventional” 2D spectroscopy has proven to be for optical spectroscopy and nuclear magnetic resonance experiments. In a first experimental implementation of coherent 2D nanoscopy coherent processes on a corrugated silver surface were measured and unexpected long coherence lifetimes could be determined. N2 - Zur Untersuchung von Dynamiken quantenmechanischer Prozesse in Materie hat sich die zeitaufgelöste optische Spektroskopie zu einem zentralen Werkzeug entwickelt. Eine Standardmethode ist hierbei die Anrege-Abfrage-Spektroskopie. Bei solch einem Experiment wird das zu untersuchende System zunächst mit einem Anregepuls aus dem thermischen Gleichgewicht in einen höheren Zustand angeregt. Anschließend untersucht man mit einem zweiten zeitverzögerten Abfragepuls die Dynamik des angeregten Systems. Obwohl fortgeschrittene experimentelle Methoden entwickelt wurden um kohärente Quanteneffekte zu untersuchen, sind all diese Experimente nach wie vor in ihrer räumlichen Auflösung begrenzt. Aufgrund von Beugung ist der Fokus eines Laserstrahls limitiert. Diese untere Grenze ist durch Abbe’s Auflösungsgrenze gegeben und entspricht etwa der Hälfte der optischen Anregungswellenlänge, d.h. etwa 400nm in den hier vorgestellten Experimenten. Daher kann eine Mittelung über das Probenvolumen, gegeben durch die Fokusgröße, in den bisher vorgestellten Experimenten nicht vermieden werden. In dieser Arbeit wurden zwei Ansätze verfolgt, um die Beugungsgrenze in der optischen Spektroskopie zu überwinden und die Untersuchung von kohärenten Prozessen auf der Nanometerskala zu ermöglichen. Im ersten Ansatz wurden analytische Lösungen gefunden, um optimal polarisationsgeformte Laserpulse zu berechnen, die optische Anrege-Abfrage-Nahfeld-Pulsfolgen in der Nähe einer Nanostruktur ermöglichen. Diese Nahfeld-Pulsfolgen wurden entwickelt, um ein quantenmechanisches System an einer bestimmten Position zu einem bestimmten Zeitpunkt anzuregen und an einer anderen Position zu einem späteren Zeitpunkt abzufragen. Im zweiten Ansatz wurde das Konzept der kohärenten zweidimensionalen (2D) Spektroskopie, die in den letzten Jahren großen Einfluss auf die Untersuchung von kohärenten Quanteneffekten gehabt hat, mit Photoelektronenmikroskopie kombiniert. Letztere ermöglicht eine räumliche Auflösung deutlich unter der optischen Auflösungsgrenze. Mit Hilfe der analytischen Lösungen wurden optische Nahfelder in Bezug auf spektroskopische Anwendungen untersucht. Nahfelder, die mit polarisationsgeformten Femtosekunden-Laserpulsen in der Nähe von entsprechenden Nanostrukturen angeregt werden, verfügen über zwei Eigenschaften, die besonders interessant für spektroskopische Anwendungen sind: Zum einen kann die räumliche Verteilung der optischen Felder auf der Größenordnung von Nanometern kontrolliert werden. Zum anderen kann die zeitliche Entwicklung dieser Felder in der Größenordnung von Femtosekunden manipuliert werden. In dieser Arbeit wurden Lösungen gefunden, um optimale polarisationsgeformte Laserpulse zu berechnen, die diese Nahfeld-Steuerung in einer allgemeinen Art und Weise erlauben. Die Hauptidee, um diese deterministische Steuerung zu erreichen, war die räumliche und zeitliche Nahfeld-Kontrolle zu entkoppeln. Zuerst wurde dafür die räumliche Verteilung der optischen Nahfelder durch die Zuordnung des korrekten Polarisationszustandes für jede Frequenz, innerhalb des polarisationsgeformten Laserpulses, unabhängig gesteuert. Die verbleibende totale Phase, die nicht für die räumliche Kontrolle benötigt wird, wurde dann verwendet um den nichtlinearen Fluss an den gewünschten Positionen durch zeitliche Nahfeldkomprimierung zu erhöhen. Im Gegensatz zur Verwendung von optischen Nahfeldern, in der die Anrege-Abfrage-Nahfeld-Pulsfolgen selbst unter dem Beugungslimit lokalisiert sind und die Detektion nicht räumlich aufgelöst sein muss, wurde in dieser Arbeit noch ein anderer Ansatz vorgeschlagen, um spektroskopische Informationen auf der Nanometerskala zu erhalten. Die neue Methode wurde als „kohärente zweidimensionale (2D) Nanoskopie“ beschrieben und überträgt das Konzept der „herkömmlichen“ kohärenten 2D Spektroskopie auf die Photoemissionselektronenmikroskopie. In dieser neuen Methode ist die räumliche Auflösung der zur Untersuchung des quantenmechanischen Sytems erforderlichen Pulssequenzen zwar durch Beugung begrenzt. Die wesentliche Neuerung ist allerdings, lokal erzeugte Photoelektronen anstelle von optischen Signalen zu messen. Daraus ergibt sich eine räumliche Auflösung, die weit unterhalb der optischen Beugungsgrenze liegt. Die photoemittierten Elektronen tragen dann kohärente Information über das untersuchte System und können mit einer räumlichen Auflösung von wenigen Nanometern abgebildet werden. Die Auflösung ist dabei durch das verwendete Photoemissionsmikroskop vorgegeben. Demzufolge kann 2D Nanoskopie als eine Verallgemeinerung der zeitaufgelösten Photoemissionsexperimente gesehen werden. In einer ersten experimentellen Umsetzung der kohärenten 2D Nanoskopie wurden kohärente Prozesse auf einer rauhen Silberoberfläche untersucht und dabei unerwartet langlebige Kohärenzen gemessen. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Ultrakurzzeit Spektroskopie KW - Kohärente 2D Spektroskopie KW - Coherent 2D Spectroscopy KW - Nanooptic KW - Ultrafast spectroscopy KW - Surface plasmons KW - Optische Spektroskopie KW - Nahfeldoptik KW - Oberflächenplasmonresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72228 ER - TY - THES A1 - Rewitz, Christian T1 - Far-Field Characterization and Control of Propagating Ultrashort Optical Near Fields T1 - Fernfeld-Charakterisierung und Steuerung von propagierenden ultrakurzen optischen Nahfeldern N2 - In this work, femtosecond laser pulses are used to launch optical excitations on different nanostructures. The excitations are confined below the diffraction limit and propagate along the nanostructures. Fundamental properties of these ultrashort optical near fields are determined by characterizing the far-field emission after propagation with a setup developed for this task. Furthermore, control of the nanooptical excitations' spatial and temporal evolution is demonstrated for a designed nanostructure. N2 - In dieser Arbeit werden Femtosekunden-Laserpulse verwendet, um optische Moden auf verschiedenen Nanostrukturen anzuregen. Die optische Energie ist dabei unterhalb des Beugungslimits lokalisiert und die Anregungen propagieren entlang der Nanostrukturen. Grundlegende Eigenschaften dieser ultrakurzen optischen Nahfelder werden durch die Charakterisierung der Fernfeld-Emission nach der Propagation bestimmt. Dabei wird eine Messmethode verwendet die eigens für diese Aufgabe entwickelt wurde. Darüber hinaus wird die Steuerung der räumlichen und zeitlichen Entwicklung der nanooptischen Anregungen auf einer für diesen Zweck entworfenen Nanostruktur demonstriert. KW - Nahfeldoptik KW - Ultrakurzer Lichtimpuls KW - Nanooptics KW - Surface plasmons KW - Ultrafast spectroscopy KW - Interference microscopy KW - Scanning microscopy KW - Ultrafast information processing KW - Plasmonics KW - Plasmon propagation KW - plasmon group velocity KW - plasmonic waveguides KW - Oberflächenplasmonresonanz KW - Optische Spektroskopie KW - Konfokale Mikroskopie KW - Spektrale Interferenz Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-94887 ER - TY - THES A1 - Kramer, Christian T1 - Investigation of Nanostructure-Induced Localized Light Phenomena Using Ultrafast Laser Spectroscopy T1 - Untersuchung von nanostruktur-induzierten Lichtphänomenen mit Hilfe von Ultrakurzzeit-Laserspektroskopie N2 - In recent years, the interaction of light with subwavelength structures, i.e., structures that are smaller than the optical wavelength, became more and more interesting to scientific research, since it provides the opportunity to manipulate light-induced dynamics below the optical diffraction limit. Specifically designed nanomaterials can be utilized to tailor the temporal evolution of electromagnetic fields at the nanoscale. For the investigation of strongly localized processes, it is essential to resolve both their spatial and their temporal behavior. The aim of this thesis was to study and/or control the temporal evolution of three nanostructure-induced localized light phenomena by using ultrafast laser spectroscopy with high spatial resolution. In Chapter 4, the absorption of near-infrared light in thin-film a-Si:H solar cells was investigated. Using nanotextured instead of smooth interfaces for such devices leads to an increase of absorption from < 20% to more than 50% in the near-infrared regime. Time-resolved experiments with femtosecond laser pulses were performed to clarify the reason for this enhancement. The coherent backscattered radiation from nanotextured solar cell devices was measured as a function of the sample position and evaluated via spectral interferometry. Spatially varying resonance peaks in the recorded spectra indicated the formation of localized photonic modes within the nanotextured absorber layers. In order to identify the modes separately from each other, coherent two-dimensional (2D) nanoscopy was utilized, providing a high spatial resolution < 40 nm. In a nanoscopy measurement on a modified device with an exposed nanotextured a-Si:H absorber layer, hot-spot electron emission was observed and confirmed the presence of localized modes. Fitting the local 2D nanospectra at the hot-spot positions enabled the determination of the resonance frequencies and coherence lifetimes of the modes. The obtained lifetime values varied between 50 fs and 130 fs. Using a thermionic emission model allowed the calculation of the locally absorbed energy density and, with this, an estimation of the localization length of the photonic modes (≈1 μm). The localization could be classified by means of the estimated localization length and additional data evaluation of the backscattered spectra as strong localization ─ the so-called Anderson localization. Based on the experimental results, it was concluded that the enhanced absorption of near-infrared light in thin-film silicon solar cells with nanotextured interfaces is caused by the formation of strongly localized photonic modes within the disordered absorber layers. The incoming near-infrared light is trapped in these long-living modes until absorption occurs. In Chapter 5, a novel hybridized plasmonic device was introduced and investigated in both theory and experiment. It consists of two widely separated whispering gallery mode (WGM) nanoantennas located in an elliptical plasmonic cavity. The goal was to realize a periodic long-range energy transfer between the nanoantennas. In finite-difference time-domain (FDTD) simulations, the device was first optimized with respect to strong coupling between the localized antenna modes and the spatially-extended cavity mode. The geometrical parameters of the antennas and the cavity were adjusted separately so that the m="0" antenna mode and the cavity mode were resonant at λ="800 nm" . A high spatial overlap of the modes was achieved by positioning the two antennas in the focal spots of the cavity, leading to a distance between the antenna centers of more than twice the resonant wavelength of the modes. The spectral response of the optimized device revealed an energy splitting of the antenna and the cavity mode into three separated hybridized eigenmodes within an energy range of about 90 meV due to strong coupling. It could be well reproduced by a simple model of three coupled Lorentzian oscillators. In the time domain, an oscillatory energy transfer between both antennas with a period of 86 fs and an energy transfer efficiency of about 7% was observed for single-pulse excitation. For the experiments, devices with cavities and antennas of varying size were fabricated by means of focused-ion-beam (FIB) milling. Time-resolved correlation measurements were performed with high spatial and temporal resolution by using sequences of two femtosecond laser pulses for excitation and photoemission electron microscopy (PEEM) for detection. Local correlation traces at antennas in resonant devices, i.e., devices with enhanced electron emission at both antenna positions, were investigated and reconstructed by means of the coupled-oscillator model. The corresponding spectral response revealed separated peaks, confirming the formation of hybridized eigenmodes due to strong coupling. In a subsequent simulation for single-pulse excitation, one back-and-forth energy transfer between both antennas with an energy transfer efficiency of about 10% was observed. Based on the theoretical and experimental results, it was demonstrated that in the presented plasmonic device a periodic long-range energy transfer between the two nanoantennas is possible. Furthermore, the coupled-oscillator model enables one to study in depth how specific device properties impact the temporal electric-field dynamics within the device. This can be exploited to further optimize energy transfer efficiency of the device. Future applications are envisioned in ultrafast plasmonic nanocircuitry. Moreover, the presented device can be employed to realize efficient SPP-mediated strong coupling between widely separated quantum emitters. In Chapter 6, it was investigated in theory how the local optical chirality enhancement in the near field of plasmonic nanostructures can be optimized by tuning the far-field polarization of the incident light. An analytic expression was derived that enables the calculation of the optimal far-field polarizations, i.e., the two far-field polarizations which lead to the highest positive and negative local optical chirality, for any given nanostructure geometry. The two optimal far-field polarizations depend on the local optical response of the respective nanostructure and thus are functions of both the frequency ω and the position r. Their ellipticities differ only in their sign, i.e., in their direction of rotation in the time domain, and the angle between their orientations, i.e., the angle between the principal axes of their ellipses, is ±π/"2" . The handedness of optimal local optical chirality can be switched by switching between the optimal far-field polarizations. In numerical simulations, it was exemplarily shown for two specific nanostructure assemblies that the optimal local optical chirality can significantly exceed the optical chirality values of circularly polarized light in free space ─ the highest possible values in free space. The corresponding optimal far-field polarizations were different from linear and circular and varied with frequency. Using femtosecond polarization pulse shaping provides the opportunity to coherently control local optical chirality over a continuous frequency range. Furthermore, symmetry properties of nanostructures can be exploited to determine which far-field polarization is optimal. The theoretical findings can have impact on future experimental studies about local optical chirality enhancement. Tuning the far-field polarization of the incident light offers a promising tool to enhance chirally specific interactions of local electromagnetic fields with molecular and other quantum systems in the vicinity of plasmonic nanostructures. The presented approach can be utilized for applications in chiral sensing of adsorbed molecules, time-resolved chirality-sensitive spectroscopy, and chiral quantum control. In conclusion, each of the localized light phenomena that were investigated in this thesis ─ the enhanced local absorption of near-infrared light due to the formation of localized photonic modes, the periodic long-range energy transfer between two nanoantennas within an elliptical plasmonic cavity, and the optimization of local optical chirality enhancement by tuning the far-field polarization of the incident light ─ can open up new perspectives for a variety of future applications. . N2 - In den vergangenen Jahren rückte die Wechselwirkung von Licht mit Strukturen, deren Größe kleiner als die optische Wellenlänge ist, immer mehr in den Fokus der wissenschaftlichen Forschung, da sie die Möglichkeit bietet, lichtinduzierte Dynamiken unterhalb des optischen Beugungslimits zu manipulieren. Speziell hergestellte Nanomaterialien können verwendet werden, um die zeitliche Entwicklung von elektromagnetischen Feldern auf der Nanoskala zu steuern. Für die Untersuchung von stark lokalisierten Prozessen ist es essentiell, sowohl ihr räumliches als auch ihr zeitliches Verhalten aufzulösen. Das Ziel dieser Dissertation war es, die zeitliche Entwicklung von drei lokalisierten Lichtphänomenen, hervorgerufen durch drei unterschiedliche nanostrukturierte Materialien, mit Hilfe von Ultrakurzzeit-spektroskopie unter hoher räumlicher Auflösung zu untersuchen und/oder zu kontrollieren. In Kapitel 4 dieser Arbeit wurde die Absorption von Nahinfrarotlicht in a-Si:H Dünnschicht-Solarzellen untersucht. Durch die Verwendung von nanotexturierten statt glatten Grenzschichten erreicht man bei solchen Solarzellen einen Anstieg der Absorption von < 20% auf über 50% im Nahinfrarotbereich. Um der Ursache dieser Verstärkung auf den Grund zu gehen, wurden zeitaufgelöste Experimente mit Femtosekundenlaserpulsen durchgeführt. Zunächst wurde die kohärente zurückgestreute Strahlung von nanotexturierten Solarzellen in Abhängigkeit der Probenposition gemessen und mit Hilfe von spektraler Interferometrie ausgewertet. Räumlich variierende Resonanzpeaks in den aufgenommenen Spektren deuteten auf die Bildung von lokalisierten photonischen Moden innerhalb der nanotexturierten Absorberschichten hin. Um die Moden räumlich getrennt voneinander identifizieren zu können, wurde anschließend die Methode der kohärenten zweidimensionalen (2D) Nanoskopie angewandt, die eine hohe räumliche Auflösung < 40 nm ermöglichte. In einer Nanoskopie-Messung an einer modifizierten Solarzellen-Probe mit einer freiliegenden nanotexturierten a-Si:H Absorberschicht wurde eine Elektronenemission beobachtet, die von räumlich begrenzten Hot Spots dominiert war und das Vorhandensein von lokalisierten Moden bestätigte. Über das Fitten der lokalen 2D Nanospektren an den Positionen der Hot Spots wurden die Resonanzfrequenzen und die Kohärenzlebenszeiten der Moden bestimmt. Die ermittelten Werte für die Lebenszeiten lagen zwischen 50 fs und 130 fs. Mit Hilfe eines Modells für thermionische Elektronenemission konnte die lokal absorbierte Energiedichte bestimmt und damit die Lokalisierungslänge der photonischen Moden auf etwa 1 μm abgeschätzt werden. Zudem konnte die Lokalisierung über die abgeschätzte Lokalisierungslänge und eine zusätzliche Datenauswertung der zurückgestreuten Spektren als starke Lokalisierung, die sogenannte Anderson-Lokalisierung, klassifiziert werden. Auf der Basis der experimentellen Ergebnisse wurde daher geschlussfolgert, dass die verstärkte Absorption von Nahinfrarotlicht in Silizium-Dünnschicht-Solarzellen mit nanotexturierten Grenzschichten durch die Bildung von stark lokalisierten photonischen Moden innerhalb der ungeordneten Absorberschichten verursacht wird. Das einfallende Nahinfrarotlicht wird in diesen langlebigen Moden gefangen, bis es schließlich irgendwann absorbiert wird. In Kaptiel 5 wurde eine neuartige plasmonische Struktur vorgestellt und sowohl in der Theorie als auch experimentell untersucht. Die Struktur besteht aus einer elliptischen Kavität, in der sich zwei räumlich getrennte whispering gallery mode (WGM) Nanoantennen befinden. Das Ziel war es nun, einen periodischen langreichweitigen Energietransfer zwischen beiden Nanoantennen zu realisieren. Zuerst wurde die Struktur mit Hilfe von finite-difference time-domain (FDTD) Simulationen darauf optimiert, eine starke Kopplung zwischen den lokalisierten Antennenmoden und der räumlich ausgedehnten Kavitätsmode zu erreichen. Die geometrischen Parameter der Antennen und der Kavität wurden getrennt voneinander so eingestellt, dass sowohl die m="0" Antennenmode als auch die Kavitätsmode bei λ="800 nm" resonant waren. Ein hoher räumlicher Modenüberlapp wurde dadurch erzielt, dass die beiden Antennen jeweils in die Brennpunkte der elliptischen Kavität positioniert wurden. Die daraus resultierende Distanz zwischen den Antennenzentren war dadurch mehr als doppelt so hoch wie die Resonanzwellenlänge der Moden. Aufgrund starker Kopplung war in der spektralen Antwort der optimierten Struktur eine Energieaufspaltung der Antennen- und der Kavitätsmode in drei getrennte hybridisierte Eigenmoden innerhalb eines Energiebereichs von ca. 90 meV zu sehen. Die Antwortfunktionen konnten sehr gut mit Hilfe eines einfachen Modells aus drei gekoppelten Lorentz-Oszillatoren reproduziert werden. Im Zeitraum wurde für eine Einfach-Puls-Anregung der Struktur ein ozillatorischer Antennen-Energietransfer mit einer Periode von 86 fs und einer Energietransfer-Effizienz von ungefähr 7% beobachtet. Für die Experimente wurden Strukturen mit Kavitäten und Antennen unterschiedlicher Größe über focused-ion-beam (FIB) milling hergestellt. Es wurden zeitaufgelöste Korrelationsmessungen durchgeführt, wobei zwei Femtosekundenlaserpulse zur Anregung und Photoemissionselektronen-Mikroskopie (PEEM) für die Detektion verwendet wurden. Dies ermöglichte sowohl eine hohe zeitliche als auch eine hohe räumliche Auflösung. In den Messungen wurden lokale Korrelationssignale an Antennen in resonanten Strukturen, sprich, Strukturen mit deutlich erhöhter Photoemission an beiden Antennenpositionen, untersucht und mit Hilfe des gekoppelten Lorentz-Oszillatormodells rekonstruiert. Die daraus ermittelte spektrale Antwort zeigte getrennte Peaks und bestätigte damit die Bildung hybridisierter Eigenmoden aufgrund starker Kopplung. In einer nachfolgenden Simulation für Einfach-Puls-Anregung wurde ein einmaliger Hin-und-Her-Energietransfer zwischen den Antennen mit einer Energietransfereffizienz von ca. 10% beobachtet. Ausgehend von den theoretischen und experimentellen Ergebnissen wurde gezeigt, dass in der hier vorgestellten Struktur ein periodischer langreichweitiger Energietransfer zwischen den zwei Nanoantennen möglich ist. Zudem ermöglicht es das gekoppelte Oszillatoren-Modell, im Detail zu untersuchen, wie spezifische Eigenschaften der Struktur die Dynamik des zeitlichen elektrischen Feldes bzw. der Energieumverteilung innerhalb der Struktur beeinflussen. Dies kann dazu genutzt werden, die Energietransfer-Effizienz der Struktur noch weiter zu optimieren. Zukünftige Anwendungsmöglichkeiten finden sich im Bereich der ultraschnellen plasmonischen Nanoschaltkreise. Darüberhinaus kann die Struktur genutzt werden, um eine effiziente SPP-vermittelte starke Kopplung zwischen weit voneinder entfernten Quantenemittern zu erreichen. In Kapitel 6 wurde untersucht, wie die lokale Verstärkung der optischen Chiralität im Nahfeld plasmonischer Nanostrukturen durch das Einstellen der Fernfeld-Polarisation des einfallenden Lichts optimiert werden kann. Zu diesem Zweck wurde ein analytischer Ausdruck hergeleitet, welcher die Berechnung der optimalen Fernfeld-Polarisationen für jede beliebige Nanostruktur-Geometrie ermöglicht. Dabei versteht man unter den optimalen Fernfeld-Polarisationen diejenigen zwei, welche zur höchsten positiven und negativen lokalen optischen Chiralität führen. Da diese von der lokalen optischen Antwort der jeweiligen Nanostruktur abhängig sind, lassen sie sich sowohl als Funktion der Frequenz ω als auch als Funktion der Position r beschreiben. Die Elliptizitäten der beiden optimalen Fernfeld-Polarisationen unterscheiden sich nur in ihrem Vorzeichen, also ihrer Rotationsrichtung im Zeitraum, und der Winkel zwischen ihren Orientierungen (entspricht dem Winkel zwischen den Hauptachsen ihrer Ellipsen) beträgt ±π/"2" . Die Händigkeit der optimalen lokalen optischen Chiralität kann über das Schalten zwischen den optimalen Fernfeld-Polarisationen hin und her gewechselt werden. Mit Hilfe von numerischen Simulationen wurde für zwei konkrete Nanostrukturen beispielhaft demonstriert, dass für die lokale optische Chiralität Werte erreicht werden können, die deutlich höher sind als die optischen Chiralitätswerte von zirkular polarisiertem Licht im freien Raum ─ die höchstmöglichen Werte für optische Chiralität im freien Raum. Die entsprechenden optimalen Fernfeld-Polarisationen haben sich dabei von linearer und zirkularer Polarisation unterschieden und variierten mit der Frequenz. Die Anwendung von Femtosekunden-Polarisationspulsformung bietet die Möglichkeit, die lokale optische Chiralität kohärent über einen kontinuierlichen Frequenzbereich zu kontrollieren. Außerdem können Symmetrieeigenschaften der Nanostrukturen genutzt werden, um zu bestimmen, welche Fernfeld-Polarisation optimal ist. Die theoretischen Erkenntnisse können zukünftige experimentelle Studien über die lokale Verstärkung der optischen Chiralität beeinflussen. Das Einstellen der Fernfeld-Polarisation des einfallenden Lichts stellt ein vielversprechendes Hilfsmittel dar, um chiral-spezifische Wechselwirkungen von lokalen elektromagnetischen Feldern mit molekularen und anderen Quantensystemen in der Nähe plasmonischer Nanostrukturen zu verstärken. Die hier gezeigte Methode kann Anwendung finden in der chiralen Erkennung adsorbierter Moleküle, in der zeitaufgelösten chiral-sensitiven Spektroskopie und in der chiralen Quantenkontrolle. Abschließend lässt sich festhalten, dass jedes der lokalisierten Lichtphänomene, die in dieser Arbeit untersucht wurden ─ die verstärkte lokale Absorption von Nahinfrarotlicht aufgrund der Bildung von lokalisierten photonischen Moden, der periodische langreichweitige Energietransfer zwischen zwei Nanoantennen in einer plasmonischen elliptischen Kavität und die Optimierung der lokalen Verstärkung der optischen Chiralität über das Einstellen der Fernfeld-Polarisation des einfallenden Lichts ─ neue Perspektiven eröffnen kann für eine Vielzahl von zukünftigen Anwendungsmöglichkeiten. KW - Ultrakurzzeitspektroskopie KW - Kohärente Optik KW - Chiralität KW - Nahfeldoptik KW - Ultrakurzzeitspektroskopie KW - Nahfeldoptik KW - Kohärente 2D Spektroskopie KW - Oberflächenplasmonresonanz KW - Zirkulardichroismus Spektroskopie KW - Ultrafast spectroscopy KW - Nano-optics KW - Coherent 2D spectroscopy KW - Surface plasmons KW - Circular dichroism spectroscopy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150681 ER - TY - THES A1 - Kern, Johannes T1 - Optical and electrical excitation of nanoantennas with atomic-scale gaps T1 - Optische und elektrische Anregung von Nanoantennen mit atomar kleinen Spalten N2 - Nano-antennas are an emerging concept for the manipulation and control of optical fields at the sub-wavelength scale. In analogy to their radio- and micro-wave counterparts they provide an efficient link between propagating and localized fields. Antennas operating at optical frequencies are typically on the order of a few hundred nanometer in size and are fabricated from noble metals. Upon excitation with an external field the electron gas inside the antenna can respond resonantly, if the dimensions of the antenna are chosen appropriate. Consequently, the resonance wavelength depends on the antenna dimensions. The electron-density oscillation is a hybrid state of electron and photon and is called a localized plasmon resonance. The oscillating currents within the antenna constitute a source for enhanced optical near-fields, which are strongly localized at the metal surface. A particular interesting type of antennas are pairs of metal particles separated by a small insulating gap. For anti-symmetric gap modes charges of opposite sign reside across the gap. The dominating field-components are normal to the metal surface and due to the boundary conditions they are sizable only inside the gap. The attractive Coulomb interaction increases the surface-charge accumulation at the gap and enhanced optical fields occur within the insulating gap. The Coulomb interaction increases with decreasing gap size and extreme localization and strongest intensity enhancement is expected for small gap sizes. In this thesis optical antennas with extremely small gaps, just slightly larger than inter-atomic distances, are investigated by means of optical and electrical excitation. In the case of electrical excitation electron tunneling across the antenna gap is exploited. At the beginning of this thesis little was known about the optical properties of antennas with atomic scale gaps. Standard measurement techniques of field confinement and enhancement involving well-separated source, sample and detector are not applicable at atomic length-scales due to the interaction of the respective elements. Here, an elegant approach has been found. It is based on the fact that for closely-spaced metallic particles the energy splitting of a hybridized mode pair, consisting of symmetric and anti-symmetric mode, provides a direct measure for the Coulomb interaction over the gap. Gap antennas therefore possess an internal ruler which sensitively reports the size of the gap. Upon self-assembly side-by-side aligned nanorods with gap sizes ranging from 2 to 0.5nm could be obtained. These antennas exhibit various symmetric and anti-symmetric modes in the visible range. In order to reveal optical modes of all symmetries a novel scattering setup has been developed and is successfully applied. Careful analysis of the optical spectra and comparison to numerical simulations suggests that extreme field confinement and localization can occur in gaps down to 0.5 nm. This is possibly the limit of plasmonic enhancement since for smaller gaps electron tunneling as well as non-locality of the dielectric function affect plasmonic resonances. The strongly confined and intense optical fields provided by atomic-scale gaps are ideally suited for enhanced light-matter interaction. The interplay of intense optical-frequency fields and static electric fields or currents is of great interest for opto-electronic applications. In this thesis a concept has been developed, which allows for the electrical connection of optical antennas. By means of numerical simulations the concept was first verified for antennas with gap sizes on the order of 25 nm. It could be shown, that by attaching the leads at positions of a field minimum the resonant properties are nearly undisturbed. The resonance wavelengths shift only by a small amount with respect to isolated antennas and the numerically calculated near-field intensity enhancement is about 1000, which is just slightly lower than for an unconnected antenna. The antennas are fabricated from single-crystalline gold and exhibit superior optical and electrical properties. In particular, the conductivity is a factor of 4 larger with respect to multi-crystalline material, the resistance of the gap is as large as 1 TOhm and electric fields of at least 10^8 V/m can be continuously applied without damage. Optical scattering spectra reveal well-pronounced and tunable antenna resonances, which demonstrates the concept of electrically-connected antennas also experimentally. By combining atomic-scale gaps and electrically-connected optical antennas a novel sub-wavelength photon source has been realized. To this end an antenna featuring an atomic scale gap is electrically driven by quantum tunneling across the antenna gap. The optical frequency components of this fluctuating current are efficiently converted to photons by the antenna. Consequently, light generation and control are integrated into a planar single-material nano-structure. Tunneling junctions are realized by positioning gold nanoparticles into the antenna gap, using an atomic force microscope. The presence of a stable tunneling junction between antenna and particle is demonstrated by measuring its distinct current-voltage characteristic. A DC voltage is applied to the junction and photons are generated by inelastically tunneling electrons via the enhanced local density of photonic states provided by the antenna resonance. The polarization of the emitted light is found to be along the antenna axis and the directivity is given by the dipolar antenna mode. By comparing electroluminescence and scattering spectra of different antennas, it has been shown that the spectrum of the generated light is determined by the geometry of the antenna. Moreover, the light generation process is enhanced by two orders of magnitude with respect to a non-resonant structure. The controlled fabrication of the presented single-crystalline structures has not only pushed the frontiers of nano-technology, but the extreme confinement and enhancement of optical fields as well as the light generation by tunneling electrons lays a groundwork for a variety of fundamental studies and applications. Field localization down to the (sub-)nanometer scale is a prerequisite for optical spectroscopy with near-atomic resolution. Indeed, recently first pioneering experiments have achieved molecular resolution exploiting plasmon-enhanced Raman scattering. The small modal volume of antennas with atomic-scale gaps can lead to light-matter interaction in the strong coupling regime. Quantum electro-dynamical effects such as Rabi splitting or oscillations are likely when a single emitter is placed into resonant structures with atomic-scale gaps. The concept of electrically-connected optical antennas is expected to be widely applied within the emerging field of electro-plasmonics. The sub-wavelength photon source developed during this thesis will likely gain attention for future plasmonic nanocircuits. It is envisioned that in such a circuit the optical signal provided by the source is processed at ultrafast speed and nanometer-scales on the chip and is finally converted back into an electronic signal. An integrated optical transistor could be realized by means of photon-assisted tunneling. Moreover, it would be interesting to investigate, if it is possible to imprint the fermionic nature of electrons onto photons in order to realize an electrically-driven source of single photons. Non-classical light sources with the potential for on-chip integration could be built from electrically-connected antennas and are of great interest for quantum communication. To this end single emitters could be placed in the antenna gap or single electron tunneling could be achieved by means of a single-channel quantum point contact or the Coulomb-blockade effect. N2 - Nanoantennen sind ein zukunftweisendes Konzept für die Manipulation und Kontrolle von optischen Feldern auf der Subwellenlängen-Skala. Analog zu Radio- und Mikrowellenantennen können sie auf effiziente Weise propagierende und lokalisierte Felder ineinander umwandeln. Optische Antennen sind typischerweise nur einige hundert Nanometer groß und werden aus Edelmetallen hergestellt. Besitzt die Antenne passende geometrische Maße, kann das Elektronengas durch Anregung mit einem externen Feld in resonante Schwingungen versetzt werden. Die Resonanzwellenlänge ist somit durch die Antennengeometrie bestimmt. Die Elektronendichte-Schwingung ist ein Hybridzustand aus Elektron und Photon und wird lokalisierte Plasmonenresonanz genannt. Wird die Resonanz angeregt so kommt es zu oszillierenden Strömen, welche eine Quelle für verstärkte optische Nahfelder darstellen. Diese Felder sind an die Metalloberfläche gebunden und daher stark lokalisiert. Eine besonders interessante Antennengeometrie ist ein Paar von Metallpartikeln, die durch einen schmalen Spalt getrennt sind. Antisymmetrische Antennenmoden besitzen Ladungen mit entgegengesetzten Vorzeichen auf der jeweiligen Seite des Spalts. Die dominierenden elektrischen Felder stehen senkrecht zur Metalloberfläche und sind aufgrund der elektromagnetischen Randbedingungen hauptsächlich im Antennenspalt lokalisiert. Bei anti-symmetrischen Moden verstärkt die Coulombanziehung die Landungsträgerdichte in der Nähe des Spalts und es treten verstärkte optische Nahfelder zwischen den zwei Antennenarmen auf. Die Coulombwechselwirkung nimmt mit kleiner werdendem Abstand zu und für Strukturen mit sehr kleinem Abstand ist eine sehr große Feldverstärkung und eine sehr starke Lokalisation zu erwarten. In dieser Dissertation wurden optische Antennen untersucht, deren zwei Antennenarme durch einen extrem schmalen Spalt in der Größenordnung von interatomaren Abständen getrennt sind. Eigenmoden der Antennen werden durch zwei fundamental verschiedene Mechanismen anregt: Entweder durch optische Anregung oder durch das Anlegen einer elektrischen Gleichspannung. Bei der zweiten Methode wird der quantenmechanische Elektron-Tunnelprozess ausgenutzt. Zu Beginn dieser Arbeit existierten nur wenige Studien über Antennen mit sehr kleinen Spaltbreiten und es war nicht bekannt ob optische Felder auf atomarer Skala lokalisiert und verstärkt werden können. Allerdings ist eine direkte Messung der Feldlokalisation und Feldverstärkung auf atomarer Skala nicht möglich, da eine Unterscheidung zwischen Quelle, Probe und Detektor aufgrund deren gegenseitigen Wechselwirkungen schwierig ist. In dieser Arbeit wurde jedoch ein eleganter Ansatz entwickelt um dieses Problem zu umgehen. Dieser Ansatz nutzt aus, dass die energetische Aufspaltung eines hybridisierten Modenpaares, bestehend aus einer symmetrischen und anti-symmetrischen Mode, proportional zur Coulombwechselwirkung zwischen den Antennenarmen ist. Die Coulombwechselwirkung skaliert mit der Spaltbreite und somit gibt die energetische Aufspaltung der beiden Moden sehr genau den Abstand zwischen den zwei Antennenarmen wieder. Die untersuchten Strukturen waren zwei längsseitig-parallel liegende Nanostäbchen mit einem Abstand von 2 bis weniger als 0,5 nm. Diese Antennen konnten auf einfache Weise durch Selbstorganisation erhalten werden. Ein weiterer Grund für die Verwendung dieser Strukturen lag darin, dass bei ihnen symmetrische und anti-symmetrische Moden im sichtbaren Spektralbereich liegen. Um optische Moden jeglicher Symmetrie anregen zu können wurde in dieser Arbeit ein neuartiger experimenteller Aufbau zur Messung von Streuspektren entwickelt und erfolgreich eingesetzt. Sorgfältige Analysen der optischen Spektren und Vergleiche mit numerischen Rechnungen legen nahe, dass hohe Feldverstärkungen und Lokalisationen selbst für Strukturen mit Spaltbreiten von nur 0,5 nm auftreten. Möglicherweise erreichen die untersuchten Antennen die maximal möglichen Feldverstärkungen, denn für kleinere Abstände werden Plasmonenresonanzen durch elektronische Tunnelprozesse und nicht-lokale Effekte der dielektrischen Funktion geschwächt. Die lokalisierten und verstärkten optischen Felder, die durch Antennen mit Spaltbreiten auf der Skala von atomaren Abständen erreicht werden können, eignen sich hervorragend für eine Verstärkung von Licht-Materie-Wechselwirkungen. Für opto-elektronische Anwendungen ist hierbei das Wechselspiel zwischen Feldern mit optischen Frequenzen und statischen elektrischen Feldern oder Strömen von großem Interesse. In dieser Arbeit wurde ein Konzept erarbeitet, welches es ermöglicht optische Antennen elektrisch zu kontaktieren. Dieses Konzept wurde zunächst an Antennen mit circa 25 nm breiten Spalten mithilfe von numerischen Berechnungen verifiziert. Es konnte gezeigt werden, dass durch die Kontaktierung an den Positionen der Feldminima die Eigenmoden der Antenne nahezu unverändert bleiben. So liegen die Resonanzen der kontaktierten Antennen bei nahezu den gleichen Wellenlängen wie bei der unkontaktierten Antennen und die berechneten Feldverstärkungen sind mit einem Wert von 1000 nur minimal kleiner. Die Strukturen wurden aus einkristallinem Gold hergestellt und besitzen sehr gute optische und elektrische Eigenschaften. Beispielsweise ist die elektrische Leitfähigkeit viermal größer als bei multikristallinen Strukturen. Der elektrische Widerstand der Spalte ist circa 1 TOhm und elektrische Felder mit einer Stärke von mindestens 10^8 V/m können dauerhaft angelegt werden, ohne die Strukturen zu beschädigen. Mithilfe von Weißlicht-Streuexperimenten wurden die optischen Eigenschaften der hergestellten Strukturen untersucht. Die gemessenen Spektren zeigen wohl definierte Plasmonenresonanzen, deren Resonanzwellenlänge durch die Antennenlänge bestimmt ist. Somit konnte das Konzept auch experimentell bestätigt werden. Durch Kombination von Spalten in der Größenordnung von atomaren Abständen mit elektrisch kontaktierten Antennen konnte eine Lichtquelle mit Abmessungen kleiner als die Lichtwellenlänge realisiert werden. Die Lichtquelle basiert auf einem neuartigen Mechanismus bei dem Photonen durch elektrisches Treiben der Antenne generiert werden. Die hierzu benötigten Felder mit optischen Frequenzen werden durch statistische Fluktuationen des quantenmechanischen Tunnelstromes bereitgestellt. Somit findet die Lichterzeugung und -kontrolle in einer planaren Nanostruktur statt, die nur aus einem einzelnen Material besteht. Um einen Tunnelkontakt zwischen den elektrisch kontaktierten Antennenarmen zu erreichen, wurden Goldnanopartikel mithilfe eines Rasterkraftmikroskops in dem Antennenspalt platziert. Zwischen dem Goldpartikel und mindestens einem der Antennenarmen bildet sich dabei ein stabiler Tunnelkontakt, dessen Existenz durch die reproduzierbare Messung der charakteristischen Strom-Spannungskennlinie bewiesen werden konnte. Durch Anlegung einer konstanten Spannung kommt es zu inelastischen Tunnelprozessen bei denen Photonen erzeugt werden. Dabei wird die erhöhte optische Zustandsdichte der Antenne ausgenutzt, so dass das abgestrahlte Licht eine Polarisation entlang der Antennenachse zeigt und die räumliche Abstrahlcharakteristik durch die dipolartige Antennenmode bestimmt ist. Durch Variation der Antennengeometrie und durch Vergleich mit Streuspektren konnte gezeigt werden, dass die Wellenlänge des elektrisch erzeugten Lichts durch die Antennengeometrie bestimmt ist. Der Vergleich mit einer nicht-resonanten Referenzstruktur zeigt, dass die Antenne die Effizienz des Lichterzeugungsprozesses um zwei Größenordnungen erhöht. Die in dieser Arbeit entwickelten Methoden zur kontrollierten Herstellung ein\-kris\-talliner Nanoantennen mit Spaltbreiten auf der Skala von atomaren Abständen erweitern die Grenzen der Nanotechnologie. Darüber hinaus konnte gezeigt werden, dass lokalisierte und verstärkte optische Felder auf atomarer Skala existieren können und es wurde mit einer Gleichspannung mithilfe des inelastischen Tunnelprozesses Licht erzeugt. Diese Studien eröffnen vielfältige Möglichkeiten sowohl für Grundlagenforschung als auch praktische Anwendungen. Die Lokalisation von optischen Feldern auf der (sub)-nanometer Skala ist die Voraussetzung für optische Spektroskopie nahe an der atomaren Auflösung. So konnte kürzlich in einem wegweisenden optischen Experiment molekulare Auflösung durch Messung von plasmonen verstärkter Ramanstreuung gezeigt werden. Das kleine Modenvolumen von Antennen mit Spaltbreiten in der Größenordnung atomarer Abstände kann zu einer Licht-Materie-Wechselwirkung im Bereich der starken Kopplung führen. Dies hätte zur Folge, dass Quanten-Elektro-Dynamische Effekte wie Rabi-Aufspaltung oder -Oszillationen in Zukunft bei Experimenten, in denen einzelne Lichtemitter in sehr schmale Antennenspalte platziert sind, beobachtet werden können. Es ist zu erwarten, dass elektrisch kontaktierte optische Antennen zukünftig in dem neuen Forschungsgebiet der Elektro-Plasmonik eingesetzt werden. Die entwickelte Subwellenlängen-Lichtquelle ist von großem Interesse für zukünftige plasmonische Nano-Schaltkreise. Es ist vorstellbar, dass optische Signale in solchen Schaltkreisen mit sehr hoher Geschwindigkeit auf der Nanoskala manipuliert werden und anschließend wieder in elektrische Signale umgewandelt werden können. Des Weiteren wäre es möglich einen optischen Transistor, basierend auf einer kontaktierten Antenne, zu integrieren. Die Schaltung des Transistors könnte durch den photon-unterstützten Tunneleffekt erreicht werden. Ein weiteres interessantes Experiment in naher Zukunft wäre die Übertragung der fermionischen Eigenschaften von Elektronen auf Photonen, um eine elektrisch-getriebene Einzelphotonen-Quelle zu erhalten. Solch eine nicht-klassische Lichtquelle könnte aus elektrisch kontaktierten Antennen hergestellt werden und besäße das Potential zur Integration in Schaltkreise für Quantenkommunikations-Anwendungen. Ein Ansatz dafür wäre die Positionierung von Einzelemittern in den Antennenspalt. Ein anderer Ansatz könnte auf Einzel-Elektronen-Tunnelprozessen basieren, wie sie in Einkanal-Quantenpunktkontakten oder aufgrund des Coulombblockade-Effektes stattfinden. KW - Nanooptik KW - Nanostruktur KW - near-field optics KW - Nahfeld Optik KW - nanoantenna KW - atomic-scale gap KW - electrical excitation KW - plasmonics KW - electron tunneling KW - Nanoantenne KW - atomar kleine Lücke KW - elektrische Anregung KW - Elektronen Tunneln KW - Antenne KW - Nahfeldoptik KW - Plasmon Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115492 ER - TY - THES A1 - Groß, Heiko T1 - Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters T1 - Kontrollierte Licht-Materie Wechselwirkung zwischen lokalisierten Oberflächenplasmonen und Quantenemittern N2 - Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials. N2 - Metallische Nanostrukturen sind seit langer Zeit bekannt dafür optische Resonanzen durch lokalisierte Oberflächenplasmonen zu zeigen. Hohe elektrische Felder in direkter Nähe zur Metalloberfläche versprechen dramatische Dynamikänderungen von elektrischen Übergängen wie z.B. die gesteigerte spontane Zerfallsrate eines Einzelemitters. Es gibt jedoch zwei maßgebliche Gründe warum die Fortschritte der experimentellen Realisierung von Licht-Materie Wechselwirkung ausgebremst wird. (i) Die Herstellung von qualitativ hochwertigen resonanten Strukturen benötigt modernste Strukturierungsmethoden sowie die bestmöglichen Materialeigenschaften. (ii) Die winzigen Dimensionen von optischen Nahfeldern erfordern eine präzise Kontrolle des Einzelemitters im Bezug zur Nanostruktur. Diese Arbeit löst diese Probleme durch die Kombination eines Rasterkraftmikroskops mit einem optischen Konfokalmikroskop. Dabei wird eine neuartige Rastersonde vorgestellt welche eine Spitze aufweist die aus der Ecke einer monokristallinen Goldflocke besteht. Die Strukturierung mittels eines fokussierten Ionenstrahls ermöglicht es einen plasmonischen Nanoresonator direkt an der Spitze der Sonde herzustellen. Numerische Simulationen haben gezeigt, dass die optischen Eigenschaften für diese Art von Sonde ideal sind um Licht-Materie Wechselwirkung zu untersuchen. Die hier gezeigten experimentellen Studien haben den Kopplungsmechanismus zwischen lokalisierten Plasmonen und einzelnen kolloidalen Quantenpunkten untersucht indem die Kopplungstärke dynamisch über den Abstand kontrolliert wurde. Die Ergebnisse haben gezeigt, dass schwache Wechselwirkung einen Einfluss auf die Form des Fluoreszenzspektrums als auch auf die Polarisation hat. Die besten Sonden haben gezeigt, dass es möglich ist starke Wechselwirkung mit Einzelemittern bei Raumtemperatur zu erreichen. Die resultierende Analyse der experimentellen Daten und die aufgestellten theoretischen Modelle haben die Unterschiede zwischen der etablierten Fernfeldkopplung und der Nahfeldkopplung aufgezeigt. Dabei wurde beobachtet, dass die große Bandbreite von plasmonischen Resonanzen es möglich macht kohärent mit mehreren Übergängen gleichzeitig zu koppeln und dabei die effektive Kopplungsstärke zu höhen. Es wurde auch festgestellt, dass das aktuelle Model zur numerischen Beschreibung von effektiven Modenvolumen Ungenauigkeiten bei mesoskopischen Emittern und starker Wechselwirkung aufzeigt. Zuletzt wird die Licht-Materie Wechselwirkung mittels Quantenpunkt-bestückten Mikrotubuli untersucht, die auf Kinesin Proteinen durch ein lokalisiertes Nahfeld gleiten. Dieses biologische Transportsystem erlaubt es eine Meta-Oberfläche mit nm-Präzision parallel zu untersuchen. Die Ergebnisse, die diese Arbeit hervorgebracht hat, wirft neues Licht auf das Verständnis von plasmonischer Licht-Materie Wechselwirkung und könnte als Grundlage dienen neue Ideen zu entwickeln um effizienter die Stärke von lokalisierten elektrischen Felder und neuartiger exzitonischer Materialien zu kombinieren. KW - Plasmon KW - Starke Kopplung KW - Quantenpunkt KW - Mikrotubulus KW - Nahfeldoptik KW - light-matter interaction KW - quantum optics KW - optical antenna KW - quantum dot KW - surface plasmon KW - strong coupling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192097 ER -