TY - THES A1 - Seibt, Joachim T1 - Theoretical investigations on the spectroscopy of molecular aggregates T1 - Theoretische Untersuchungen zur Spektroskopie von Molekülaggregaten N2 - Die spektroskopischen Eigenschaften von Molekülaggregaten wurden mittels quantendynamischer Berechnungen untersucht. Hierbei wurden sowohl lineare als auch nichtlineare Spektroskopietechniken einbezogen. Zur Simulation von Absorptions- und CD-Spektroskopie wurden Kopplungseffekte sowie die relative Orientierung der Monomer-Einheiten in den Modellen berücksichtigt, um gemessene Spektren reproduzieren und so die entsprechenden Parameter zu bestimmen. Zur genaueren Beschreibung wurden auch Ergebnisse quantenchemischer Rechnungen verwendet. Darüber hinaus wurden Untersuchungen zur nichtlinearen optischen Spektroskopie an Dimeren durchgeführt. N2 - The spectroscopic properties of molecular aggregates have been investigated by means of quantum dynamical calculations. Thereby both linear and nonlinear spectroscopic techniques have been taken into account. For the simulation of absorption and CD-spectra, coupling effects were regarded as well as the relative orientation of the monomer units in order to determine the parameters by reproducing measured spectra. For a more detailled description, results from quantum chemical calculations have also been included. Furthermore, investigations on nonlinear spectroscopy of molecular dimers have been performed. KW - Theoretische Chemie KW - Aggregat KW - Nichtlineare Spektroskopie KW - CD-Spektroskopie KW - Quantenchemie KW - Quantendynamik KW - quantum dynamics Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37218 ER - TY - THES A1 - Gräfe, Stefanie T1 - Laser-control of molecular dynamics T1 - Lasergesteuerte Kontrolle molekularer Dynamik N2 - In this work a new algorithm to determine quantum control fields from the instantaneous response of systems has been developed. The derived fields allow to establish a direct connection between the applied perturbation and the molecular dynamics. The principle is most easily illustrated in regarding a classical forced oscillator. A particle moving inside the respective potential is accelerated if an external field is applied acting in the same direction as its momentum (heating). In contrary, a deceleration is achieved by a field acting in the opposite direction as the momentum (cooling). Furthermore, when the particle reaches a classical turning point and then changes its direction, the sign of the field has to be changed to further drive the system in the desired way. The frequency of the field therefore is in resonance with the oscillator. This intuitively clear picture of a driven classical oscillator can be used for directing (or controlling) quantum mechanical wave packet motion. The efficiency of the instantaneous dynamics algorithm was demonstrated in treating various model problems, the population transfer in double well potentials, excitation and dissociation of selective modes, and the population transfer between electronic states. Although it was not tried to optimize the fields to gain higher yields, the control was found to be very efficient. Driving population transfer in a double well potential could be shown to take place with nearly 100% efficiency. It was shown that selective dissociation within the electronic ground state of HOD can be performed by either maximizing a selected coordinate's differential momentum change or the energy absorption. Concerning the population transfer into excited electronic states, a direct comparison with common control algorithms as optimal control theory and genetic algorithms was accomplished using a one-dimensional representation of methyl iodide. The fields derived from the various control theories were effective in transferring population into the chosen target state but the underlying physical background of the derived optimal fields was not obvious to explain. The instantaneous dynamics algorithm allowed to establish a direct relation between the derived fields and the underlying molecular dynamics. Bound-to-bound transitions could be handled more effectively. This was demonstrated on the sodium dimer in a representation of 3 electronic states being initially in its vibronic ground state. The objective was to transfer population into a predefined excited state. Choosing the first or the second state as a target, the control fields exhibited quite different features. The pulse-structure is related to the excited state wave packet, moving in, and out of the Franck-Condon region. Changing the control objective, the derived control field performed pure electronic transitions on a fast time-scale via a two-step transition. Futhermore, orientational effects have been investigated. The overall-efficiency of the population transfer for differently oriented molecules was about 70 % or more if applying a control field derived for a 45° orientation. Spectroscopic methods to gain information about the outcome of the control process have been investigated. It was shown that pump/probe femtosecond ionization spectroscopy is suited to monitor time-dependent molecular probability distributions. In particular, time-dependent photoelectron spectra are able to monitor the population in the various electronic states. In the last chapter a different possibility of controlling molecules was regarded by investigating molecular iodine with a setup similar to the STIRAP (“Stimulated Raman Adiabatic passage”) scenario. The possibility to extend this technique to a fs-time scale was examined in theory as well as in experiments, the latter being performed by Dr. Torsten Siebert in the Kiefer group, University of Würzburg. It was shown that off-resonant excitation with implementation of the pulses with a higher intensity of the Stokes pulse as compared to the pump pulse - describing a so-called f-STIRAP like configuration - was shown to effectively transfer population into excited ground-state vibrational levels. This was theoretically underlined by comparing the numerically exact coupling case with the adiabatic picture. The process was described to run in the vicinity of adibaticity. A new model explaining the process by the system's vector rotating around the dressed state vector will be adopted in future calculations. Altogether, a new promising algorithm to control dynamical processes based on the instantaneous response has been developed. Because the derived control fields have been shown to be very efficient in selectively influencing molecules, it is to be expected that farther reaching applications can be realized in future investigations. N2 - In dieser Arbeit wurde ein neuer Algorithmus zur Bestimmung von Kontrollfeldern aus der instantanen Respons von Systemen auf die Wirkung von Laserfeldern entwickelt. Die damit berechneten Felder ermöglichen es, eine Verbindung zwischen der Störung durch das Laserfeld und der molekularen Dynamik herzustellen. Das Prinzip lässt sich an einem klassischen Oszillator veranschaulichen: Ein sich innerhalb dieses Oszillatorpotenzials bewegendes Teilchen wird durch ein externes Feld beschleunigt, wenn dieses und der Impuls des Teilchens in die gleiche Richtung weisen. Ein Abbremsen des Teilchens wird durch ein Feld erzielt, welches dem Impuls des Teilchens entgegen gerichtet ist. Wenn das Teilchen in dem Oszillator einen Umkehrpunkt erreicht und dort seine Richtung ändert, wird das Vorzeichen des Feldes an die neue Richtung angepasst: Die Frequenz des Feldes befindet sich in Resonanz mit der Oszillatorfreuqenz. Dieses klassische Bild der erzwungenen Schwingung eines Oszillators kann für die Kontrolle quantenmechanischer Wellenpaketbewegungen angewendet werden. Die Effizienz des Algorithmus' wurde an verschiedenen Problemen, wie dem Populationstransfer (PT) in Doppelminimum-Potenzialen, Anregung und Dissoziation selektiver Moden und den PT in unterschiedliche el. Zuständen aufgezeigt. Obwohl keine Optimierung der Felder bezüglich höherer Ausbeuten durchgeführt wurde, konnte eine hohe Effizienz der Prozesse nachgewiesen werden. Ein PT in Doppelminimum-Potentialen wurde nahezu vollständig erreicht. Selektive Dissoziation innerhalb des el. Grundzustandes des HOD-Moleküls wurde unter Verwendung zweier unterschiedlicher Methoden, der Maximierung der zeitlichen Änderung des Impulses oder der Energieabsorption einer Koordinate, erzielt. Bezüglich des PT in el. angeregte Zustände wurden bekannte Kontrollalgorithmen wie die Theorie der optimalen Kontrolle und genetischer Algorithmen mit dem in dieser Arbeit entwickelten Prinzip der instantanen Respons anhand einer 1D Darstellung des Methyliodids verglichen. Die aus den verschiedenen Theorien konstruierten Felder erzielten einen effektiven PT in den zuvor definierten Zielzustand, jedoch ist der dem zu Grunde liegende, physikalische Hintergrund nicht einfach zu beschreiben. Mit Hilfe des Instantanen-Respons-Algorithmus' konnte eine direkte Relation zwischen den Feldern und der molekularen Dynamik hergestellt werden. Anhand des Na2 in einer Darstellung von 3 elektronischen Zuständen sollte nur ein Zustand selektiv angeregt werden. Je nach Wahl des Zielzustandes zeigten sich deutliche Unterschiede. Selektive Anregung des 1. Zustandes erzeugte ein Feld bestehend aus einer Pulsfolge, die durch ein Wellenpaket im angeregten Zustand, welches sich in und aus dem Franck-Condon Fenster heraus bewegt, erklärt werden konnte. Anregung des 2. Zustandes führte zu einem Feld, welches nicht auf Vibration, sondern rein elektronischer Anregung in einem 2-Stufen-Prozess beruht. Bei der Betrachtung von Orientierungseffekten konnte gezeigt werden, dass PT für alle Orientierungen mit einem Feld, welches aus einer mittleren Orientierung bestimmt wurde, effizient ist. Untersuchungen spektroskopischer Methoden, um Informationen über die Effizienz von Kontrollprozessen zu liefern, zeigten, dass Pump-Probe Ionisationsspektroskopie im Femtosekundenbereich (fs) dazu sehr gut dazu geeignet ist. Im Speziellen konnte mit zeitabh. Photoelektronenspektren die Populationen in den elektronischen Zuständen nach Anlegen des jeweiligen Feldes „beobachtet“ werden. Im letzten Kapitel wurde eine andere Methode der Kontrolle von Molekülen in Anlehnung an einen STIRAP ("Stimulated Raman Adiabatic Passage“) Prozess am Beispiel molekularen Iods vorgestellt. Dabei wurde die Möglichkeit, diese Technik auf die fs-Zeitskala auszudehnen,in Theorie und Experiment untersucht, wobei die Messungen von Dr. Torsten Siebert (Universität Würzburg, Arbeitskreis Prof. Kiefer) durchgeführt worden sind. Nicht-resonante Anregung, mit einer Abfolge der Pulse, in der der Stokes-Puls mit der höheren Intensität im Vergleich zum Pump-Puls in einer f-STIRAP-artigen Anordnung dem Pump-Puls vorausgeht, führte zu einem effizienten PT in einen schwingungsangeregten Zustand im el. Grundzustand. Dies konnte durch einen Vergleich des numerisch exakten Falls mit einer adiabatischen Behandlung theoretisch untermauert werden. Die zu Grunde liegenden Prozesse sind näherungsweise durch adiabatisches Verhalten charakterisiert. Dazu wird gerade ein neues Modell entwickelt, welches den Prozess mit einem um einen dressed-state rotierenden Vektor im Hilbertraum erklärt. Zusammenfassend wurde in dieser Arbeit ein Algorithmus zur Kontrolle von Moleküldynamik entwickelt, der auf der instantanen Antwort eines Systems bei Wechselwirkung mit einem elektrischen Feld beruht. Die daraus berechneten Kontrollfelder sind sehr effizient bezüglich einer selektiven Kontrolle von Molekülen und versprechen noch viele zukünftige Anwendungsmöglichkeiten. KW - Laserstrahlung KW - Molekulardynamik KW - Mehrphotonenprozess KW - Quantenmechanik KW - Quantendynamik KW - Kontrolltheorie KW - STIRAP KW - geformte Laserfelder KW - Multi-Photonen Prozesse KW - quantum dynamics KW - control theory KW - STIRAP KW - pulse shaping KW - multi-photon processes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13388 ER - TY - THES A1 - Erdmann, Marco T1 - Coupled electron and nuclear dynamics in model systems T1 - Gekoppelte Elektronen- und Kerndynamik in Modellsystemen N2 - Subject of this work was to investigate the influence of nonadiabatic coupling on the dynamical changes of electron and nuclear density. The properties of electron density have neither been discussed in the stationary case, nor for excited electronic states or for a coupled electronic and nuclear motion. In order to remove these restrictions one must describe the quantum mechanical motion of all particles in a system at the same level. This is only possible for very small systems. A model system developed by Shin and Metiu [1, 2] contains all necessary physical ingredients to describe a combined electronic and nuclear motion. It consists of a single nuclear and electronic degree of freedom and the particle interaction is parameterized in such a way as to allow for a facile switching between and adiabatic (Born-Oppenheimer type) and a strongly coupled dynamics. The first part of the work determined the “static” properties of the model system: The calculation of electronic eigenfunctions, adiabatic potential curves, kinetic coupling elements and transition dipole moments allowed for a prediction of the coupled dynamics. The potentials obtained from different parameterization showed two distinct cases: In the first case the ground and first excited state are separated by a large energy gap which is the typical Born-Oppenheimer case; the second one exhibits an avoided crossing which results in a breakdown of the adiabatic approximation. Due to the electronic properties of the system, the quantum dynamics in the two distinct situations is very different. This was illustrated by calculating nuclear and electron densities as a function of time. In the Born-Oppenheimer case, the electron density followed the vibrational motion of the nucleus. This was demonstrated in two examples. In the strongly coupled case the wave packet did not exhibit features caused by nonadiabatic coupling. However, projections of the wave function onto the electronic states revealed the usual picture obtained from solutions of the nuclear Schrödinger equation involving coupled electronic states. In that case the nuclear motion triggered charge transfer via nonadiabatic coupling. The second part of the work demonstrated that the model system can easily be modified to yield binding situations often found in diatomic molecules. The different situations can be characterized in terms of bound and dissociative adiabatic potential curves. The investigation focussed on the case of an electronic predissociation, where the ground state is dissociative in the asymptotic limit of large internuclear distances. Within our model system we were able to demonstrate how the character of the electron density changes during the fragmentation process. In the third part we investigated the influence of external fields on the correlated dynamics of electron and nucleus. Employing adiabatic potential curves, the structure of absorption spectra can be understood within the weak-field limit. In the above described Born-Oppenheimer case the adiabatically calculated spectrum was in very good agreement with the exact one, whereas in the strongly coupled case the obtained spectrum was not able to resemble the exact one. Regarding the dynamics during a laser excitation process the time-dependent electron and nuclear densities nicely illustrated the famous Franck-Condon principle. The interaction with strong laser pulses lead to an excitation of many bound electronic and vibrational states. The electron density reflected the classical-like quiver motion of the electron induced by the fast variations of the electric field. The nucleus did not follow these fast oscillations because of its much larger mass. The last part of the work extended the original model system by including an additional electron. As a consequence of the Pauli principle, the spatial electronic wave function has to be either symmetric or anti-symmetric with respect to exchange of the two electrons. This corresponds to anti-parallel or parallel electron spins, respectively. The extended model already contains the physical properties of a many-electron system. Solving the time-dependent Schrödinger equation for a typical vibrational wave packet motion clearly indicated that the electron density is no longer suited to “localize” single electrons. We extended the definition of the electron localization function (ELF) to an exact, time-dependent wave function and demonstrated, how the ELF can be used to further characterize a coupled electron and nuclear motion. Finally, we gave an outlook of how to define electron localization in the case of anti-parallel electron spins. We derived a quantity similar to the ELF denoted “anti-parallel spin electron localization function” (ALF) and demonstrated that the ALF allows to follow time-dependent changes of the electron localization in a numerical example. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. N2 - Gegenstand dieser Arbeit war es, den Einfluss nichtadiabatischer Kopplung auf die dynamischen Änderungen von Elektronen- und Kerndichten zu untersuchen. Die Eigenschaften der Elektronendichte wurden bislang weder für den nicht-stationären Fall, noch für angeregte elektronische Zustände oder für eine gekoppelte Elektronen- und Kerndynamik diskutiert. Diese Einschränkungen lassen sich beseitigen, indem man die quantenmechanische Bewegung aller Teilchen eines Systems auf dem gleichen Niveau beschreibt. Dies ist nur für sehr kleine Systeme überhaupt möglich. Ein Modellsystem, das von Shin und Metiu [1, 2] entwickelt wurde, erfüllt alle notwendigen physikalischen Vorraussetzungen, um eine gekoppelte Elektronen- und Kernbewegung zu beschreiben. Das Modell enthält jeweils nur einen Freiheitsgrad für Kern und Elektron, und die Parametrisierung der Teilchenwechselwirkung ermöglicht den flexiblen Wechsel von adiabatischer (Born-Oppenheimer-Fall) zu stark gekoppelter Dynamik. Der erste Teil der Arbeit untersuchte die „statischen“ Eigenschaften des Modellsystems: Die Berechnung elektronischer Eigenfunktionen, adiabatischer Potentialkurven, kinetischer Kopplungselemente und Übergangsdipolmomente erlaubte gewisse Vorhersagen über die zu erwartende, gekoppelte Dynamik. Die Potentiale, die man für verschiedene Parametrisierung erhielt, zeigten zwei deutlich unterschiedliche Fälle: Im ersten Fall, einer gültigen Born-Oppenheimer-Näherung, sind der Grund- und erste angeregte Zustand durch eine große Energielücke voneinander getrennt. Der zweite Fall zeigt eine vermiedene Kreuzung, die zu einem Versagen der adiabatischen Näherung führt. Aufgrund der elektronischen Eigenschaften des Systems, unterscheidet sich die Quantendynamik in den beiden betrachteten Fällen grundlegend, wie durch die Berechnung zeitabhängiger Kern- und Elektronendichten veranschaulicht wurde. Im Born-Oppenheimer-Fall folgte die Änderung der Elektronendichte der Schwingungsbewegung des Kerns. Im Falle starker Kopplung zeigte das Wellenpaket keine Anzeichen einer nichtadiabatischen Kopplung. Die Projektionen der Wellenfunktion auf die elektronischen Zustände enthüllten jedoch das übliche Bild, das man aus der Lösung der Schrödingergleichung der Kerne für gekoppelte elektronische Zustände erhält. In diesem Fall verursachte die Kernbewegung einen Ladungstransfer aufgrund nichtadiabatischer Kopplung. Der zweite Teil der Arbeit zeigte, dass das Modellsystem leicht modifiziert werden kann, um in zweiatomigen Molekülen vorhandene Bindungssituationen zu simulieren. Die verschiedenen Fälle sind durch gebundene und dissoziative adiabatische Potentialkurven charakterisiert. Die Untersuchungen konzentrierten sich auf den Fall einer elektronischen Prädissoziation, d.h. der Grundzustand ist dissoziativ für große Kernabstände. Innerhalb unseres Modellsystems konnten wir zeigen, wie sich die Elektronendichte während des Fragmentierungsprozesses ändert. Im dritten Teil untersuchten wir den Einfluss externer elektrischer Felder auf die korrelierte Elektronen- und Kernbewegung. Mit Hilfe adiabatischer Potentiale kann die Struktur von Absorptionsspektren im Falle schwacher Felder verstanden werden. Für den oben beschriebenen Fall gültiger Born-Oppenheimer-Näherung, stimmte das adiabatisch berechnete Spektrum sehr gut mit dem exakten überein. Für den Fall starker nichtadiabatischer Kopplung zeigte das erhaltene Spektrum keine Übereinstimmung mit dem exakt berechneten. Die Berechnung zeitabhängiger Elektronen- und Kerndichten, während der Wechselwirkung mit einem Laserfeld, veranschaulichte deutlich das Franck-Condon-Prinzip. Die Wechselwirkung mit einem intensiven Laserpuls führte zur Anregung vieler gebundener elektronischer und Schwingungszustände. Die Elektronendichte zeigte die einer klassischen Bewegung sehr ähnliche Zitterbewegung des Elektrons, die durch die schnellen Änderungen des elektrischen Feldes hervorgerufen wird. Der Kern folgte aufgrund seiner wesentlich höheren Masse diesen schnellen Oszillationen nicht. Der letzte Teil der Arbeit erweiterte das ursprüngliche Modell durch Hinzufügen eines weiteren Elektrons. Als Konsequenz des Pauli-Prinzips muss die Ortsraumwellenfunktion entweder symmetrisch oder antisymmetrisch bezüglich Austausches der beiden Elektronen sein. Dies entspricht antiparallelen, bzw. parallelen Elektronenspins. Das erweiterte Modell enthält bereits die physikalischen Eigenschaften eines Mehrelektronensystems. Das Lösen der Schrödingergleichung für eine Schwingungsbewegung des Kerns legte nahe, dass sich die Elektronendichte nicht eignet, die Lokalisierung der Elektronen zu charakterisieren. Wir erweiterten deshalb die Definition der Elektronenlokalisierungsfunktion (ELF) auf eine exakte, zeitabhängige Wellenfunktion und untersuchten, inwieweit sich die ELF eignet, eine gekoppelte Elektronen- und Kernbewegung genauer zu analysieren. Am Ende der Arbeit folgte ein Ausblick, wie Elektronenlokalisierung im Falle antiparalleler Elektronenspins definiert werden kann. Die von uns abgeleitete „Elektronenlokalisierungsfunktion für antiparallelen Spin“ (ALF) erlaubt es, die zeitabhängige Änderung der Elektronenlokalisierung zu beobachten, wie wir an einem numerischen Beispiel verdeutlichen konnten. [1] S. Shin, H. Metiu, J. Chem. Phys. 1995, 102, 9285. [2] S. Shin, H. Metiu, J. Phys. Chem. 1996, 100, 7867. KW - Nichtadiabatischer Prozess KW - Quantenelektrodynamik KW - Quantendynamik KW - nichtadiabatische Kopplung KW - exakte Wellenfunktion KW - Elektronenlokalisierung KW - quantum dynamics KW - nonadiabatic coupling KW - exact wave function KW - electron localization Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9968 ER -