TY - JOUR A1 - Weiss, B. A1 - Haas, S. A1 - Lessner, G. A1 - Mikkat, S. A1 - Kreutzer, M. A1 - Glocker, M. O. A1 - Wree, A. A1 - Schmitt, O. T1 - The Proteome of the Differentiating Mesencephalic Progenitor Cell Line CSM14.1 In Vitro JF - BioMed Research International N2 - The treatment of Parkinson's disease by transplantation of dopaminergic (DA) neurons from human embryonic mesencephalic tissue is a promising approach. However, the origin of these cells causes major problems: availability and standardization of the graft. Therefore, the generation of unlimited numbers of DA neurons from various types of stem or progenitor cells has been brought into focus. A source for DA neurons might be conditionally immortalized progenitor cells. The temperature-sensitive immortalized cell line CSM14.1 derived from the mesencephalon of an embryonic rat has been used successfully for transplantation experiments. This cell line was analyzed by unbiased stereology of cell type specific marker proteins and 2D-gel electrophoresis followed by mass spectrometry to characterize the differentially expressed proteome. Undifferentiated CSM14.1 cells only expressed the stem cell marker nestin, whereas differentiated cells expressed GFAP or NeuN and tyrosine hydroxylase. An increase of the latter cells during differentiation could be shown. By using proteomics an explanation on the protein level was found for the observed changes in cell morphology during differentiation, when CSM14.1 cells possessed the morphology of multipolar neurons. The results obtained in this study confirm the suitability of CSM14.1 cells as an in vitro model for the study of neuronal and dopaminergic differentiation in rats. KW - spinal-cord-injury KW - Parkinsons disease KW - annecin-V KW - ERM proteins KW - neuronal differentiation KW - phospholipase A(2) KW - gesolin function KW - binding proteins KW - actin filament Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117992 SN - 2314-6141 IS - 351821 ER - TY - JOUR A1 - Isaias, Ioannis U. A1 - Volkmann, Jens A1 - Marzegan, Alberto A1 - Marotta, Giorgio A1 - Cavallari, Paolo A1 - Pezzoli, Gianni T1 - The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies JF - PLoS One N2 - To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation ( at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. KW - pet KW - Parkinsons disease KW - basal ganglia KW - spinal-cord KW - walking KW - gait KW - arm KW - coordination KW - movements Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133976 VL - 7 IS - 12 ER - TY - JOUR A1 - Busse, Kathy A1 - Strotmann, Rainer A1 - Strecker, Karl A1 - Wegner, Florian A1 - Devanathan, Vasudharani A1 - Gohla, Antje A1 - Schöneberg, Torsten A1 - Schwarz, Johannes T1 - Adaptive Gene Regulation in the Striatum of RGS9-Deficient Mice JF - PLOS ONE N2 - Background: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. Results: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. Conclusion: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. Significance: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2) is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size) in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice. KW - medium spiny neurons KW - long-term depression KW - dopa-induced dyskinesia KW - adenylyl cyclase KW - Parkinsons disease KW - synaptic plasticity KW - L-3,4-Dihydroxyphenylalanine-induced dyskinesia KW - ampa receptors KW - cholinergic interneurons KW - endocannabinoid release Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117048 VL - 9 IS - 3 ER -