TY - JOUR A1 - Tang, Ruijing A1 - Yang, Shang A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - mem-iLID, a fast and economic protein purification method JF - Bioscience Reports N2 - Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system improved light-induced dimer (iLID), which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the POI, which could potentially facilitate other optogenetic manipulations of protein–protein interaction. KW - light-induced dimerization KW - membrane anchor KW - Optogenetics KW - protein purification Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261420 VL - 41 IS - 7 ER - TY - THES A1 - Stuhlfelder, Christiane T1 - Reinigung, Klonierung und heterologe Expression der Methyljasmonat-Esterase aus Lycopersicon esculentum T1 - Purification, cloning and heterologous expression of methyl jasmonate esterase from Lycopersicon esculentum N2 - Aus Lycopersicon esculentum Zellsuspensionskulturen konnte ein bisher unbekanntes Enzym isoliert und beschrieben werden, das die Hydrolyse von Methyljasmonat (MeJA) zu Jasmonsäure (JA) katalysiert. Das Enzym wurde als Methyljasmonat-Esterase (MeJA-Esterase) bezeichnet. Mittels Methyl-[2-14C]JA und [Methyl-3H]MeJA wurden qualitative und quantitative Enzymtestsysteme etabliert, welche die Reinigung und Charakterisierung des Enzyms erlaubten. Methyljasmonat-Esterase Aktivität konnte in 18 taxonomisch unterschiedlichen Zellsuspensionskulturen höherer Pflanzen sowie in differenziertem Gewebe (Blüte, Wurzel, Stengel und Blatt) von Lycopersicon esculentum cv. Moneymaker nachgewiesen werden. In einem 6-stufigen Reinigungsverfahren wurde das native Enzym mit einer Ausbeute von 2.2 % bis zur Homogenität 767-fach angereichert. Die native MeJA-Esterase kommt nativ als monomeres 26 kDa großes Protein vor. Unter denaturierenden Bedingungen konnte ein Molekulargewicht von 28 kDa bestimmt werden. Eine Analyse mittels ESI-TOF-Massenspektrometrie ergab ein Molekulargewicht von 28547 Da. Die native MeJA-Esterase hatte ein basisches pH-Optimum von 9.0. Optimale katalytische Aktivität zeigte die MeJA-Esterase bei einer Reaktionstemperatur von 40 C. Der isoelektrische Punkt lag bei pH 4.7. Eine vollständige und irreversible Hemmung der MeJA-Esterase konnte durch 5 mM Phenylmethylsulfonylfluorid (PMSF), einem Serinprotease-Inhibitor erzielt werden. Dieses Ergebnis lieferte einen Hinweis darauf, dass die MeJA-Esterase eine katalytische Triade mit einem reaktiven Serin-Rest besitzt. N-Methylmaleimid, Iodacetamid, Bestatin, Pepstatin und Leupeptin konnten die MeJA-Esterase nicht inhibieren. Nach der Reinigung der MeJA-Esterase wurde das Protein partiell mit der Endoproteinase LysC verdaut. Mittels Sequenzierung der Spaltpeptide und N-terminaler Sequenzierung der MeJA-Esterase konnte von vier Peptiden die Sequenz bestimmt werden. Ein Datenbankvergleich (SwissProt und EMBL) dieser Peptide mit bekannten Sequenzen zeigte eine hohe Homologie (bis zu 80 %) zu verschiedenen Esterasen und α-Hydroxynitrillyasen. Die Peptide konnten somit eindeutig als Bestandteile einer Esterase identifiziert werden. Zur Identifizierung des MeJA-Esterase Gens wurden aus den Peptidsequenzen degenerierte Primer abgeleitet und zur weiteren Klonierung verwendet. Über eine Reverse Transkription mit anschließender PCR wurde ein internes cDNA-Fragment (513 bp) amplifiziert. Mittels RACE (Rapid Amplification of cDNA Ends) konnten das 5´-und 3´-Ende der MeJA-Esterase cDNA ermittelt werden. Die Nucleotidsequenz umfasste einen offenen Leserahmen von 786 bp. Die davon abgeleitete Aminosäuresequenz codierte ein offenes Leseraster für ein Protein von 262 Aminosäuren. Datenbankvergleiche der vollständigen Aminosäuresequenz zeigten Homologien von 33 – 47 % zu Esterasen und α-Hydroxynitrillyasen. Die Aminosäuren der katalytischen Triade, die in den homologen Proteinen hochkonserviert waren, konnten bei der MeJA-Esterase als Serin-83, Asparaginsäure-211 und Histidin-240 ermittelt werden. Diese drei Aminosäuren bilden vermutlich das katalytische Zentrum der MeJA-Esterase. Darüber hinaus konnte eine hochkonservierte Signatur, die allen Lipasen gemeinsam ist in der Aminosäuresequenz der MeJA-Esterase identifziert werden. Diese Ergebnisse erlauben eine Einordnung der MeJA-Esterase in die Superfamilie der „alpha/beta-Fold“-Hydrolasen. Untersuchungen der Primärstruktur der MeJA-Esterase legten den Schluss nahe, dass es sich um ein cytosolisches Enzym handelt. Eine Southern-Blot Analyse mit genomischer DNA aus L. esculentum wurde zur Abschätzung der Kopienzahl der zum Protein der MeJA-Esterase korresporendierenden Gene durchgeführt. Dabei wurden zwei bis sieben DNA-Abschnitte ermittelt, die mit der Volllänge-Sonde der MeJA-Esterase hybridisierten. Dieses Ergebnis lässt vermuten, dass die MeJA-Esterase zu einer Genfamilie gehört. Unklar bleibt jedoch, ob es sich um mehrere homologe Gene handelt, oder ob eine Hybridisierung der Volllänge-Sonde mit Pseudogenen erfolgte. Die heterologe Expression der MeJA-Esterase cDNA wurde erfolgreich durchgeführt. Hierdurch wurde der Beweis erbracht werden, dass die klonierte cDNA tatsächlich für das Gen der MeJA-Esterase codierte. Nach Klonierung der cDNA in den pQE70-Expressionsvektor und Transformation in kompetente E. coli (M15) konnte im Proteinrohextrakt eine spezifische Enzymaktivität von 1.64 pkat/mg detektiert werden. In einem 4-stufigen Reinigungsverfahren wurde das heterolog exprimierte Enzym mit einer Ausbeute von 0.8 % bis zur Homogenität 283-fach angereichert. Untersuchungen zur Substratspezifität zeigten, dass native und heterolog exprimierte MeJA-Esterase Methyljasmonat zu Jasmonsäure hydrolysierten. In beiden Fällen handelte es sich jedoch um kein hochspezifisches Enzym. Für die native MeJA-Esterase konnte ein KM-Wert von 14.7 ± 0.8 µM und für die heterolog exprimierte MeJA-Esterase ein KM-Wert von 24.3 ± 2.3 µM ermittelt werden. N2 - From cell suspension cultures of Lycopersicon esculentum a so far unknown enzyme was purified, catalyzing the cleavage of methyl jasmonate to jasmonic acid. The isolated enzyme was termed as methyl jasmonate esterase (MeJA esterase). Qualitative and quantitative enzyme assays using methyl-[2-14C]jasmonic acid and [methyl-3H]methyl jasmonate as substrates were established for purification and characterization of the enzyme. Screening of 18 suspension plant cell cultures of taxonomically distant species revealed that MeJA-Esterase activity occurs in all plant species so far analyzed. MeJA esterase activity was also found in flowers, roots, stems and leaves of L. esculentum (cv. Moneymaker). MeJA esterase was purified in a six-step purification scheme. The enzyme was purified 767-fold to give a homogenous protein with a yield of 2.2 %. The native enzyme exhibited a Mr of 26 kDa (gel-filtration chromatography) which was similar to the Mr determined by SDS-PAGE (Mr of 28 kDa) and ESI-TOF MS analysis (Mr of 28547 kDa). MeJA esterase revealed a pH optimum of pH 9.0 and a temperature optimum of 40 C. Chromatofocussing of MeJA esterase gave an isoelectric point (pI) of 4.7. Phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor, led to irreversible and complete inhibition of MeJA esterase at a concentration of 5 mM. This result suggests that the enzyme has a catalytic triade with an active serine residue. N-Methylmaleimide, iodacetamide, bestatin, leupeptin and pepstatin did not inactivate the enzyme. Proteolysis of the purified and pure enzyme with endoproteinase LysC and subsequently sequencing revealed three peptide fragments. N-Terminal sequencing yielded an additional peptide fragment. Sequence alignment of these fragments showed high homologies (up to 80 %) to certain esterases and hydroxynitrile lyases. MeJA esterase peptides could be identified as components of an esterase. For the identification of the MeJA esterase gene degenerated primers were designed on the basis of the partial amino acid sequences obtained from the purified MeJA esterase. Degenerated primers were used for cloning. Reverse transcription followed by PCR amplified an internal cDNA fragment (513 bp). Full-length cDNA of MeJA esterase was amplified using RACE (Rapid amplification of cDNA ends). Sequencing and annealing of the 5´- and the 3´-sequence revealed an open reading frame of 789 bp encoding a 262 amino acid protein. Sequence analysis and alignment with known proteins from Genbank showed high overall-homology of 33 – 47 % to esterases and hydroxynitrile lyases. Since all the aligned proteins belong to the extremely divergent family of alpha/beta-hydrolase fold proteins it could be assumed that MeJA esterase is a member of this protein family. MeJA esterase shows the highly conserved amino acid residues forming the catalytic triad – nucleophile, acid and a histidine – represented by serine-83, aspartic acid-211 and histidine-240. Additionally a higly conserved lipase motive could be identified in the MeJA esterase amino acid sequence. Analysis of the primary structure of the enzyme makes a cytosolic location probably. Southern blot analysis of genomic cDNA from cell suspension cultures of L. esculentum was carried out to estimate gene copies of MeJA esterase. MeJA esterase coding sequence hybridized with two to seven cDNA fragments. It might be possible that MeJA esterase belongs to a gene family. It remains still unclear if there are several homologous genes or pseudogenes hybridized with the MeJA esterase sequence. To get unequivocal evidence of the identity of cloned sequence, MeJA esterase cDNA was successfully subcloned into a bacterial vector (pQE70) for heterologous expression. Crude extracts of E. coli M15 cells harbouring the pQE-MeJA esterase plasmid showed MeJA esterase activity (1.64 pkat/mg) while wild type M15 cells did not show any MeJA esterase activity. A four step purification protocol was employed to purify the enzyme to homogeneity (283-fold) with a yield of 0.8 %. Analysis of substrate specifity showed that native and heterologously expressed MeJA esterase cleaved methyl jasmonate to jasmonic acid. However MeJA esterase is not a highly specific enzyme. Enzyme kinetics of native MeJA esterase revealed a KM value of 14.7 ± 0.8 µM while heterologous expressed MeJA esterase revealed a KM value of 24.3 ± 2.3 µM. Northern blot analysis was used to determine MeJA esterase expression in different plant organs. MeJA esterase transcripts were present in all tomato plant tissues. High levels of MeJA esterase mRNA could be found in roots and flowers while low to moderate amounts where present in leafs and stems of tomato plants. KW - Tomate KW - Methylglasmonat KW - Esterasen KW - Methyljasmonat Esterase KW - Solanaceae KW - Lycopersicon esculentum KW - Proteinreinigung KW - Heterologe Expression KW - Methyl jasmonate esterase KW - Lycopersicon esculentum KW - Solanaceae KW - protein purification KW - heterologous expression Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8433 ER - TY - THES A1 - Beckert, Cornelia T1 - Biosynthese, Akkumulation und Strukturen von Styrylpyronen in gametophytischen und sporophytischen Geweben von Equisetum T1 - Styrylpyrone biosynthesis, accumulation and structures of styrylpyrones in gametophytic and sporophytic tissues of Equisetum N2 - Untersuchungen zur Akkumulation phenolischer Inhaltsstoffe von Equisetum an gametophytischen und unterirdisch wachsenden sporophytischen Geweben vervollständigten den Kenntnisstand der phenolischen Inhaltsstoffe in dieser Gattung. In beiden Geweben konnten – wie in oberirdischen sporophytischen Geweben – Hydroxyzimtsäurederivate nachgewiesen werden. Styrylpyrone und Protoflavonoide ersetzen hier die in oberirdischen sporophytischen Geweben nachgewiesenen Flavonoide. Hydroxyzimtsäurederivate wurden in Prothallien aller untersuchter Arten gefunden wohingegen in Rhizomen der jeweiligen Arten einzelne Hydroxyzimtsäurederivate fehlten. Die Inhaltsstoffmuster der Styrylpyrone bei verschiedenen Arten entsprachen sich weitgehend. Die sukzessive Analyse des Übergangsbereiches - unterirdisch wachsendes Rhizom zu oberirdischem Spross - zeigte einen ebenso sukzessiven Wechsel im Akkumulationsmuster. Der Gehalt löslicher Styrylpyrone nahm - von unten nach oben betrachtet - in gleichem Maße ab, wie der Gehalt an Flavonoiden anstieg. In lokal braun pigmentierten Sprossbereichen, die vereinzelt an oberirdisch wachsenden Sporophyten auftraten, wurden neben den in Rhizomen konstitutiv akkumulierten Styrylpyronen auch, offenbar durch Verwundung induziert, Styrylpyrone detektiert. In den grünen, nicht pigmentierten Bereichen dieser Sprosse wurden dagegen ausschließlich Flavonoide und Hydroxyzimtsäurederivate detektiert. Fluoreszenzmikroskopische Untersuchungen belegten eine vakuoläre Speicherung der löslichen Inhaltsstoffe Styrylpyrone und Hydroxyzimtsäurederivate in Rhizomen und Prothallien. Hydroxyzimtsäurederivate wurden vorwiegend in zentral liegenden Rhizombereichen detektiert, während Styrylpyrone über den gesamten Rhizomquerschnitt verteilt sichtbar gemacht werden konnten. Folgende Styrylpyrone wurden aus Rhizomen von E. arvense isoliert und mit Hilfe spektroskopischer Methoden in ihrer Struktur aufgeklärt: 3,4-Dihydroxy-6-(4´-hydroxy-E-styryl)-2-pyron-3-O-ß-D-glucopyranosid und 3,4-Dihydroxy-6-(3´-hydroxy-4´methoxy-E-styryl)-2-pyron-3-O-ß-glucopyranosid. Untersuchungen zur Biosynthese von Styrylpyronen zeigten eine enzymkatalysierte Bildung von Hispidin und Bisnoryangonin in Gametophyten verschiedener Equisetum-Arten sowie in Rhizomen und fertilen Sporophyten von E. arvense. Ebenso gelang der Nachweis der enzymatischen Glycosilierung von 3-Hydroxyhispidin zu Equisetumpyron in Gametophyten von E. arvense. Eine Styrylpyronsynthase wurde charakterisiert: Das pH-Optimum für die Bildung von Bisnoryangonin lag bei pH 7,5-7,8 und für die Bildung von Hispidin bei 6,8-7,0, jeweils in 0,5 M KPi-Puffer. Das Temperaturoptimum für die Bildung von Bisnoryangonin betrug 30° C bzw. 37°C für die Bildung von Hispidin. Die Substanzen Natriumascorbat in einer Konzentration von 20 mM, BSA (0,1 % w/V), Dithiothreitol (2,5 mM) bzw. Mercaptoethanol (7 mM) konnten die Enzymaktivität deutlich steigern. Die Km﷓Werte wurden für die Substrate Kaffeoyl-CoA und Malonyl-CoA bei 116 µM bzw. 141 µM ermittelt. Für die Substrate p-Cumaroyl-CoA und Malonyl-CoA lagen die Km﷓Werte bei 182 µM bzw. 238 µM. Das relative Molekulargewicht des nativen Enzyms wurde mittels Gelfiltration mit 78-80 kD bestimmt. Im Rahmen der Proteinreinigung wurde eine auf chromatographischen Techniken basierende Methode entwickelt, mit der die Styrylpyronsynthase mit einem Anreicherungsfaktor von 1107 bei einer Ausbeute von 0,08 % gereinigt werden konnte. N2 - Investigations to the accumulation of phenolic compounds in gametophytic and underground sporophytic tissues of Equisetum completed the data of phenolic compounds in Equisetum. Hydroxycinnamic acids were detected both in underground sporophytic and gametophytic tissues as found before in aboveground sporophytic tissues. In rhizomes styrylpyrones and protoflavonoides replaced flavonoids, detectable in aboveground sporophytic parts. Hydroxycinnamic acids were found in gametophytes of all examined species. The intermediate segments between underground rhizome and aboveground parts showed a gradual change in the accumulation of phenolics. Looking from the rhizome to the aboveground parts, the content of soluble styrylpyrones decreased in the same degree as the flavonoid content increased. However, hydroxycinnamic acids were detected in all examined parts with approximately equal contents. Styrylpyrones were also detected in brown pigmented spots of barren sprouts, which occurred occasionally at aboveground sporophytes. These styrylpyrones were probably induced due to wounding. In the green, not pigmented areas of these sprouts however, only flavonoids and hydroxycinnamic acids were found. The results suggested a contribution of styrylpyrones to non-specific constitutive and inducible defence mechanisms against microorganisms. Fluorescent microscopic examinations proved the vacuol storage of soluble styrylpyrones and hydroxycinnamic acids in rhizomes and gametophytes. The isolation of styrylpyrones from rhizomes of E. arvense revealed the following new structures confirmed by spectroscopic methods: 3,4-dihydroxy-6-(4´-hydroxy-E-styryl)-2-pyron-3-O-b-D-glucopyranosid, 3,4-dihydroxy-6-(3´-hydroxy-4´methoxy-E-styryl)-2-pyron-3-O-b-glucopyranosid. Investigations on the biosynthesis of styrylpyrones proved an enzyme-catalyzed formation of hispidin and bisnoryangonin from malonyl-CoA and hydroxycinnamoyl-CoA precursors in gametophytes of different Equisetum species as well as in rhizomes and fertile sporophytes of E. arvense. Additionally the enzymatic glycosilisation of 3-hydroxyhispidin to equisetumpyrone at gametophytes of E. arvense could be proved. Styrylpyronesynthase was detected in cell free extracts from gametophytes of Equisetum arvense. The enzyme activity was characterized in partially purified protein extracts: p-Coumaroyl-CoA was accepted as substrate at pH 6.0-9.0 in various buffer systems with the formation of bisnoryangonin (optimum enzyme activity in potassium phosphate buffer at pH 7.5-7.8, temperature optimum 37° C). Caffeoyl-CoA was accepted as substrate only in potassium phosphate buffer at pH 6.0-7.5 with formation of Hispidin (optimum enzyme activity at pH 6.8-7.0, temperature optimum 30° C). The substances sodiumascorbate at a concentration of 20 mM, bovine serum albumin (0.1 % w/V), dithiothreitol (2.5 mM) and mercaptoethanol (7 mM) increased the enzyme activity markable. The apparent Km values for the substrates caffeoyl-CoA and malonyl-CoA of 116 µM res. 141 µM were calculated, whereas for the substrates p-cumaroyl-CoA and Malonyl-CoA Km-values of 182 µM res. 238 µM were determined. The relative molecular weight of the native enzyme was determined at 78-80 kD by gel filtration methods. Using a developed protein purification method based on chromatographic techniques the styrylpyronsynthase was purified with an enrichment factor of 1107 and a yield of 0.08%. KW - Schachtelhalm KW - Styrylpyrone KW - Equisetum KW - Schachtelhalme KW - Styrylpyrone KW - Biosynthese KW - Phenole KW - Fluoreszenzmikroskopie KW - Proteinreinigung KW - Equisetum KW - horsetail KW - styrylpyrones KW - biosynthesis KW - phenolics KW - fluorescent microscopy KW - protein purification Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3454 ER -