TY - THES A1 - Heil, Hannah Sophie T1 - Sharpening super-resolution by single molecule localization microscopy in front of a tuned mirror T1 - Einzelmolekül-Lokalisationsmikroskopie vor einem abgestimmten Spiegel zur Auflösungsverbesserung N2 - The „Resolution Revolution" in fluorescence microscopy over the last decade has given rise to a variety of techniques that allow imaging beyond the diffraction limit with a resolution power down into the nanometer range. With this, the field of so-called super-resolution microscopy was born. It allows to visualize cellular architecture at a molecular level and thereby achieve a resolution level that had been previously only accessible by electron microscopy approaches. One of these promising techniques is single molecule localization microscopy (SMLM) in its most varied forms such as direct stochastic optical reconstruction microscopy (dSTORM) which are based on the temporal separation of the emission of individual fluorophores. Localization analysis of the subsequently taken images of single emitters eventually allows to reconstruct an image containing super-resolution information down to typically 20 nm in a cellular setting. The key point here is the localization precision, which mainly depends on the image contrast generated the by the individual fluorophore’s emission. Thus, measures to enhance the signal intensity or reduce the signal background allow to increase the image resolution achieved by dSTORM. In my thesis, this is achieved by simply adding a reflective metal-dielectric nano-coating to the microscopy coverslip that serves as a tunable nano-mirror. I have demonstrated that such metal-dielectric coatings provide higher photon yield at lower background and thus substantially improve SMLM performance by a significantly increased localization precision, and thus ultimately higher image resolution. The strength of this approach is that ─ except for the coated cover glass ─ no specialized setup is required. The biocompatible metal-dielectric nano-coatings are fabricated directly on microscopy coverslips and have a simple three-ply design permitting straightforward implementation into a conventional fluorescence microscope. The introduced improved lateral resolution with such mirror-enhanced STORM (meSTORM) not only allows to exceed Widefield and Total Internal Reflection Fluorescence (TIRF) dSTORM performance, but also offers the possibility to measure in a simplified setup as it does not require a special TIRF objective lens. The resolution improvement achieved with meSTORM is both spectrally and spatially tunable and thus allows for dual-color approaches on the one hand, and selectively highlighting region above the cover glass on the other hand, as demonstrated here. Beyond lateral resolution enhancement, the clear-cut profile of the highlighted region provides additional access to the axial dimension. As shown in my thesis, this allows for example to assess the three-dimensional architecture of the intracellular microtubule network by translating the local localization uncertainty to a relative axial position. Even beyond meSTORM, a wide range of membrane or surface imaging applications may benefit from the selective highlighting and fluorescence enhancing provided by the metal-dielectric nano-coatings. This includes for example, among others, live-cell Fluorescence Correlation Spectroscopy and Fluorescence Resonance Energy Transfer studies as recently demonstrated. N2 - Die „Auflösungsrevolution" in der Fluoreszenzmikroskopie hat während des letzten Jahrzehnts eine Vielzahl von Techniken hervorgebracht, die es ermöglichen, das Beugungslimit zu überschreiten und eine Bildauflösung bis in den Nanometerbereich zu erreichen. Die Entwicklung der sogenannten superhochauflösenden Fluoreszenzmikroskopie ermöglicht es die zelluläre Architektur auf molekularer Ebene zu visualisieren und erreicht damit ein Auflösungsvermögen, wie es bisher nur mit elektronenmikroskopischen Ansätzen möglich war. Der Begriff Einzelmolekül-Lokalisationsmikroskopie fasst zum Beispiel eine Vielzahl der unterschiedlichsten Ansätze zusammen. Wie zum Beispiel auch die direkte stochastische optische Rekonstruktionsmikroskopie (dSTORM) basieren diese auf der zeitlichen Trennung der Emission einzelner Fluorophore. Die Lokalisierungsanalyse der so aufgenommenen Bilder von einzelnen Emittern ermöglicht schließlich die Rekonstruktion eines superhochaufgelösten Bildes, das eine Auflösung von typischerweise 20 nm in einer zellularen Umgebung erreicht. Der entscheidende Punkt ist hierbei die Lokalisierungsgenauigkeit, die hauptsächlich vom Bildkontrast abhängt. Eine Erhöhung der Signalintensität oder Reduzierung des Signalhintergrunds ermöglichen es daher, die mit dSTORM erzielte Bildauflösung zu erhöhen. In meiner Dissertation wird dies durch eine einfache reflektierende metalldielektrische Nanobeschichtung auf dem Mikroskop-Deckglas erreicht, das so als abstimmbarer Nanospiegel dient. Ich zeige in dieser Arbeit, dass solche metalldielektrischen Beschichtungen eine höhere Photonenausbeute bei niedrigerem Hintergrund liefern und somit die SMLM-Leistung durch eine signifikant erhöhte Lokalisierungsgenauigkeit und damit letztendlich einer höheren Bildauflösung wesentlich verbessern. Die Stärke dieses Ansatzes besteht darin, dass mit Ausnahme des beschichteten Deckglases keine spezielle Anpassung des experimentellen Aufbaus erforderlich ist. Die biokompatiblen metallisch-dielektrischen Nanobeschichtungen mit einem einfachen dreischichtigen Design werden direkt auf Mikroskop-Deckgläsern hergestellt, was eine direkte Implementierung in ein herkömmliches Fluoreszenzmikroskop ermöglicht. Die mit diesem spiegelverstärkten STORM (meSTORM) eingeführte verbesserte laterale Auflösung ermöglicht es nicht nur, die Bildauflösung von Weitfeld und Total Internal Reflection Fluorescence (TIRF) dSTORM zu übertreffen, sondern bietet auch die Möglichkeit, in einem vereinfachten Aufbau zu messen, da kein spezielles TIRF-Objektiv erforderlich ist. Die mit meSTORM erzielte Auflösungsverbesserung ist sowohl spektral als auch räumlich abstimmbar und ermöglicht so einerseits zweifarbige Bildgebung und andererseits eine gezielte Hervorhebung eines bestimmten Bereichs über dem Deckglas. Über die Verbesserung der lateralen Auflösung hinaus bietet das klare Profil des Verstärkungseffekts zusätzliche Information über die axiale Position. Wie in meiner Dissertation gezeigt, kann damit beispielsweise die dreidimensionale Architektur des intrazellulären Mikrotubuli-Netzwerks aufgelöst werden, indem die lokale Lokalisierungsunsicherheit in eine relative axiale Position übersetzt wird. Über meSTORM hinaus kann die selektive Hervorhebung und Fluoreszenzverstärkung durch die metalldielektrischen Nanobeschichtungen für eine Vielzahl von Membran- oder Oberflächenabbildungsanwendungen von Vorteil sein. Dies umfasst unter anderem Anwendungen wie die Fluoreszenzkorrelationsspektroskopie in lebenden Zellen und Fluoreszenzresonanz-energietransfer, wie bereits kürzlich gezeigt wurde. KW - Fluoreszenz KW - Einzelmolekülmikroskopie KW - Fluoreszenzmikroskopie KW - Nanofabrikation KW - Nanofabrication KW - Super-resolution microsopy KW - Superhochauflösende Mikroskopie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204329 ER - TY - THES A1 - Fronczek, David Norman T1 - Integration of fluorescence and atomic force microscopy for single molecule studies of protein complexes N2 - The scope of this work is to develop a novel single-molecule imaging technique by combining atomic force microscopy (AFM) and optical fluorescence microscopy. The technique is used for characterizing the structural properties of multi-protein complexes. The high-resolution fluorescence microscopy and AFM are combined (FIONA-AFM) to allow for the identification of individual proteins in such complexes. This is achieved by labeling single proteins with fluorescent dyes and determining the positions of these fluorophores with high precision in an optical image. The same area of the sample is subsequently scanned by AFM. Finally, the two images are aligned and the positions of the fluorophores are displayed on top of the topographical data. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, fluorescence and AFM information can be aligned with an accuracy better than 10 nm, which is sufficient to identify single fluorescently labeled proteins in most multi-protein complexes. The limitations of localization precision and accuracy in fluorescence and AFM images are investigated, including their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two complementary techniques opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5–10 nm) information about the conformational properties of multi-protein complexes while the fluorescence can indicate spatial relationships of the proteins within the complexes. Additionally, computer simulations are performed in order to validate the accuracy of the registration algorithm. N2 - Im Rahmen dieser Diplomarbeit wurde ein bildgebendes Verfahren zur Identifizierung einzelner Proteine in rasterkraftmikroskopischen Aufnahmen entwickelt. Dazu wird ein integrierter Versuchsaufbau aus einem Rasterkraft- und einem optischen Mikroskop verwendet. Ziel der Technik ist die Identifizierung einzelner Proteine im biologischen Kontext (z. B. in Proteinkomplexen). Dazu werden ausgewählte Proteine fluoreszierend markiert und parallel zur Rasterkraftmessung optisch abgebildet. Für dieses Verfahren werden transparente und zugleich nano-glatte Substrate benötigt. Dazu wurden Probenträger aus Glas und Mica (Muskovit) verwendet und evaluiert. Als Fluoreszenzfarbstoffe kommen Quantenpunkte zum Einsatz, bestehend aus 5–10 nm großen Nanokristallen, die vermittels Antikörper stabil an Proteine gebunden werden können, ohne deren Funktion zu beeinträchtigen. Die optische Anregung erfolgt durch einen Argon-Laser, unter Verwendung des Prinzips der Totalreflektions-Fluoreszenz-Mikroskopie (TIRF). Im optischen Bild erscheinen die Fluorophore als einzelne Beugungsscheibchen. Durch eine Ausgleichsrechnung, bei der eine 2D-Gaußfunktion an die Daten angepasst wird, werden die Positionen der Fluorophore mit hoher Genauigkeit ermittelt (Superlocalization). Anschließend werden die Bilder durch eine affine Transformation ausgerichtet. Diese Transformation wird durch ein merkmalbasiertes Bildregistrierungsverfahren numerisch bestimmt, welches die Koordinaten einiger identischer Punkte in den Rasterkraft- und Fluoreszenzbildern als Eingabe benötigt. Die Programmierung und Evaluierung des zur Auswertung erforderlichen Algorithmus war Teil der Arbeit. Die Positionen der Fluorophore werden anschließend farbkodiert im topografischen Bild ausgegeben, was die Identifizierung einzelner Proteine/Objekte ermöglicht. Zur experimentellen Realisierung des Verfahrens wurden Abbildungen mit ungebundenen Quantenpunkten erstellt, wobei eine Überlagerungsgenauigkeit von ca. 6 nm (Glas) bzw. ca. 9 nm (Mica) erreicht werden konnte. Ergänzend dazu wurden Simulationen durchgeführt, um die Validität des Auswertungsalgorithmus zu bestätigen. Diese ermöglichen zusätzlich Vorhersagen über die zu erwartende Genauigkeit unter verschiedenen Abbildungsbedingungen. Schließlich wurde die Technik exemplarisch auf ein biologisches System angewendet. Dazu wurde der Schadenserkennungsapparat des bakteriellen DNS-Reparatursystems NER herangezogen. Bei gleichzeitig deutlicher Sichtbarkeit einzelner DNS-Moleküle und Proteine im Topographiebild konnte eine Überlagerungsgenauigkeit von 8.8 nm erreicht werden. KW - Kraftmikroskopie KW - Fluoreszenz KW - DNS-Reparatur KW - Registrierung KW - Multiproteinkomplex KW - AFM KW - Fluorescence imaging with one nanometer accuracy KW - FIONA KW - hybrid imaging Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70731 ER -