TY - JOUR A1 - Kraus, Hannes A1 - Heiber, Michael C. A1 - Väth, Stefan A1 - Kern, Julia A1 - Deibel, Carsten A1 - Sperlich, Andreas A1 - Dyakonov, Vladimir T1 - Analysis of Triplet Exciton Loss Pathways in PTB7:PC\(_{71}\)BM Bulk Heterojunction Solar Cells JF - Scientific Reports N2 - A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC\(_{71}\)BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC\(_{71}\)BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC\(_{71}\)BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway. KW - solar cells KW - electronic properties and materials Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147413 VL - 6 IS - 29158 ER - TY - JOUR A1 - Gottscholl, Andreas A1 - Diez, Matthias A1 - Soltamov, Victor A1 - Kasper, Christian A1 - Krauße, Dominik A1 - Sperlich, Andreas A1 - Kianinia, Mehran A1 - Bradac, Carlo A1 - Aharonovich, Igor A1 - Dyakonov, Vladimir T1 - Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors JF - Nature Communications N2 - Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (V\(_B\)\(^−\)) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the V\(_B\)\(^−\). Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials. KW - electronic properties and materials KW - qubits Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261581 VL - 12 IS - 1 ER -