TY - JOUR A1 - Groh, Claudia A1 - Rössler, Wolfgang T1 - Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee JF - Insects N2 - Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect. KW - mushroom body KW - microglomeruli KW - projection neurons KW - Kenyon cells KW - dendritic specializations KW - structural synaptic plasticity KW - behavioral plasticity KW - vision KW - olfaction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200774 SN - 2075-4450 VL - 11 IS - 1 ER - TY - JOUR A1 - Kirsch, Wladimir A1 - Ullrich, Benjamin A1 - Kunde, Wilfried T1 - Are Effects of Action on Perception Real? Evidence from Transformed Movements JF - PLoS ONE N2 - It has been argued that several reported non-visual influences on perception cannot be truly perceptual. If they were, they should affect the perception of target objects and reference objects used to express perceptual judgments, and thus cancel each other out. This reasoning presumes that non-visual manipulations impact target objects and comparison objects equally. In the present study we show that equalizing a body-related manipulation between target objects and reference objects essentially abolishes the impact of that manipulation so as it should do when that manipulation actually altered perception. Moreover, the manipulation has an impact on judgements when applied to only the target object but not to the reference object, and that impact reverses when only applied to the reference object but not to the target object. A perceptual explanation predicts this reversal, whereas explanations in terms of post-perceptual response biases or demand effects do not. Altogether these results suggest that body-related influences on perception cannot as a whole be attributed to extra-perceptual factors. KW - vision KW - preprocessing KW - analysis of variance KW - sensory perception KW - hands KW - fingers KW - experimental design KW - perception Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178574 VL - 11 IS - 12 ER - TY - JOUR A1 - Falibene, Augustine A1 - Roces, Flavio A1 - Rössler, Wolfgang A1 - Groh, Claudia T1 - Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain JF - Frontiers in Behavioral Neuroscience N2 - Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies. KW - microglomeruli KW - temperature KW - broodtranslocation KW - camponotus ants KW - olfaction KW - vision KW - synapticplasticity KW - mushroom body Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146711 VL - 10 IS - 73 ER - TY - THES A1 - Mronz, Markus T1 - Die visuell motivierte Objektwahl laufender Taufliegen (Drosophila melanogaster) - Verhaltensphysiologie, Modellbildung und Implementierung in einem Roboter T1 - Visually motivated object choice in walking fruit flies (Drosophila melanogaster) – behavioural physiology, modelling and implementation in a robot N2 - Im Rahmen dieser Arbeit wurden offene Fragen zur Objektwahl, zur Objektbeibehaltung und zur Aufgabe von Zielobjekten bei laufenden Taufliegen (Drosophila melanogaster) untersucht. Die Erkenntnisse zur Objektwahl wurden als kybernetisches Modell formuliert, auf einem eigens dafür konstruierten, autonom navigierenden Roboter mit Kameraauge implementiert und dessen Verhalten bei verschiedenen Landmarkenkonstellationen quantitativ mit dem Orientierungsverhalten laufender Fliegen verglichen. Es war bekannt, dass Drosophila in einer Wahlsituation zwischen unterschiedlich weit entfernten Objekten eine ausgeprägte Präferenz für nahe Objekte zeigt, wobei die Entfernung über das Ausmaß der retinalen Bildverschiebung auf dem Auge (Parallaxe) erfasst wird. In der vorliegenden Arbeit wurde analysiert, ob die Parallaxe streng aus der Eigenbewegung der Fliege resultieren muss oder ob Eigenbewegung der Objekte Nähe vortäuschen und deren Attraktivität erhöhen kann. Es wurde gezeigt, dass die Präferenz für ein Objekt bei Drosophila umso größer wird, je mehr Bewegung dessen Abbild auf der Retina erzeugt; die relative Verschiebung des Objektabbildes muss dabei nicht mit der Eigenbewegung der Fliege gekoppelt sein. Überraschenderweise verschwand die Präferenz für nahe Objekte, wenn eine zusammenstehende Gruppe aus einer nahen und mehreren fernen Objekten präsentiert wurden, solange sie zusammen einen Sehwinkel von weniger als etwa 90° einnahmen. Diese Beobachtung ist konform mit einer Vorstellung, wonach Bewegung über größere Augenbereiche integriert und nicht einzelnen Objekten zugeordnet wird. Obwohl Drosophila bei gleichem Präsentationsort auf der Retina die größere parallaktische Bewegung bevorzugte, wurden bei gleicher Entfernung dennoch frontalere gegenüber lateraleren Objekten bevorzugt. Es wird postuliert, dass der frontale und der caudale Sehbereich eine Verstärkung erfahren, die die physikalisch bedingt geringere Parallaxe überkompensiert. Laufende Fliegen reagieren verzögert auf die Präsentation eines Objekts; dies wird im Sinne einer zeitlichen Bewegungsintegration interpretiert. Die darauf folgende Richtungsänderung hängt vom Präsentationswinkel des Objektes ab. Erscheint das Objekt frontolateral, findet eine Hinwendung statt, erscheint es caudolateral, kommt es bevorzugt zur Abwendung. Eine weitere wichtige kognitive Leistung der Fliege ist das Aufgeben eines zuvor ausgewählten Ziels, wenn sich dieses Ziel während des Anlaufs als unerreichbar herausstellt. In der vorliegenden Arbeit wurde gezeigt, dass Fliegen mit stark reduzierten Pilzkörpern erheblich mehr Zeit benötigen als wildtypische Fliegen, um vom gewählten Zielobjekt abzulassen. Dieser dem Perseveranzverhalten bei Parkinson-kranken Menschen ähnliche Phänotyp wurde unabhängig von der Methode der Ausschaltung der Pilzkörper gefunden. Die Dauer der Perseveranz nahm mit zunehmender Attraktivität des Zielobjekts, d. h. mit abnehmender Distanz, zu. Es wird vorgeschlagen, dass die Pilzkörper für die Evaluierung von eingehender sensorischer Information oder für Entscheidungsfindungen im Allgemeinen benötig werden. Basierend auf diesen Ergebnissen wurde ein Minimalmodell für die visuelle Orientierung nach Landmarken entwickelt. Das Modell beinhaltet eine zeitliche Integration des optischen Flusses in einem frontolateralen und einem caudolateralen Kompartiment pro Auge. Je nachdem, in welchem Kompartiment eine festgesetzte Schwelle zuerst erreicht wird, kommt es entweder zu einer Hin- (frontolateral) oder zu einer Abwendungsreaktion (caudolateral). Eine Gewichtungsfunktion kompensiert die geringe parallaktische Verschiebung in diesen Sehregionen. Das Modell wurde in einem mobilen Roboter mit Kameraauge implementiert und mit dem visuellen Orientierungsverhalten der Fliege quantitativ verglichen. Der Roboter war in der Lage, viele Aspekte der Landmarkenwahl von laufenden Fliegen erfolgreich zu reproduzieren und fliegenähnliches, autonomes Orientierungsverhalten unter verschiedenen Landmarkenkonfigurationen zu zeigen. N2 - The present study addresses open questions regarding visual orientation behaviour of walking fruit flies (Drosophila melanogaster), in particular how they choose near over far objects and how they maintain or adaptively abandon their choice. The findings led to a cybernetic model, suitable to autonomously control a mobile robot with panoramic vision, which was constructed, built and quantitatively compared to fly behaviour during this study. For a wide range of landmark constellations the robot exhibits fly-like orientation behaviour. Drosophila is known to choose, with a high probability, the nearest of several similar objects first. Distance to objects is measured by the extent of the retinal shift of their images on the eye (parallax motion). The present study asked whether parallax motion needs to directly result from the fly’s self-motion or whether motion of objects can increase their attractiveness because they appear to be closer to the fly. The data show that flies prefer objects the more, the larger the shift of the object image becomes on the retina. This is independent of the source of the retinal shift, object motion or self-motion of the fly. Surprisingly, the preference for near objects disappeared when a near object was presented together with several distant objects within a viewing angle of less then 90°. This observation led to the assumption that motion parallax is spatially integrated over larger areas of the eye and not seen as an entity of the single object. Physically, the extent of parallax motion caused by a stationary object on the retina of a walking fly depends not only on the distance but also on the angle under which it is seen. Although Drosophila prefers the larger amount of visual motion at a given presentation angle, it clearly prefers frontal over lateral objects. In order to account for the preference for frontal objects an amplification of the frontal and caudal eye regions is postulated which would otherwise receive less parallax motion. It turned out that walking flies respond only delayed to the presentation of a single object. This delay is consistent with the idea of temporal integration of parallax motion in order to judge distance. Astonishingly, the following course change depends on the viewing angle of the object. If an attractive object is shown in the frontolateral eye region the flies turn towards it. If it appears in the caudolateral part of the retina the flies preferentially turn away from it. Among the key abilities of animals must be the ability to give up on a once chosen target object if that object turns out to be inaccessible. The present study proves that flies with a strong reduction in mushroom body volume need considerably more time to give up on an object. The phenotype resembles the perseverance behaviour of humans suffering from Parkinson’s disease and was found regardless of the methods of interference with the mushroom bodies. The duration of the erroneously continued approach in flies with a strong reduction in mushroom body volume increases with decreasing distance between platform rim and landmark. In the absence of landmarks the defective flies behave normally, suggesting that mushroom bodies are involved in the evaluation of incoming sensory stimuli or in more general decision making processes. Modelling and implementation. Based on the findings outlined above a minimal model for landmark orientation has been established. The minimal model is based on a temporal integration of visual motion in four compartments, a frontolateral and a caudolateral compartment per eye. Depending on which compartment reaches a certain threshold first, a turning response will be elicited either towards (frontolateral compartment) or away from the target object (caudolateral compartment). Frontal and caudal eye regions naturally receive less parallax motion than lateral eye regions. To compensate for the small amount of parallax motion in the respective eye regions a weighting function has been introduced. The algorithm was finally implemented on a mobile robot equipped with a fish-eye lens mounted on camera allowing for panoramic vision. The behaviour of the robot was measured and quantitatively compared to the orientation behaviour of walking fruit flies. The robot reproduced successfully many aspects of the fruit fly's landmark orientation behaviour and showed fly-like autonomous orientation behaviour in the presence of various landmark arrangements. KW - Taufliege KW - Bewegungssehen KW - Orientierung KW - Bewegungssehen KW - Insekt KW - Orientierung KW - Fliege KW - vision KW - motion KW - insect KW - orientation KW - fly Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11748 ER - TY - JOUR A1 - Sommerlandt, Frank M. J. A1 - Spaethe, Johannes A1 - Rössler, Wolfgang A1 - Dyer, Adrian G. T1 - Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture? JF - PLoS One N2 - Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.q KW - bees KW - behavioral conditioning KW - learning KW - color vision KW - vision KW - calyx KW - cognition KW - honey bees Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147932 VL - 11 IS - 10 ER - TY - JOUR A1 - Stejskal, Kerstin A1 - Streinzer, Martin A1 - Dyer, Adrian A1 - Paulus, Hannes F. A1 - Spaethe, Johannes T1 - Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects JF - PLoS One N2 - Mimicking female insects to attract male pollinators is an important strategy in sexually deceptive orchids of the genus Ophrys, and some species possess flowers with conspicuous labellum patterns. The function of the variation of the patterns remains unresolved, with suggestions that these enhance pollinator communication. We investigated the possible function of the labellum pattern in Ophrys heldreichii, an orchid species in which the conspicuous and complex labellum pattern contrasts with a dark background. The orchid is pollinated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants. Field observations showed that the males approach at a great speed and directly land on flowers, but after an unsuccessful copulation attempt, bees hover close and visually scan the labellum pattern for up to a minute. Learning experiments conducted with honeybees as an accessible model of bee vision demonstrated that labellum patterns of different plants can be reliably learnt; in contrast, patterns of flowers from the same inflorescence could not be discriminated. These results support the hypothesis that variable labellum patterns in O. heldreichii are involved in flower-pollinator communication which would likely help these plants to avoid geitonogamy. KW - nectar KW - color discrimination KW - bees KW - vision KW - evolution KW - pollination KW - guides KW - honeybee KW - apis mellifera KW - insects KW - signals KW - recognize images Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137582 VL - 10 IS - 11 ER - TY - JOUR A1 - Heisswolf, Annette A1 - Ulmann, Sandra A1 - Obermaier, Elisabeth A1 - Mitesser, Oliver A1 - Poethke, Hans J. T1 - Host plant finding in the specialised leaf beetle Cassida canaliculata: an analysis of small-scale movement behaviour N2 - 1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues. 2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena (r = 1 m). In three different settings, a host (Salvia pratensis L., Lamiales: Lamiaceae), a non-host (Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena. 3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials. 4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies. KW - Käfer KW - Blattkäfer KW - Ampfer KW - Wiesensalbei KW - Arena experiment KW - Coleoptera KW - Chrysomelidae KW - olfaction KW - Rumex KW - Salvia pratensis KW - vision KW - walking Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49485 ER - TY - JOUR A1 - Müller, Philipp L. A1 - Meigen, Thomas T1 - M-sequences in ophthalmic electrophysiology JF - Journal of Vision N2 - The aim of this review is to use the multimedia aspects of a purely digital online publication to explain and illustrate the highly capable technique of m-sequences in multifocal ophthalmic electrophysiology. M-sequences have been successfully applied in clinical routines during the past 20 years. However, the underlying mathematical rationale is often daunting. These mathematical properties of m-sequences allow one not only to separate the responses from different fields but also to analyze adaptational effects and impacts of former events. By explaining the history, the formation, and the different aspects of application, a better comprehension of the technique is intended. With this review we aim to clarify the opportunities of m-sequences in order to motivate scientists to use m-sequences in their future research. KW - vision Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165796 VL - 16 IS - 1,15 ER - TY - JOUR A1 - Kirsch, Wladimir A1 - Kunde, Wilfried T1 - Perceptual changes after learning of an arbitrary mapping between vision and hand movements JF - Scientific Reports N2 - The present study examined the perceptual consequences of learning arbitrary mappings between visual stimuli and hand movements. Participants moved a small cursor with their unseen hand twice to a large visual target object and then judged either the relative distance of the hand movements (Exp.1), or the relative number of dots that appeared in the two consecutive target objects (Exp.2) using a two-alternative forced choice method. During a learning phase, the numbers of dots that appeared in the target object were correlated with the hand movement distance. In Exp.1, we observed that after the participants were trained to expect many dots with larger hand movements, they judged movements made to targets with many dots as being longer than the same movements made to targets with few dots. In Exp.2, another group of participants who received the same training judged the same number of dots as smaller when larger rather than smaller hand movements were executed. When many dots were paired with smaller hand movements during the learning phase of both experiments, no significant changes in the perception of movements and of visual stimuli were observed. These results suggest that changes in the perception of body states and of external objects can arise when certain body characteristics co-occur with certain characteristics of the environment. They also indicate that the (dis)integration of multimodal perceptual signals depends not only on the physical or statistical relation between these signals, but on which signal is currently attended. KW - vision KW - hand movements KW - learning arbitrary mappings Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301074 VL - 12 IS - 1 ER - TY - JOUR A1 - Halder, Sebastian A1 - Hammer, Eva Maria A1 - Kleih, Sonja Claudia A1 - Bogdan, Martin A1 - Rosenstiel, Wolfgang A1 - Birbaumer, Niels A1 - Kübler, Andrea T1 - Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude JF - PLoS ONE N2 - Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. KW - experimental design KW - acoustic signals KW - amyotrophic lateral sclerosis KW - man-computer interface KW - electroencephalography KW - event-related potentials KW - physical properties KW - vision Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130327 VL - 8 IS - 2 ER -