TY - JOUR A1 - Würthner, Frank A1 - Noll, Niklas T1 - A Calix[4]arene‐Based Cyclic Dinuclear Ruthenium Complex for Light‐Driven Catalytic Water Oxidation JF - Chemistry - A European Journal N2 - A cyclic dinuclear ruthenium(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) complex equipped with oligo(ethylene glycol)‐functionalized axial calix[4]arene ligands has been synthesized for homogenous catalytic water oxidation. This novel Ru(bda) macrocycle showed significantly increased catalytic activity in chemical and photocatalytic water oxidation compared to the archetype mononuclear reference [Ru(bda)(pic)\(_2\)]. Kinetic investigations, including kinetic isotope effect studies, disclosed a unimolecular water nucleophilic attack mechanism of this novel dinuclear water oxidation catalyst (WOC) under the involvement of the second coordination sphere. Photocatalytic water oxidation with this cyclic dinuclear Ru complex using [Ru(bpy)\(_3\)]Cl\(_2\) as a standard photosensitizer revealed a turnover frequency of 15.5 s\(^{−1}\) and a turnover number of 460. This so far highest photocatalytic performance reported for a Ru(bda) complex underlines the potential of this water‐soluble WOC for artificial photosynthesis. KW - water KW - oxidation KW - ruthenium KW - dinuclear KW - catalytic KW - artificial photosynthesis KW - homogenous catalysis KW - photocatalysis KW - ruthenium complexes KW - water oxidation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230030 UR - https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202004486 VL - 27 IS - 1 ER - TY - JOUR A1 - Shan, Junwen A1 - Böck, Thomas A1 - Keller, Thorsten A1 - Forster, Leonard A1 - Blunk, Torsten A1 - Groll, Jürgen A1 - Teßmar, Jörg T1 - TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid JF - Molecules N2 - Hyaluronic acid (HA)-based hydrogels are very commonly applied as cell carriers for different approaches in regenerative medicine. HA itself is a well-studied biomolecule that originates from the physiological extracellular matrix (ECM) of mammalians and, due to its acidic polysaccharide structure, offers many different possibilities for suitable chemical modifications which are necessary to control, for example, network formation. Most of these chemical modifications are performed using the free acid function of the polymer and, additionally, lead to an undesirable breakdown of the biopolymer’s backbone. An alternative modification of the vicinal diol of the glucuronic acid is oxidation with sodium periodate to generate dialdehydes via a ring opening mechanism that can subsequently be further modified or crosslinked via Schiff base chemistry. Since this oxidation causes a structural destruction of the polysaccharide backbone, it was our intention to study a novel synthesis protocol frequently applied to selectively oxidize the C6 hydroxyl group of saccharides. On the basis of this TEMPO/TCC oxidation, we studied an alternative hydrogel platform based on oxidized HA crosslinked using adipic acid dihydrazide as the crosslinker. KW - hyaluronic acid KW - oxidation KW - hydrogel formation KW - Schiff base chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248362 SN - 1420-3049 VL - 26 IS - 19 ER - TY - THES A1 - Schmidt, Philipp T1 - Vanadium(V)-katalysierte Oxidationen substituierter Bishomoallylalkohole zur stereoselektiven O-Heterocyclen-Synthese T1 - Vanadium(V)-catalyzed Oxidations of Substituted Bishomoallylic Alcohols for the Stereoselective Synthesis of O-Heterocycles N2 - In der vorligenden Arbeit wurden Vanadium-abhängige Bromidperoxidase- (VBPO-) Modelle zur stereoselektiven Synthese funktionalisierter O-Heterocyclen entwickelt, die durch Vanadium-katalysierte Oxygenierung von Bishomoallylalkoholen mechanistisch untersucht wurden. Weiterhin wurden Bromcyclisierungen von Bishomoallylalkoholen auf enzymatischem (VBPO), oxidativem und radikalischem Weg für Referenzprodukte einer neuen Variante der Bromcyclisierung durch Vanadium-katalysierte Bromidoxidation durchgeführt. Die Selektivitätsmuster aus den Synthesen ß-hydroxylierter und ß-bromierter Tetrahydrofurane wurden anschließend innerhalb einfacher Naturstoffsynthesen genutzt. Anhand eigener Vorarbeiten wurden neue Vanadium(V)-Komplexe aus Triethoxyvanadat mit tridentaten Schiffbaseliganden, basierend auf Salicylaldehyd und Aminoalkoholen mit strukturell unterschiedlichen Seitenketten in quantitativen Ausbeuten synthetisiert und charakterisiert (51V-NMR, UV und IR). In Test-Cyclisierungen unterschiedlicher Bishomoallylalkohole eignete sich VO(salin)(OEt) mit hohen Umsätzen und guten Regio- wie Stereoselektivitäten am besten. Die relative Geschwindigkeitskonstante (krel = 120±20) der Vanadium-katalysierten Oxidation des Testsystems konnte über Konkurrenzkinetik (Alkenol versus Alken) ermittelt werden und weist deutlich auf eine Bindung des Alkenols an Vanadium während der Oxidation hin. Um die Regio- und Stereoselektivitäten Vanadium-Schiffbase-katalysierter Oxidationen von Bishomoallylalkoholen verstehen zu können, wurden stereochemische Studien anhand des Testsystems durchgeführt. Dessen Oxidation wird demnach im selektivitätsbestimmenden Schritt dem Metallzentrum abgewandt in like-Position bevorzugt gebildet und führt zu dem cis-konfigurierten Tetrahydrofuran als Hauptprodukt. Im Folgenden wurden Vanadium-katalysierte Oxidationen unterschiedlich substituierter bishomoallylischer Alkohole durchgeführt, sämtliche Oxidationen führten regioselektiv zu Tetrahydrofuranen als Hauptprodukte, die Oxygenierung Dimethyl-substituierter Pentenole lieferte durch Substitution an C-1 selektiv cis-konfigurierte Tetrahydrofurane, 2-Substitution führte ebenso wie 3-Substitution zu trans-konfigurierte Oxolanen. Alkohole nicht aktivierter Olefine wurden in der Reihenfolge C-1 ? C-3 mit höherer Selektivität zu trans-konfigurierten Tetrahydrofuranen gebildet. Die Regio- und Stereoselektivitäten der radikalischen Bromcyclisierungen folgen den schon in früheren Arbeiten unserer Arbeitsgruppe aufgestellten Richtlinien (5-exo-trig; 2,5-trans, 2,4-cis und 2,3-trans). Die ionischen Bromcyclisierungen 5,5-dimethylierter Bishomoallyl-alkohole mittels NBS verliefen komplementär zu den Radikal-Cyclisierungen regioselektiv und in Abhängigkeit der Phenylsubstituenten an C-1 - C-3 stereoselektiv zu den 2,5-trans-, 3,5-cis- und 4,5-trans-konfigurierten Tetrahydropyranen. Aus der Bromcyclisierung prochiraler Pentenole in Gegenwart eines Acetonpulvers aus Ascophyllum nodosum (A.n.A.P.) konnte das b-bromierte Tetrahydrofuran racemisch in 87proz. Ausbeute erhalten werden. Ebensowenig führte der Einsatz chiraler Liganden in der Vanadium-katalysierten Oxygenierung prochiraler Penten-1-ole bei guten Ausbeuten (>80%) zu Enantiomeren-angereicherten Tatrahydrofuranen. Innerhalb einfacher Naturstoffsynthesen wurden cis-Pityol, Linalooloxid sowie (-)-epi-Bisabololoxid selektiv unter Standardbedingungen der Vanadium-Schiffbase-katalysierten Oxidationen mit VO(salin)(OEt) und TBHP dargestellt. Die Stereoselektivitäten steigen proportional zu dem Größenunterschied der Substituenten an Position 1 der Bishomoallylalkohole. Abschließend wurde durch Vanadium-katalysierte Bromidoxiadtion mit TBHP eine neue dreistufige Totalsynthese der vier "natürlichen" Muscarin-Isomere ausgearbeitet. Die Gesamtausbeuten dieser Synthesen liegen zwischen 3.0 und 19.9%. N2 - In the present work vanadium dependent bromoperoxidase- (VBPO-) models have been developed for the stereoselective synthesis of functionalized O-heterocycles, that were examined mechanistically by vanadium catalyzed oxygenation of bishomoallylic alcohols. Furthermore bromine cyclizations of pentenols were carried out in an enzymatic (VBPO), oxidative and radical version for reference products of a new variant of the bromine cyclization by vanadium catalyzed bromide oxidation. The selectivity models from these syntheses of ß-hydroxylated and ß-brominated tetrahydrofurans were then used within simple natural product syntheses. By means of own preleminary works new vanadium(V)-complexes were synthesized in quantitative yields from triethyl vanadate and tridentate Schiff-base ligands generated from salicylic aldehyde and amino alcohols with structurally differing side chains, and were characterized spectroscopically (51V-NMR, UV and IR). Cyclizations of different bishomoallylic alcohols indicated that VO(salin)(OEt) was the best among the catalysts tested since it afforded high yields and good regio- and stereoselectivities of oxidation products. The relative rate constant (krel = 120±20) for the vanadium catalyzed oxidation of a test system was determined by competition kinetics (alkenol vs. alkene) and is a clear indication for the coordination of the alkenol at vanadium within the oxidation step. In order to understand the regio- and stereoselectivities of the vanadium Schiff-base catalyzed oxidation of bishomoallylic alcohols stereochemical studies were carried out with the test pentenol. The oxidation of the alkenol double bond has to be the selectivity determining step, proceeding in like-fashion and leading to the cis-configured tetrahydrofuran as main product. Next, vanadium catalyzed oxidations of differently substituted bishomoallylic alcohols were performed, which all led regioselectively to tetrahydrofurans as main products. Oxygenation of 1-substituted pentenols resulted in cis-configured tetrahydrofurans, 2- and 3-substitution led to trans-configured oxolanes. Alcohols with non-activated olefins were converted into trans-substituted tetrahydrofurans with increasing selectivity in the order of C-1- ? C-3-substitution. The regio- and stereoselectivities of the radical bromine cyclization follow the guidelines already set up in former works of our group (5-exo-trig; 2,5-trans, 2,4-cis and 2,3-trans). The ionic bromine cyclizations of 5,5-dimethylated bishomoallylic alcohols by means of NBS ran regioselective complementarily to the radical cyclizations and stereoselective in dependence of the phenyl substituents at C-1 - C-3 to the 2,5-trans-, 3,5-cis- and 4,5-trans-configured tetrahydropyrans. Bromine cyclization of a prochiral pentenol in presence of A.n.A.P. gave rise to the ß-brominated tetrahydrofuran racemically in 87% yield. Even the use of chiral ligands in vanadium catalyzed oxygenation of prochiral pentenols led to no enantiomeric enriched tatrahydrofurans. Within simple natural product syntheses cis-pityol, linalool oxide as well as (-)-epi-bisabololoxid was synthesized selectively under standard conditions of the vanadium Schiff-base catalyzed oxidation with VO(salin)(OEt) and TBHP. The stereoselectivities increased proportionally with the size difference of the substituents in position 1 of bishomoallylic alcohols. Finally a new three-step total synthesis of the four "natural" muscarine isomers was developed by vanadium catalyzed bromide oxiadtion with TBHP. The overall yields of these syntheses range between 3.0 and 19.9%. KW - Vanadium KW - Tetrahydrofuran KW - Schiffsche Basen KW - Pentenole KW - Vanadium KW - Tetrahydrofuran KW - Schiffbase KW - Pentenol KW - Oxidation KW - vanadium KW - tetrahydrofuran KW - Schiff-base KW - pentenol KW - oxidation Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3296 ER - TY - THES A1 - Greb, Marco T1 - Zur Vanadium(V)-katalysierten Oxidation von Bromid und deren Anwendung in der Synthese von Aplysiapyranoid A und strukturell einfacher, bromierter O-Heterocyclen T1 - To the vanadium(V) catalyzed oxidation of bromide and its application in the synthesis of aplysiapyranoid A and structural simple, brominated O-hetreocycles N2 - Diese Arbeit behandelt die Entwicklung von Methoden zur Synthese halogenierter O-Heterocyclen ausgehend von substituierten Bishomoallylalkoholen. Jene acyclischen Substrate können durch Reaktion mit elektrophilen Bromierungsreagenzien Cyclisierungsreaktionen zu O-Heterocyclen eingehen. Diese Strategie ist an die Chemie Vanadium-abhängiger Halogenidperoxidasen (VHPOs) angelehnt, die in der Lage sind, mit H2O2 als Primäroxidans, Halogenide oxidativ zu aktivieren. Dazu wurden sowohl Reaktionen Vanadium-abhängiger Bromidperoxidasen (VBPOs) als auch ihrer funktionaler Modelle untersucht. Als funktionale Modelle in wasserfreien Medien wurden neue Vanadium-Schiffbasekomplexe synthetisiert, charakterisiert (51V-NMR, IR, UV/Vis) und hinsichtlich ihrer Eignung als Oxidationskatalysatoren untersucht. Mittels mechanistischer Untersuchungen konnte gezeigt werden, dass Vanadium-Schiffbasekomplexe mit tert-Butylhydroperoxid (TBHP) zu Peroxykomplexen (ESI-MS, 51V-NMR) reagieren. Diese dienen in wasserfreien Medien als Katalysatoren um Bromid (aus PyHBr) in situ in Br2 umzuwandeln. Das erzeugte elementare Brom kann für Bromcyclisierungsreaktionen substituierter Bishomoallylalkohole zum Aufbau halogenierter cyclischer Ether genutzt werden. Die Ergebnisse aus den Untersuchungen der funktionalen Modelle in wasserfreien Medien wurden mit Enzym-katalysierten Reaktionen verglichen. Bei enzymatischen Reaktionen dominiert vermutlich zunächst eine Bildung von HOBr. Letzteres dient als elektrophiles Bromintermediat, um Bishomoallylalkohole bevorzugt in Halohydrine umzuwandeln. Durchgeführte methodischen Arbeiten zur oxidativen und radikalischen Halogenierung fanden schließlich Anwendung als Schlüsselschritte in Totalsynthesen von Aplysiapyranoid A, einem hexasubstituierten, dreifachhalogenierten Tetrahydropyran-abgeleiteten Naturstoff aus Aplysia kurodai, sowie dessen 5-Epimer. N2 - The objective of the present study was associated with a development of methods for preparing halogenated cyclic ethers starting from bishomoallylic alcohols. These substrates can undergo cyclization reactions upon treatment with electrophilic brominating reagents. Emphasis has been laid on the generation of such electrophilic brominating reagents under biomimetic conditions. The strategy employed is based on the chemistry of vanadium dependent haloperoxidases (VHPOs) that are able to catalyze the oxidation of chloride and bromide using H2O2 as primary oxidant. Therefore reactions of vanadium dependent bromoperoxidases (VBPOs) were investigated in the present study as well as transformations using functional models thereof. New (schiffbase)vanadium(V) complexes were synthesized, characterized (51V NMR, IR, UV/Vis) and investigated with regard to their suitability as oxidation catalysts. Results from mechanistic studies have indicated that (schiffbase)vanadium(V) complexes react with tert-butyl hydroperoxide (TBHP) to furnish peroxy complexes (ESI-MS, 51V NMR). The latter reagents serve as oxidants in order to convert bromide (from pyHBr) in situ into Br2. Likewise generated Br2 can subsequently be used in order to transform bishomoallylic alcohols into cyclic ethers. The results from studies related to functional models in non-aqueous media were subsequently compared to data from enzyme-catalyzed reactions. By comparing enzymatic reactions with model reactions (in aqueous and non-aqueous media) it became evident that in aqueous media a formation of HOBr is likely to dominate the initial process. The latter then may serve as an electrophilic brominating reagent in order to convert bishomoallylic alcohols predominantly into halohydrins. The established methods for selective halogenation under polar (i.e. oxidative) or neutral (i.e. radical-type) conditions were subsequently applied as key steps in a total synthesis of aplysiapyranoid A, a hexasubstituted threefold halogenated tetrahydropyran-derived natural product obtained from Aplysia kurodai as well as its 5-epimer. KW - Aplysiapyranoide KW - Halogene KW - Oxidation KW - Vanadium KW - O-Heterocyclen KW - aplysiapyranoids KW - halogens KW - oxidation KW - vanadium KW - O-heterocycles Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8381 ER - TY - JOUR A1 - Grabarczyk, Daniel B. A1 - Berks, Ben C. T1 - Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ JF - PLoS ONE N2 - The Sox pathway found in many sulfur bacteria oxidizes thiosulfate to sulfate. Pathway intermediates are covalently bound to a cysteine residue in the carrier protein SoxYZ. We have used biochemical complementation by SoxYZ-conjugates to probe the identity of the intermediates in the Sox pathway. We find that unconjugated SoxYZ and SoxYZ-S-sulfonate are unlikely to be intermediates during normal turnover in disagreement with current models. By contrast, conjugates with multiple sulfane atoms are readily metabolised by the Sox pathway. The most parsimonious interpretation of these data is that the true carrier species in the Sox pathway is a SoxYZ-S-sulfane adduct. KW - thiosulfates KW - oxidation KW - sulfur KW - cysteine KW - sulfides KW - thermodynamics KW - sulfates KW - sulfites Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171147 VL - 12 IS - 3 ER - TY - JOUR A1 - Brückner, Tobias A1 - Fantuzzi, Felipe A1 - Stennett, Tom E. A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Engels, Bernd A1 - Braunschweig, Holger T1 - Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond JF - Angewandte Chemie International Edition N2 - The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P−P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B−B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy. KW - inorganic chemistry KW - radicals KW - boron KW - density functional calculations KW - oxidation KW - phosphorus heterocycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256451 VL - 60 IS - 24 ER - TY - THES A1 - Arnold, Markus A. T1 - Oxidative DNA-Schädigung durch elektronisch angeregte Carbonylverbindungen und daraus gebildete Radikalspezies T1 - Oxidative DNA damage induced by electronically excited carbony compounds and radical species derived thereof N2 - Mittels Laserblitz-Photolyse wurden die Triplettlebenszeiten sowie die Löschraten der Triplettzustände verschiedener Acetophenonderivate durch dG, 8-oxodG, DNA, molekularen Sauerstoff und die Ketone selbst bestimmt. Für AP-OAc, AP und BP wurden Triplettlebensdauern von 7-9 µs gemessen, während die Triplettzustände von AP-OH und AP-OtBu aufgrund alpha Spaltung deutlich kurzlebiger waren (ca. 1 µs); die alpha Spaltung konnte EPR-spektroskopisch durch Spinabfangexperimente mit DMPO und TEMPO belegt werden. Im Fall von AP-OMe wurde weder dessen Triplettzustand noch die Bildung von Radikalen detektiert, was auf einer schnell ablaufenden Norrish-Typ-II-Spaltung beruht. Aufgrund dieses photochemischen Verhaltens wurden die Ketone (mit Ausnahme von AP-OMe) in zwei Gruppen klassifiziert, nämlich die „Gruppe A“-Ketone (keine Radikalbildung) und die „Gruppe B“-Ketone (Radikalbildner). Während die „Gruppe A“-Ketone gegenüber niedrigen Konzentrationen von DNA (62.5 µM) inaktiv waren, verursachten die bei der Bestrahlung der „Gruppe B“-Ketone generierten Peroxylradikale, neben wenigen direkt induzierten Strangbrüchen, hauptsächlich die Guaninoxidationsprodukte 8-oxoGua und guanidinfreisetzende Produkte (GRP). Erst wenn die DNA-Konzentration zehnfach erhöht wird (625 µM), tritt bei der Photolyse der „Gruppe A“-Ketone auch DNA-Oxidation durch einen Elektronentransfer von der Guaninbase auf das angeregte Keton ein. Ein analoger Konzentrationseffekt wurde auch in der dG-Oxidation beobachtet, bei niedrigen Substratkonzentrationen sind nur die radikalbildenden „Gruppe B“-Ketone aktiv. Die Tatsache, dass in der dG-Oxidation durch die „Gruppe A“-Ketone kein 8-oxodG detektiert wurde, wurde auf dessen effiziente Oxidation durch dG•+-Radikalkationen zurückgeführt. Die „Gruppe B“-Ketone sind in Abwesenheit von O2 gegenüber dG und DNA oxidativ inaktiv, da die in der alpha Spaltung generierten kohlenstoffzentrierten Radikale keine Peroxylradikale bilden können. Die „Gruppe A“-Ketone sind gegenüber DNA in Abwesenheit wie auch in Anwesenheit von Sauerstoff genauso reaktiv, da der Elektronentransfer von DNA zum Keton unabhängig von Sauerstoff ist. Um mechanistische Einblicke in die oxidative DNA-Schädigung zu erlangen, wurden photochemische Modellstudien mit dem Nukleosid dG sowie 8-oxodG durchgeführt, wobei zusätzlich Spiroiminodihydantoin gebildet wird. Bis vor kurzem wurde die Struktur dieses Oxidationsproduktes als 4-HO-8-oxodG angenommen, dass zuerst in der dG Oxidation mit Singulettsauerstoff (1O2) beobachtet wurde. Weder Spiroiminodihydantoin noch 4 HO-8-oxodG sind als authentische Verbindungen bekannt, so dass eine zweifelsfreie Strukturaufklärung die Bestimmung der Konnektivität der markierten Positionen erforderte. Diese Zuordnung erfolgte mittels eines SELINQUATE-NMR Spektrums, mit dem schlüssig die 4 HO-8-oxodG-Struktur ausgeschlossen wurde. Wie alle „Gruppe B“-Ketone sind auch alle „Gruppe A“-Ketone in Abwesenheit von O2 mit Ausnahme von AP-OAc gegenüber dG inert. Dies ist ein Beleg dafür, dass der Elektronentransferschritt von dG zum Keton in Abwesenheit von Sauerstoff (im Gegensatz zur DNA-Oxidation) reversibel ist und daher keine Oxidation möglich ist, wenn die Ketylradikale nicht durch O2 abgefangen werden. Das aus AP-OAc gebildete Ketylradikal besitzt als einziges einen effektiven unimolekularen Deaktivierungsweg, nämlich die Acetation-abspaltung, so dass die Reversibilität nicht mehr möglich ist. N2 - By using the laser-flash-photolysis technique, the triplet lifetimes of several acetophenone derivatives and their quenching rates by dG, 8-oxodG, DNA and molecular oxygen were determined. For AP-OAc, AP and BP, triplet lifetimes of 7-9 µs were obtained, while for AP OH and AP OtBu the lifetimes were significantly shorter (ca. 1 µs) due to alpha cleavage. The alpha cleavage was verified by spin-trapping experiments with TEMPO and DMPO by EPR-spectral detection. For AP-OMe, neither its triplet state nor radical formation was observed due to rapid Norrish-Type-II cleavage. On the basis of this photochemical behavior, the ketones (with the exception of AP-OMe) were divided into two groups, namely the “group A” ketones (no radical release) and the “group B” ketones (radical release). While the “group A” ketones were inactive at low (62.5 µM) DNA concentrations, the peroxyl radicals generated on irradiation of the “group B” ketones led to few directly induced strandbreaks; mainly the guanine oxidation product 8-oxoGua and guanidine-releasing products (GRP) were observed. Only when the DNA concentration was increased tenfold (625 µM), did the excited ketones oxidize DNA through electron transfer. An analogous concentration effect was observed with dG, since at low substrate concentrations only the radical-releasing “group B” ketones were oxidatively active. The fact that in the dG oxidation by the “group A” ketones no 8-oxodG was detected is attributed to the efficient oxidation of 8-oxodG by the dG•+ radical cation. In the absence of O2, the „group B“ ketones do not oxidize dG and DNA, because peroxyl radicals are not formed by trapping of the carbon-centered radicals produced upon alpha cleavage. Since electron transfer is independent of oxygen, the “group A” ketones display the same reactivity towards DNA, whether oxygen is present or not. To gain insight into the mechanism of the oxidative DNA damage, photochemical model studies with the nucleosides dG and 8-oxodG were performed, in which spiroiminodihydantoin was obtained as an additional oxidation product. Until recently, the supposed structure of this oxidation product was 4-HO-8-oxodG, which was first observed in the dG oxidation by singlet oxygen. Since neither spiroiminodihydantoin nor 4-HO-8-oxodG are available as authentic compounds, an unequivocal structural elucidation required to assess the connectivity of the marked atoms. This assignment was achieved by means of the SELINQUATE-NMR technique, which definetively allowed to exclude the 4-HO-8-oxodG structure. Analogous to the “group B“ ketones, in the absence of molecular oxygen also “group A“ ketones (except AP-OAc) are unreactive towards dG. Evidently, the electron-transfer step from dG to the triplet-excited ketone is reversible in the absence of oxygen, since no dG oxidation occurs when the ketyl radicals are not trapped by molecular oxygen. The ketyl radical derived from AP-OAc is unique in that it possesses a unimolecular deactivation pathway, namely the cleavage into an acetoxy ion and a benzoylmethyl radical, which provides irreversible electron transfer between triplet-excited AP-OAc and dG even in the absence of molecular oxygen. KW - DNS-Schädigung KW - Oxidation KW - Carbonylverbindungen KW - Acetophenon KW - DNA KW - Oxidation KW - Schädigung KW - Carbonylverbindung KW - Acetophenon KW - Dioxetan KW - Peroxyl KW - Radikal KW - Guanin KW - dG KW - DNA KW - oxidation KW - damage KW - carbonyl KW - acetophenone KW - dioxetane KW - peroxyl KW - radical KW - guanine KW - dG Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1182038 ER -