TY - JOUR A1 - Wille, Michael A1 - Schümann, Antje A1 - Wree, Andreas A1 - Kreutzer, Michael A1 - Glocker, Michael O. A1 - Mutzbauer, Grit A1 - Schmitt, Oliver T1 - The Proteome Profiles of the Cerebellum of Juvenile, Adult and Aged Rats-An Ontogenetic Study JF - International Journal of Molecular Sciences N2 - In this study, we searched for proteins that change their expression in the cerebellum (Ce) of rats during ontogenesis. This study focuses on the question of whether specific proteins exist which are differentially expressed with regard to postnatal stages of development. A better characterization of the microenvironment and its development may result from these study findings. A differential two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of the samples revealed that the number of proteins of the functional classes differed depending on the developmental stages. Especially members of the functional classes of biosynthesis, regulatory proteins, chaperones and structural proteins show the highest differential expression within the analyzed stages of development. Therefore, members of these functional protein groups seem to be involved in the development and differentiation of the Ce within the analyzed development stages. In this study, changes in the expression of proteins in the Ce at different postnatal developmental stages (postnatal days (P) 7, 90, and 637) could be observed. At the same time, an identification of proteins which are involved in cell migration and differentiation was possible. Especially proteins involved in processes of the biosynthesis and regulation, the dynamic organization of the cytoskeleton as well as chaperones showed a high amount of differentially expressed proteins between the analyzed dates. KW - messenger RNA KW - brain KW - cerebellum KW - development KW - proteomics KW - rat KW - proteins KW - adenosine kinase KW - coated vesicles KW - phosphatase 2A KW - expression KW - neuronal differentiation KW - human brain KW - hnRNP K KW - postnatal development KW - binding Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151347 VL - 16 SP - 21454 EP - 21485 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Lambrecht, G. A1 - Mutschler, E. A1 - Kropfgans, M. A1 - Sperlich, J. A1 - Wiesenberger, F. A1 - Tacke, R. A1 - Christophe, J. T1 - Thermodynamics of antagonist binding to rat muscarinic \(M_2\) receptors: antimuscarinics of the pridinol, sila-pridinol, diphenidol and sila-diphenidol type JF - British Journal of Pharmacology N2 - 1 We studied the effect of temperature on the binding to rat heart \(M_2\) muscarinic receptors of antagonists related to the carbon/silicon pairs pridinol/sila-pridinol and diphenidol/sila-diphenidol (including three germanium compounds) and six structurally related pairs of enantiomers [(R)- and (S)-procyclidine, (R)- and (S)-trihexyphenidyl, (R)- and (S)-tricyclamol, (R)- and (S)-trihexyphenidyl methiodide, (R)- and (S)-hexahydro-diphenidol and (R)- and (S)-hexbutinol]. Binding affinities were determined in competition experiments using \([^3H]\)-N-methyl-scopolamine chloride as radioligand. The reference drugs were scopolamine and N-methyl-scopolamine bromide. 2 The affinity of the antagonists either increased or decreased with temperature, van 't Hoff plots were linear in the 278–310°K temperature range. Binding of all antagonists was entropy driven. Enthalpy changes varied from large negative values (down to \(−29 kJ mol^{−1}\)) to large positive values (up to \(+ 30 kJ mol^{−1}\)). 3 (R)-configurated drugs had a 10 to 100 fold greater affinity for \(M_2\) receptors than the corresponding (S)-enantiomers. Enthalpy and entropy changes of the respective enantiomers were different but no consistent pattern was observed. 4 When silanols \((R_3SiOH)\) were compared to carbinols \((R_3COH)\), the affinity increase caused by C/Si exchange varied between 3 and 10 fold for achiral drugs but was negligible in the case of chiral drugs. Silanols induced more favourable enthalpy and less favourable entropy changes than the corresponding carbinols when binding. Organogermanium compounds \((R_4Ge)\) when compared to their silicon counterparts (R4Si) showed no significant difference in affinity as well as in enthalpy and entropy changes. 5 Exchange of a cyclohexyl by a phenyl moiety was associated with an increase or a decrease in drug affinity (depending on the absolute configuration in the case of chiral drugs) and generally also with a more favourable enthalpy change and a less favourable entropy change of drug binding. 6 Replacement of a pyrrolidino by a piperidino group and increasing the length of the alkylene chain bridging the amino group and the central carbon or silicon atom were associated with either an increase or a decrease of entropy and enthalpy changes of drug binding. However, there was no clear correlation between these structural variations and the thermodynamic effects. 7 Taken together, these results suggest that hydrogen bond-forming OH groups and, to a lesser extent, polarizable phenyl groups contribute significantly to the thermodynamics of interactions between these classes of muscarinic antagonists and \(M_2\) muscarinic receptors. KW - entropy KW - binding KW - M2 muscarinic receptors KW - thermodynamics KW - van 't Hoff plot KW - enthalpy Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128439 VL - 109 IS - 2 ER - TY - JOUR A1 - Volceanov, Larisa A1 - Herbst, Katharina A1 - Biniossek, Martin A1 - Schilling, Oliver A1 - Haller, Dirk A1 - Nölke, Thilo A1 - Subbarayal, Prema A1 - Rudel, Thomas A1 - Zieger, Barbara A1 - Häcker, Georg T1 - Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion JF - MBIO N2 - Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. IMPORTANCE Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell. KW - mammalian septins KW - host-cells KW - binding KW - proteins KW - organization KW - cytoskeleton KW - cytokinesis KW - mechanisms KW - expression KW - protease Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115421 SN - 2150-7511 VL - 5 IS - 5 ER - TY - JOUR A1 - Scholz, Nicole A1 - Gehring, Jennifer A1 - Guan, Chonglin A1 - Ljaschenko, Dmitrij A1 - Fischer, Robin A1 - Lakshmanan, Vetrivel A1 - Kittel, Robert J. A1 - Langenhan, Tobias T1 - The adhesion GPCR Latrophilin/CIRL shapes mechanosensation JF - Cell Reports N2 - G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily. KW - \(\alpha\)-latrotoxin KW - chordotonal organs KW - Johnstons organ KW - ligand CD55 KW - hearing KW - binding KW - shear stress KW - protein-coupled receptors KW - drosophila larvae KW - domain Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148626 VL - 11 ER - TY - JOUR A1 - Peissert, Stefan A1 - Sauer, Florian A1 - Grabarczyk, Daniel B. A1 - Braun, Cathy A1 - Sander, Gudrun A1 - Poterszman, Arnaud A1 - Egly, Jean-Marc A1 - Kuper, Jochen A1 - Kisker, Caroline T1 - In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair JF - Nature Communications N2 - The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction. More importantly, mutagenesis of the Arch domain revealed that these residues are essential for the regulation of (i) NER activity by either impairing XPD helicase activity or the interaction of XPD with XPG; (ii) the phosphorylation of the RNA polymerase II and RNA synthesis. Our results reveal how MAT1 shields these functionally important residues thereby providing insights into how XPD is regulated by MAT1 and defining the Arch domain as a major mechanistic player within the XPD scaffold. KW - nucleotide excision repair KW - nuclear receptors KW - helicase KW - transactivation KW - fluorescence KW - recognition KW - subunit KW - binding KW - sulfur KW - kinease Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229857 VL - 11 IS - 1 ER - TY - JOUR A1 - Müller, Sara A1 - Windhof, Indra M. A1 - Maximov, Vladimir A1 - Jurkowski, Tomasz A1 - Jeltsch, Albert A1 - Förstner, Konrad U. A1 - Sharma, Cynthia M. A1 - Gräf, Ralph A1 - Nellen, Wolfgang T1 - Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA) JF - Nucleic Acids Research N2 - Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in \(tRNA^{Asp(GUC)}\) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified \(tRNA^{Glu(CUC/UUC)}\) and \(tRNA^{Gly(GCC)}\) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation. KW - DNA methylferase homolog KW - drospophila KW - TRNA(ASP) KW - mechanism KW - binding Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123149 SN - 1362-4962 VL - 41 IS - 18 ER - TY - JOUR A1 - Mocke, Viola A1 - Weller, Lisa A1 - Frings, Christian A1 - Rothermund, Klaus A1 - Kunde, Wilfried T1 - Task relevance determines binding of effect features in action planning JF - Attention, Perception, & Psychophysics N2 - Action planning can be construed as the temporary binding of features of perceptual action effects. While previous research demonstrated binding for task-relevant, body-related effect features, the role of task-irrelevant or environment-related effect features in action planning is less clear. Here, we studied whether task-relevance or body-relatedness determines feature binding in action planning. Participants planned an action A, but before executing it initiated an intermediate action B. Each action relied on a body-related effect feature (index vs. middle finger movement) and an environment-related effect feature (cursor movement towards vs. away from a reference object). In Experiments 1 and 2, both effects were task-relevant. Performance in action B suffered from partial feature overlap with action A compared to full feature repetition or alternation, which is in line with binding of both features while planning action A. Importantly, this cost disappeared when all features were available but only body-related features were task-relevant (Experiment 3). When only the environment-related effect of action A was known in advance, action B benefitted when it aimed at the same (vs. a different) environment-related effect (Experiment 4). Consequently, the present results support the idea that task relevance determines whether binding of body-related and environment-related effect features takes place while the pre-activation of environment-related features without binding them primes feature-overlapping actions. KW - action planning KW - motor control KW - binding KW - effect anticipations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231906 SN - 1943-3921 VL - 82 ER - TY - CHAP A1 - Lutz, Werner K. T1 - Dose-response relationships in chemical carcinogenesis: from DNA adducts to tumor incidence N2 - Mechanistic possibilitles responsible for nonlinear shapes of the dose-response relationship in chemical carcinogenesis are discussed. (i) Induction and saturation of enzymatic activation and detoxification processes and of DNA repair affect the relationship between dose and steady-state DNA adduct Ievel; (ii) The fixation of DNA adducts in the form of mutations is accelerated by stimulation of the cell division, for Jnstance due to regenerative hyperplasia at cytotoxic dose Ievels; (iii) The rate of tumor formation results from a superposition of the rates of the individual steps. It can become exponential with dose if more than one step is accelerated by the DNA damage exerted by the genotoxic carcinogen. The strongly sigmoidal shapes often observed for dose-tumor incidence relationships in animal bioassays supports this analysis. A power of four for the dose in the su~linear part of the curve is the maximum observed (formaldehyde). In contrast to animal experiments, epidemiological data ln humans rarely show a slgnificant deviation from linearity. The discrepancy might be explained by the fact that a I arge nu mber of genes contribute to the overall sensitivity of an individual and to the respective heterogeneity within the human population. Mechanistic nonlinearities are flattened out in the presence of genetic and life-style factors which affect the sensitivity for the development of cancer. For a risk assessment, linear extrapolation from the high-dose lncidence to the spontaneaus rate can therefore be approprlate in a heterogeneous population even if the mechanism of action would result in a nonlinear shape of the dose-response curve in a homogeneaus population. KW - aflatoxin B1 KW - 2-acetylaminofluorene KW - DNA KW - adduct KW - covalent KW - binding KW - carcinogen KW - dose KW - extrapolation KW - individual KW - susceptibility KW - heterogeneous population KW - risk KW - tumour Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71625 ER - TY - JOUR A1 - Leal, Andrea Zurita A1 - Schwebs, Marie A1 - Briggs, Emma A1 - Weisert, Nadine A1 - Reis, Helena A1 - Lemgruber, Leondro A1 - Luko, Katarina A1 - Wilkes, Jonathan A1 - Butter, Falk A1 - McCulloch, Richard A1 - Janzen, Christian J. T1 - Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation JF - Nucleic Acids Research N2 - Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to off-spring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation. KW - cross-link repair KW - cell cycle KW - gene expression KW - low fidelity KW - replication KW - bypass KW - theta KW - reveals KW - binding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230579 VL - 48 IS - 17 ER - TY - JOUR A1 - Krehan, Mario A1 - Heubeck, Christian A1 - Menzel, Nicolas A1 - Seibel, Peter A1 - Schön, Astrid T1 - RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex JF - Nucleic Acids Research N2 - RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex. KW - enzyme KW - binding KW - sequence KW - cyanelle KW - in vitro KW - partial purification KW - protein subunit KW - ribonuclease-P KW - genes KW - identification Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130648 VL - 40 IS - 16 ER -