TY - THES A1 - Ullrich, Melanie T1 - Identification of SPRED2 as a Novel Regulator of Hypothalamic-Pituitary-Adrenal Axis Activity and of Body Homeostasis T1 - SPRED2 - Ein neuer Regulator der Hypothalamus-Hypophysen-Nebennierenrindenachse und der Hormonbalance N2 - SPRED proteins are inhibitors of the Ras/ERK/MAPK signaling pathway, an evolutionary highly conserved and very widespread signaling cascade regulating cell proliferation, differentiation, and growth. To elucidate physiological consequences of SPRED2 deficiency, SPRED2 KO mice were generated by a gene trap approach. An initial phenotypical characterization of KO mice aged up to five months identified SPRED2 as a regulator of chondrocyte differentiation and bone growth. Here, the loss of SPRED2 leads to an augmented FGFR-dependent ERK activity, which in turn causes hypochondroplasia-like dwarfism. However, long term observations of older KO mice revealed a generally bad state of health and manifold further symptoms, including excessive grooming associated with severe self-inflicted wounds, an abnormally high water uptake, clear morphological signs of kidney deterioration, and a reduced survival due to sudden death. Based on these observations, the aim of this study was to discover an elicitor of this complex and versatile phenotype. The observed kidney degeneration in our SPRED2 KO mice was ascribed to hydronephrosis characterized by severe kidney atrophy and apoptosis of renal tubular cells. Kidney damage prompted us to analyze drinking behavior and routine serum parameters. Despite polydipsia, which was characterized by a nearly doubled daily water uptake, the significantly elevated Na+ and Cl- levels and the resulting serum hyperosmolality could not be compensated in SPRED2 KOs. Since salt and water balance is primarily under hormonal control of aldosterone and AVP, we analyzed both hormone levels. While serum AVP was similar in WTs and KOs, even after experimental water deprivation and an extreme loss of body fluid, serum aldosterone was doubled in SPRED2 KO mice. Systematic investigation of contributing upstream hormone axes demonstrated that hyperaldosteronism developed independently of an overactivated Renin-Angiotensin system as indicated by halved serum Ang II levels in KO mice. However, aldosterone synthase expression in the adrenal gland was substantially augmented. Serum corticosterone, which is like aldosterone released from the adrenal cortex, was more than doubled in SPRED2 KOs, too. Similar to corticosterone, the production of aldosterone is at least in part under control of pituitary ACTH, which is further regulated by upstream hypothalamic CRH release. In fact, stress hormone secretion from this complete hypothalamic-pituitary-adrenal axis was upregulated because serum ACTH, the mid acting pituitary hormone, and hypothalamic CRH, the upstream hormonal inductor of HPA axis activity, were also elevated by 30% in SPRED2 KO mice. This was accompanied by an upregulated ERK activity in paraventricular nucleus-containing hypothalamic brain regions and by augmented hypothalamic CRH mRNA levels in our SPRED2 KO mice. In vitro studies using the hypothalamic cell line mHypoE-44 further demonstrated that both SPRED1 and SPRED2 were able to downregulate CRH promoter activity, CRH secretion, and Ets factor-dependent CRH transcription. This was in line with the presence of various Ets factor binding sites in the CRH promoter region, especially for Ets1. Thus, this study shows for the first time that SPRED2-dependent inhibition of Ras/ERK/MAPK signaling by suppression of ERK activity leads to a downregulation of Ets1 factor-dependent transcription, which further results in inhibition of CRH promoter activity, CRH transcription, and CRH release from the hypothalamus. The consecutive hyperactivity of the complete HPA axis in our SPRED2 KO mice reflects an elevated endogenous stress response becoming manifest by excessive grooming behavior and self-inflicted skin lesions on the one hand; on the other hand, in combination with elevated aldosterone synthase expression, this upregulated HPA hormone release explains hyperaldosteronism and the associated salt and water imbalances. Both hyperaldosteronism and polydipsia very likely contribute further to the observed kidney damage. Taken together, this study initially demonstrates that SPRED2 is essential for the appropriate regulation of HPA axis activity and of body homeostasis. To further enlighten and compare consequences of SPRED2 deficiency in mice and particularly in humans, two follow-up studies investigating SPRED2 function especially in heart and brain, and a genetic screen to identify human SPRED2 loss-of-function mutations are already in progress. N2 - SPRED-Proteine sind Inhibitoren des hochkonservierten und in allen Geweben verbreiteten Ras/ERK/MAPK-Signalwegs, welcher Proliferation, Differenzierung und das Wachstum von Zellen reguliert. Um physiologische Konsequenzen der SPRED2-Defizienz im lebenden Modellorganismus aufzuklären, haben wir SPRED2-KO-Mäuse mithilfe der „gene trap“-Methode generiert. Eine erste Studie zur phänotypischen Charakterisierung mit KO-Mäusen bis zu einem Alter von fünf Monaten identifizierte SPRED2 als Regulator der Chondrozytendifferenzierung und des Knochenwachstums. So bewirkt der Verlust der SPRED2-Proteinfunktion eine erhöhte FGFR-vermittelte ERK-Aktivität, was wiederum einen Hypochondroplasie-ähnlichen Minderwuchs verursacht. Allerdings offenbarten Langzeitbeobachtungen älterer KO-Mäuse einen im Allgemeinen sehr schlechten Gesundheitszustand und weitere facettenreiche Symptome, darunter exzessives Putzverhalten mit schweren, selbst zugefügten Wunden, einen abnorm hohen täglichen Wasserkonsum, klare morphologische Anzeichen einer Nierenschädigung und eine reduzierte Überlebenswahrscheinlichkeit durch plötzlichen Tod. Ziel dieser Studie war es, basierend auf unseren Beobachtungen, einen Auslöser für diesen komplexen und vielseitigen Phänotyp zu finden. Die beobachtete Nierendegeneration in unseren SPRED2-KO-Mäusen war auf eine Hydronephrose zurückzuführen, welche durch schwere Atrophie des Nierengewebes und Apoptose von Nierentubuluszellen gekennzeichnet war. Aufgrund des Nierenschadens haben wir Trinkverhalten und gängige Serumparameter analysiert. Trotz der Polydipsie, die sich durch eine nahezu verdoppelte tägliche Wasseraufnahme manifestierte, konnten signifikant erhöhte Na+- und Cl--Werte und die daraus resultierende Hyperosmolalität im Serum der SPRED2-KOs nicht kompensiert werden. Weil Salz- und Wasserhaushalt zum größten Teil unter der hormonellen Kontrolle von Aldosteron und ADH stehen, haben wir beide Hormonspiegel untersucht. Während die ADH-Werte im Serum von WT- und KO-Mäusen vergleichbar waren, insbesondere nach experimentellem Wasserentzug und einem extremen Verlust von Körperflüssigkeit, waren die Serumspiegel von Aldosteron in den SPRED2-KO-Mäusen verdoppelt. Die systematische Untersuchung übergeordneter regulatorischer Hormonachsen ergab, dass sich der Hyperaldosteronismus unabhängig von einer erhöhten Aktivität des Renin-Angiotensin-Systems entwickelte, da die Serum-Ang II-Spiegel in den SPRED2-KOs etwa um die Hälfte reduziert waren. Die Expression der Aldosteronsynthase in der Nebenniere war jedoch wesentlich erhöht. Für Kortikosteron, das wie Aldosteron von der Nebennierenrinde freigesetzt wird, konnten wir ebenfalls mehr als doppelt so hohe Werte im Serum der KO-Tiere detektieren. Die Aldosteron-Produktion steht, ähnlich wie bei Kortikosteron, zumindest teilweise unter der Kontrolle des hypophysären Hormons ACTH, dessen Sekretion wiederum übergeordnet durch die Freisetzung von CRH aus dem Hypothalamus geregelt wird. Tatsächlich war die Stresshormon-Sekretion entlang dieser gesamten Hypothalamus-Hypophysen-Nebennierenrinden-Achse erhöht, da Serum-ACTH, das mittlere, hypophysäre Hormon, und hypothalamisches CRH, der übergeordnete hormonelle Induktor der HPA-Achse, in den SPRED2-KOs auch um 30% erhöht waren. Zusätzlich waren die ERK-Aktivität ebenso wie die CRH-mRNA-Spiegel im paraventrikulären Nukleus des Hypothalamus in unseren SPRED2-KO-Mäusen deutlich höher. In vitro Studien mit der Hypothalamus-Zelllinie mHypoE-44 zeigten weiterhin, dass sowohl SPRED1 als auch SPRED2 die Aktivität des CRH-Promotors, die CRH-Sekretion und die Ets-Faktor-abhängige CRH-Transkription reduzieren können. Passend dazu enthält die CRH-Promotorregion zahlreiche verschiedene Bindungsstellen für Transkriptionsfaktoren der Ets-Familie, speziell für Ets1. Somit zeigt diese Studie zum ersten Mal, dass die durch SPRED2-vermittelte Hemmung der Ras/ERK/MAPK-Signalkaskade mittels Unterdrückung der ERK-Aktivität zu einer Herunterregulation der Ets1-Faktor-abhängigen Transkription führt, was eine Hemmung der CRH-Promotoraktivität, der CRH-Transkription und der CRH-Freisetzung aus dem Hypothalamus zur Folge hat. Die daraus resultierende Hyperaktivität der gesamten HPA-Achse in unseren SPRED2-KO-Mäusen spiegelt eine erhöhte endogene Stress-Reaktion wider und äußert sich durch übermäßiges Putzverhalten und durch selbst zugefügte Hautläsionen auf der einen Seite; auf der anderen Seite erklärt dies, in Kombination mit der erhöhten Aldosteronsynthase-Expression, den Hyperaldosteronismus und das damit verbundene Ungleichgewicht in Salz- und Wasserhaushalt. Weiterhin tragen sowohl Hyperaldosteronismus als auch Polydipsie sehr wahrscheinlich zu den beobachteten Nierenschädigungen bei. Zusammengefasst ist diese Studie ein erster Hinweis, dass SPRED2 wesentlich an der adäquaten Regulation der HPA-Achsen-Aktivität beteiligt ist und essentiell ist für die Aufrechterhaltung der Homöostase im Körper. Um die Folgen von SPRED2-Defizienz in Mäusen und vor allem im Menschen weiter aufzuklären und zu vergleichen, erforschen wir in zwei Folgeprojekten die Funktion von SPRED2 speziell im Gehirn und im Herzen und führen parallel ein genetisches Screening zur Identifikation von funktionellen SPRED2-Mutationen im Menschen durch. KW - Renin-Angiotensin-System KW - Spred-Proteine KW - MAP-Kinase KW - Hypophysen-Zwischenhirn-System KW - Knockout KW - SPRED2 KW - ERK KW - MAP Kinase Signaling KW - HPA Axis KW - Renin Angiotensin System KW - Knockout mouse KW - Spred Protein KW - Hypothalamisch-hypophysäre Achse KW - Renin-Angiotensin-Aldosteron-System KW - MAP-Kinase KW - Gen-Knockout Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107355 ER - TY - THES A1 - Lies, Barbara Christiane T1 - Untersuchung zur NO/cGMP-Signaltransduktion in der glatten Muskulatur von NO-GC-defizienten Mäusen T1 - Investigation of NO/cGMP signaltransduction in smooth muscle of NO-GC-deficient mice N2 - Die Stickstoffmonoxid (NO)/cGMP-Signaltransduktion besitzt eine entscheidende Rolle bei der Tonusregulation der glatten Muskulatur. Dabei ist NO neben seiner herausragenden Bedeutung für das vaskuläre System einer der wichtigsten inhibitorischen Neurotransmitter im Gastrointestinaltrakt. Die Wirkung von NO beruht hauptsächlich auf der Aktivierung der NO-sensitiven Guanylyl-Cyclase (NO-GC), die aus zwei Untereinheiten aufgebaut ist (α und ß). Die Deletion der ß1-Untereinheit in Mäusen resultiert in einem vollständigen NO-GC-Knockout (GCKO). Im Gastrointestinaltrakt ist die Expression von NO-GC in glatten Muskelzellen (SMC), interstitiellen Zellen von Cajal (ICC) und Fibroblasten-ähnlichen Zellen (FLC) nachgewiesen. In dieser Arbeit wurde die Bedeutung des NO/cGMP-Signalweges für die Regulation von Kontraktion und Relaxation innerhalb dieser drei Zelltypen anhand von zellspezifischen GCKO-Tieren untersucht. SMC- und ICC-spezifische GCKO-Tiere waren bereits vorhanden. FLC-spezifische GCKO-Tiere wurden generiert und mit den vorhandenen ICC- und SMC-GCKO-Linien gekreuzt, um Doppel- und Tripel-Knockout-Tiere zu erhalten. FLC-GCKO-Tiere zeigen eine NO-induzierte Relaxation glattmuskulären Gewebes, die der von WT-Tieren gleicht. Auch Gewebe von FLC/ICC- und FLC/SM-GCKO-Tieren kann durch NO relaxiert werden. Erst die Deletion der NO-GC in allen drei Zelltypen (Tripel-GCKO) führt zu einer Unterbrechung der NO-Relaxation, wie sie aus GCKO-Tieren bekannt ist. Überraschenderweise zeigt sich bei FLC-GCKO-Tieren eine beschleunigte Darmpassagezeit. Die Ergebnisse dieser Arbeit lassen darauf schließen, dass die NO-GC in allen drei Zelltypen des Gastrointestinaltrakts an der nitrergen Signaltransduktion beteiligt ist, wenn auch auf unterschiedliche Weise. Es besteht demnach eine Interaktion zwischen den verschiedenen Zelltypen, die durch weiterführende Versuche mit den vorhandenen Doppel-Knockout-Tieren sowie der Tripel-GCKO-Linie nähergehend untersucht werden muss. Der zweite Teil der Arbeit beschäftigte sich mit der Rolle der NO-GC im unteren Harntrakt. Dort liegt die NO-GC in verschieden Zelltypen vor. In Urethra-Gewebe wird die NO-GC ausschließlich in SMC exprimiert, während sie in der Harnblase einzig in interstitiellen Zellen, nicht aber in SMC, befindet. Funktionell hat dies zur Folge, dass die NO-induzierte Urethra-Relaxation ausschließlich von glatten Muskelzellen vermittelt wird. Die Harnblasenmuskulatur hingegen zeigt keine Relaxation auf NO-Gabe hin. Die Identifizierung der NO-GC-exprimierenden interstitiellen Zellen sowie ihre Funktion sind bislang ungeklärt. In einem dritten Projekt wurden Untersuchungen zur Effektivität der NO-GC-Inhibitoren ODQ und NS2028 durchgeführt. Die Ergebnisse zeigen, dass bei einem Einsatz der Inhibitoren nicht von einer vollständigen Hemmung der NO-GC ausgegangen werden sollte. Drei Faktoren beeinflussen nachhaltig die Inhibitor-Effektivität: (1) die Klasse des NO-Donors, (2) die Inkubationszeit mit dem Inhibitor und dem NO-Donor sowie (3) die Stärke der Vorkontraktion bei Versuchen mit Glattmuskelgewebe. Die Wahl dieser Parameter bestimmt, in welchem Ausmaß ODQ und NS2028 die NO-stimulierte NO GC inhibieren können. Aus diesem Projektteil resultiert, dass man den Einsatz dieser Inhibitoren nicht, wie vielfach in der Literatur vorzufinden, als Beweis für cGMP unabhängige Effekte nutzen sollte. N2 - The nitric oxide (NO)/cGMP signal transduction has a prominent role in the control of smooth muscle tone. Besides its outstanding function in vascular relaxation NO is a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. It acts predominantly via NO-sensitive guanylyl cyclase (NO-GC) which consists of two subunits (α and ß). Deletion of the ß1 subunit in the mouse leads to a global NO-GC knockout (GCKO). In the GI tract, expression of NO-GC is detected in smooth muscle cells (SMC), interstitial cells of Cajal (ICC) and fibroblast-like cells (FLC). Using cell-specific knock-out mice the impact of NO/cGMP-signaling on regulation of contraction and relaxation in the respective GI cell types was investigated. SMC- and ICC-specific GCKO mice already existed in our lab whereas FLC-specific GCKO mice were generated and then crossed to obtain double and triple mutants. GI smooth muscle from FLC-GCKO mice shows a WT-like relaxation towards NO. Also tissue from FLC/ICC- and FLC/SM-GCKO mice can be relaxed by addition of NO. Only deletion of NO-GC in all three cell types leads to an abolished relaxation as seen in GCKO tissue. Surprisingly, FLC-GCKO mice show an accelerated gut transit time in comparison to WT animals. These results lead to the conclusion that NO-GC in all three GI cell types mediates nitrergic signaling in smooth muscle, even though in different ways. There seems to be an interaction of the three cell types which needs to be further attended to by investigation of the double- and triple-GCKO mutants. The second part of this project engaged in the investigation of NO-GC in the lower urinary (LU) tract. Here, expression of NO-GC is detected in urethra and urinary bladder. Urethral NO-GC is expressed in SMC whereas in the urinary bladder NO-GC expression can only be detected in interstitial cells. As a consequence, NO-induced urethral relaxation is exclusively dependent on SMC. Bladder smooth muscle does not reveal NO-mediated relaxation. The identification and function of the NO-GC expressing interstitial cells remains to be further investigated. Investigation of the NO-GC inhibitors ODQ and NS2028 shows that their efficiency is dependent on three different factors: (1) class of NO donor, (2) incubation time of the inhibitor and the NO donor and (3) the strength of pre-contraction when using smooth muscle tissue. The choice of these parameters determines to which extent ODQ and NS2028 are able to inhibit NO-GC. For that reason use of these inhibitors should not be taken as proof of cGMP-independent effects. KW - Glatte Muskulatur KW - Gastrointestinaltrakt KW - NO-sensitive Guanylyl-Cyclase KW - unterer Harntrakt KW - NO-sensitive guanylyl cyclase KW - lower urinary tract KW - gastrointestinal tract KW - smooth muscle KW - Maus KW - Knockout KW - Stickstoffoxide KW - Cyclo-GMP KW - Signaltransduktion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85499 ER - TY - THES A1 - Groneberg, Dieter T1 - Funktion der NO-sensitiven Guanylyl-Cyclase in der glatten Muskulatur T1 - The function of NO-sensitive guanylyl cyclase in smooth muscle N2 - Die Stickstoffmonoxid (NO)-cGMP-Signalkaskade spielt eine entscheidende Rolle in der Kontrolle des glatten Muskeltonus. NO ist einer der wichtigsten vaskulären Faktoren für die Relaxation der Blutgefäße sowie für die Regulation des Blutdruckes und fungiert ebenfalls als wichtigster inhibitorischer Neurotransmitter im gastrointestinalen Trakt. Es wirkt hauptsächlich über die NO-sensitive Guanylyl-Cyclase (NO-GC), die aus zwei Untereinheiten aufgebaut ist (α und ß). Deletion der ß1-Untereinheit in Mäusen führt zu einem vollständigen NO-GC-Knockout (GCKO). GCKO-Mäuse zeigen keine NO-induzierte Relaxation der vaskulären und gastrointestinalen glatten Muskulatur. Die Mäuse zeigen eine arterielle Hypertonie und eine verlängerte Magen-Darm-Transportzeit, die in eine gastrointestinale Dysfunktion mündet. Allerdings erlaubt eine vollständige Deletion der NO-GC in den Mäusen keine Identifikation des Zell- bzw. Gewebe-Typs, der für den erhöhten Blutdruck und die gastrointestinale Dysfunktion verantwortlich ist. Um die relative Beteiligung der glatten Muskelzellen an der Hypertonie und der gestörten Darm-Motilität zu bestimmen, wurden Glattmuskel-spezifische Knockout-Mäuse für die ß1-Untereinheit der NO-GC (SM-GCKO) generiert. Die SM-GCKO-Mäuse entwickelten im Verlauf der Deletion eine arterielle Hypertonie in Kombination mit einem Verlust der NO-induzierten Glattmuskelrelaxation. Diese Daten zeigen, dass die Deletion der NO-GC in den glatten Muskelzellen völlig ausreichend ist, eine Hypertonie zu erzeugen. Überraschenderweise ist die Darm-Motilität der SM-GCKO-Mäuse im Vergleich zu den WT-Mäusen unverändert. In gastrointestinaler Muskulatur exprimieren neben den glatten Muskelzellen auch die interstitiellen Zellen von Cajal (ICC) die NO-GC. Mithilfe einer Cre-spezifischen Maus für ICC wurde eine Mauslinie generiert, der die NO-GC in beiden Zelltypen fehlt. Der gastrointestinale Phänotyp dieser Doppel-Knockouts ähnelt dem der totalen GCKO-Tiere: Die nitrerge Relaxation fehlt und die Magen-Darm-Transportzeit ist verlängert. Zusammenfassend führt eine Deletion der NO-GC in glatten Muskelzellen und gleichzeitig in den ICC zu einer vollständigen Unterbrechung der nitrergen Relaxation in GI Trakt. N2 - The nitric oxide (NO)-cGMP signaling pathway plays a prominent role in the control of smooth muscle tone. NO is one of the main vascular factors responsible for the relaxation of blood vessels, regulation of blood pressure and also acts as major inhibitory neurotransmitter in the gastrointestinal (GI) tract. It acts predominantly via NO-sensitive guanylyl cyclase (NO-GC) which is made up of 2 different subunits (α and ß). Deletion of the ß1 subunit in the mouse leads to a global NO-GC knockout (GCKO). GCKO mice do not reveal NO-induced relaxation of vascular and GI smooth muscle. They show hypertension and an increased gut transit time resulting in GI dysfunction. However, global deletion of NO-GC in mice does not allow identification of the cell/tissue type responsible for the elevated blood pressure and GI dysfunction. To determine the relative contribution of smooth muscle cells to the hypertension and GI dysfunction seen in NO-GC knockout mice were generated smooth muscle–specific knockout mice for the ß1 subunit of NO-GC (SM-GCKO) using a tamoxifen-inducible system. SM-GCKO animals develop hypertension over time in combination with a loss of NO-induced smooth muscle relaxation. In sum, these data provide evidence that deletion of NO-GC solely in smooth muscle is sufficient to cause hypertension. Surprisingly, NO-induced relaxation of GI smooth muscle was only slightly reduced in SM-GCKO mice and gut motility was unchanged compared to wild-type mice. Taken together, lack of NO-GC in smooth muscle cells does not impair NO induced relaxation of GI tissues or GI motility. To determine the cell type expressing NO-GC we used immunhistochemistry. We found that, in addition to smooth muscle, interstitial cells of Cajal (ICC) express NO GC. With a Cre specific mouse model for ICC we generated a mouse line lacking NO-GC in both smooth muscle and ICC. In these double knockouts we observed a phenotype similar to that seen in total GCKO mice including lack of nitrergic relaxation and increased gut transit time. In conclusion, lack of NO-GC in both SMC and ICC totally abolishes nitrergic signaling in GI tract. KW - Knockout KW - Glatte Muskulatur KW - Hypertonie KW - Motilität KW - Maus KW - knockout KW - smooth muscle KW - hypertension KW - motility KW - mouse Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67689 ER - TY - THES A1 - Erxleben, Franziska T1 - cDNA-Microarray-Analyse von ZNS-Kaliumkanal defizienten Mäusen T1 - cDNA-Microarry-Analysis of CNS-potassium channel deficient mice N2 - Ziel der Arbeit war die Erstellung eines „Kaliumkanal-Chips“, die Entwicklung einer geeigneten Messmethode und Auswertungsstrategie, die Durchführung von Testmessungen und die Untersuchung eines Knockout-Mausstammes auf den Genexpressionsstatus und die auftretenden Kompensationsmechanismen. Am Beginn der Arbeit stand vor allem die Auswahl der zu untersuchenden Kaliumkanal-Gene und die Sammlung von Sequenz-Informationen. Ausgehend davon konnte die cDNAMicroarray-Technologie als Methode der Wahl bestimmt werden und die entsprechenden Vorbereitungen für die Umsetzung getroffen werden. Die ersten Messungen im Zuge der Methodenentwicklungen zeigten vor allem, dass jeder Microarray seine individuellen Probleme mit sich bringt, ließen jedoch auch schon erahnen, welche umfangreichen Möglichkeiten diese Technologie bietet. Dann folgten Versuchsmessreihen, wie die Untersuchung der lterspezifischen Expression und der Vergleich von bestimmten Gehirnabschnitten mit dem Gesamtgehirn. Den Abschluss bildete die Messung der TRESK-Knockout-Mauslinie im Vergleich zu ihrem Wildtyp. Hier stand die Frage nach möglichen Kompensationsmechanismen im Vordergrund. Mit kcnk16 haben die Messungen einen interessanten Kandidaten aus der gleichen Genfamilie geliefert, dessen Funktion und Kompensationsvermögen nun in weiteren Tests zu untersuchen ist. Die Arbeit hat gezeigt, dass der Einsatz der Microarray-Technologie zur Untersuchung von Genexpressionsdaten bei Ionenkanalfamilien geeignet ist. Das Fundament der Microarrayanalyse von Kaliumkanälen mit einem individuell entwickelten Microarray ist zum einen das Wissen um Genetik und Funktion der Kaliumkanäle und zum anderen die Technologie, die eine solche Analyse möglich macht. Die Tatsache, dass Säugerorganismen wie Maus und Mensch eine solch hohe Zahl an Kaliumkanälen entwickelt haben und im ständigen Zellstoffwechsel in umfassender Form einsetzen, zeigt die Bedeutung dieser Ionenkanalfamilie und macht die Forschung an diesen Kanälen so interessant und wichtig für die medizinische Grundlagenforschung. Eine Vielzahl von Krankheiten kann schon jetzt direkt oder indirekt auf Gendefekte bei Kaliumkanal-Genen zurückgeführt werden. Mit der Microarray-Analyse steht nun eine Technologie zu Verfügung, die es ermöglicht, die Expression dieser Gene direkt zu untersuchen und mögliche Kompensationsvorgänge aufzudecken. Damit können Zusammenhänge ermittelt werden, die die Grundlage für weitere Forschungen sein können, mit deren Hilfe wir Krankheiten wie Depression eines Tages wirklich verstehen und behandeln können. N2 - The aims of this dissertation were the creation of a „potassium channel chip“, the development of adequate measurement method and strategy of analysis, the performance of developmental experiments and the analysis of the status of genexpression and the occurring mechanisms of compensation in a knockout mouse stem. In beginning the selection of the potassium channel genes to be considered as interesting part of the microarray and the compilation of the sequence information was the main part of the work. Starting from this the choice of the adequate cDNA-microarray-technology and the preparation of the implementation was possible. The first experiments performed in the course of the method development have given a hint on the problems connected with every microarray. However they also have shown the great possibilities of the microarray technology. In the ollowing series of measurements like the investigation of variation of expression during the juvenile development and the comparison of different parts of the brain with the whole brain were performed. The studies were completed by the investigation of the TRESK-Knockout mouse stem in comparison to its wild type. The centre of these studies was the question for possible mechanisms of compensation. As a result kcnk16 - being part of the same gene family as TRESK - can be named as an interesting candidate to be investigated for its function and capacity of compensation in the future. In my dissertation I was able to show that the microarray technology is an adequate method for the comparison of genexpression between members of ion channel families. The bases of the microarray analysis of potassium channels with a individually designed microarray are on the one side the knowledge of the genetics and function of the potassium channels and on the other side the technology which allows this kind of analysis. The fact that mammalian organism like mouse and human have developed such a great number of potassium channels and are using these in the regular cell metabolism in a comprehensive way shows the importance of this ion channel family and makes the research on these channels so interesting and important for fundamental research. A multiplicity of diseases can be attributed indirectly or directly to gene malfunctions in potassium channels. With microarray a technology is available, which permits to investigate the expression of these genes directly and to discover possible ways of compensation. By this coherences can be identified being the basis for continuative research which one day will make it possible to really understand and treat diseases like depression. KW - Maus KW - Knockout KW - Kaliumkanal KW - Zentralnervensystem KW - Microarray KW - DNS-Chip KW - Knock-out Maus KW - TRESK KW - Zentralnervensystem KW - Hirnzelle KW - Ionenkanal KW - Spannungskontrollierter Ionenkanal KW - Differentielle Genexpression KW - Potassium channel KW - Microarray KW - CNS KW - Genexpression KW - Knock out Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65640 ER -