TY - JOUR A1 - Kortmann, Mareike A1 - Roth, Nicolas A1 - Buse, Jörn A1 - Hilszczański, Jacek A1 - Jaworski, Tomasz A1 - Morinière, Jérôme A1 - Seidl, Rupert A1 - Thorn, Simon A1 - Müller, Jörg C. T1 - Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations JF - Ecological Applications N2 - Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta‐barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order‐level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20%–30% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76%–98%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed‐canopy forests (>70% cover) and open forests (<30% cover) on the landscape. KW - arthropods KW - biodiversity KW - conservation KW - metabarcoding KW - national park KW - natural disturbance KW - threshold indicator taxa analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276392 VL - 32 IS - 2 ER - TY - JOUR A1 - Kleemann, Janina A1 - Zamora, Camilo A1 - Villacis-Chiluisa, Alexandra Belen A1 - Cuenca, Pablo A1 - Koo, Hongmi A1 - Noh, Jin Kyoung A1 - Fürst, Christine A1 - Thiel, Michael T1 - Deforestation in continental Ecuador with a focus on protected areas JF - Land N2 - Forest conservation is of particular concern in tropical regions where a large refuge of biodiversity is still existing. These areas are threatened by deforestation, forest degradation and fragmentation. Especially, pressures of anthropogenic activities adjacent to these areas significantly influence conservation effectiveness. Ecuador was chosen as study area since it is a globally relevant center of forest ecosystems and biodiversity. We identified hotspots of deforestation on the national level of continental Ecuador between 1990 and 2018, analyzed the most significant drivers of deforestation on national and biome level (the Coast, the Andes, The Amazon) as well as inside protected areas in Ecuador by using multiple regression analysis. We separated the national system of protected areas (SNAP) into higher and lower protection levels. Besides SNAP, we also considered Biosphere Reserves (BRs) and Ramsar sites. In addition, we investigated the rates and spatial patterns of deforestation in protected areas and buffer zones (5 km and 10 km outwards the protected area boundaries) using landscape metrics. Between 1990 and 2018, approximately 4% of the accumulated deforestation occurred within the boundaries of SNAP, and up to 25.5% in buffer zones. The highest rates of deforestation have been found in the 5 km buffer zone around the protected areas with the highest protection level. Protected areas and their buffer zones with higher protection status were identified as the most deforested areas among SNAP. BRs had the highest deforestation rates among all protected areas but most of these areas just became BRs after the year 2000. The most important driver of deforestation is agriculture. Other relevant drivers differ between the biomes. The results suggest that the SNAP is generally effective to prevent deforestation within their protection boundaries. However, deforestation around protected areas can undermine conservation strategies to sustain biodiversity. Actions to address such dynamics and patterns of deforestation and forest fragmentation, and developing conservation strategies of their landscape context are urgently needed especially in the buffer zones of areas with the highest protection status. KW - conservation KW - driving forces KW - forest KW - loss KW - human pressure KW - land use change KW - landscape metrics KW - protection status KW - spatial analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262078 SN - 2073-445X VL - 11 IS - 2 ER - TY - JOUR A1 - Job, Hubert A1 - Meyer, Constantin A1 - Coronado, Oriana A1 - Koblar, Simon A1 - Laner, Peter A1 - Omizzolo, Andrea A1 - Plassmann, Guido A1 - Riedler, Walter A1 - Vesely, Philipp A1 - Schindelegger, Arthur T1 - Open spaces in the European Alps — GIS-based analysis and implications for spatial planning from a transnational perspective JF - Land N2 - This article presents an open space concept of areas that are kept permanently free from buildings, technical infrastructure, and soil sealing. In the European Alps, space is scarce because of the topography; conflicts often arise between competing land uses such as permanent settlements and commercial activity. However, the presence of open spaces is important for carbon sequestration and the prevention of natural hazards, especially given climate change. A GIS-based analysis was conducted to identify an alpine-wide inventory of large-scale near-natural areas, or simply stated, open spaces. The method used identified the degree of infrastructure development for natural landscape units. Within the Alpine Convention perimeter, near-natural areas (with a degree of infrastructural development of up to 20%) account for a share of 51.5%. Only 14.5% of those areas are highly protected and are mostly located in high altitudes of over 1500 m or 2000 m above sea level. We advocate that the remaining Alpine open spaces must be preserved through the delimitation of more effective protection mechanisms, and green corridors should be safeguarded through spatial planning. To enhance the ecological connectivity of open spaces, there is the need for tailored spatial and sectoral planning strategies to prevent further landscape fragmentation and to coordinate new forms of land use for renewable energy production. KW - Alps KW - conservation KW - connectivity KW - fragmentation KW - GIS-analysis KW - land use KW - open spaces KW - protected areas KW - sectoral planning KW - spatial planning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288207 SN - 2073-445X VL - 11 IS - 9 ER - TY - JOUR A1 - Wehner, Helena A1 - Huchler, Katharina A1 - Fritz, Johannes T1 - Quantification of foraging areas for the Northern Bald Ibis (Geronticus eremita) in the northern Alpine foothills: a random forest model fitted with optical and actively sensed earth observation data JF - Remote Sensing N2 - The Northern Bald Ibis (Geronticus eremita, NBI) is an endangered migratory species, which went extinct in Europe in the 17th century. Currently, a translocation project in the frame of the European LIFE program is carried out, to reintroduce a migratory population with breeding colonies in the northern and southern Alpine foothills and a common wintering area in southern Tuscany. The population meanwhile consists of about 200 individuals, with about 90% of them carrying a GPS device on their back. We used biologging data from 2021 to model the habitat suitability for the species in the northern Alpine foothills. To set up a species distribution model, indices describing environmental conditions were calculated from satellite images of Landsat-8, and in addition to the well-proven use of optical remote sensing data, we also included Sentinel-1 actively sensed observation data, as well as climate and urbanization data. A random forest model was fitted on NBI GPS positions, which we used to identify regions with high predicted foraging suitability within the northern Alpine foothills. The model resulted in 84.5% overall accuracy. Elevation and slope had the highest predictive power, followed by grass cover and VV intensity of Sentinel-1 radar data. The map resulting from the model predicts the highest foraging suitability for valley floors, especially of Inn, Rhine, and Salzach-Valley as well as flatlands, like the Swiss Plateau and the agricultural areas surrounding Lake Constance. Areas with a high suitability index largely overlap with known historic breeding sites. This is particularly noteworthy because the model only refers to foraging habitats without considering the availability of suitable breeding cliffs. Detailed analyses identify the transition zone from extensive grassland management to intensive arable farming as the northern range limit. The modeling outcome allows for defining suitable areas for further translocation and management measures in the frame of the European NBI reintroduction program. Although required in the international IUCN translocation guidelines, the use of models in the context of translocation projects is still not common and in the case of the Northern Bald Ibis not considered in the present Single Species Action Plan of the African-Eurasian Migratory Water bird Agreement. Our species distribution model represents a contemporary snapshot, but sustainability is essential for conservation planning, especially in times of climate change. In this regard, a further model could be optimized by investigating sustainable land use, temporal dynamics, and climate change scenarios. KW - Northern Bald Ibis KW - conservation KW - species distribution modeling KW - random forest modeling KW - remote sensing KW - reintroduction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262245 SN - 2072-4292 VL - 14 IS - 4 ER -