TY - THES A1 - Rund, Stefan A. T1 - Interferenz des probiotischen Escherichia coli Stammes Nissle 1917 mit Adhäsion, Replikation und Shiga Toxin Produktion von EHEC Stämmen in vitro T1 - Interference of the probiotic Escherichia coli strain Nissle 1917 with adhesion, replication and Shiga toxin production of EHEC strains in vitro N2 - E. coli Nissle 1917 (EcN) zählt durch seine fast hundertjährige Nutzung als Arzneimittel und aufgrund der weitreichenden Forschung während der letzten Jahrzehnte mittlerweile zu einem der am besten untersuchten Probiotika. EcN wird als Medikament zur Remissionserhaltung von Patienten mit Kolitis, bei chronischer Verstopfung und bei Durchfall von Kleinkindern eingesetzt. Der enteroaggregative – hämorrhagische - E. coli (EAHEC) mit dem Serotyp O104:H4 war 2011 in Deutschland für den bisher größten EHEC-Ausbruch seit Beginn der Aufzeichnungen verantwortlich. Es fehlt bis zum heutigen Tage immer noch an effektiven Möglichkeiten einer Infektionsprophylaxe oder einer Behandlung der Erkrankung. Ein alternatives Therapeutikum wird daher dringend benötigt. In dieser Arbeit wurden die antagonistischen Effekte von EcN auf pathogene E. coli Stämme wie dem EHEC Stamm EDL933 oder klinischen EAHEC O104:H4 Isolaten untersucht. Es wurden die Auswirkungen von EcN auf die Adhäsion an humane Epithelzellen, das Wachstum und die Shiga Toxin Produktion der pathogenen Stämme untersucht. Zusätzlich wurde die Resistenz von EcN gegenüber Shiga Toxin Phagen nachgewiesen. Zunächst wurde die Adhäsionseffizienz der verschiedenen E. coli Stämme bestimmt. Der am schlechtesten an die humanen Epithelzelllinien Caco-2 und LS-174T adhärierende Stamm war EcN. Dies ist insofern überraschend, da von Probiotika erwartet wird, besser als Pathogene an Epithelzellen zu adhärieren. Dem ungeachtet konnte jedoch gezeigt werden, dass EcN die Adhäsion von zwei EAHEC O104:H4 Isolaten, des nahe verwandten enteroaggregativen E. coli (EAEC) Stammes 55989 und des enterohämorrhagischen (EHEC) E. coli Stammes O157:H7 EDL933 an beide Zelllinen hemmt. Die von EcN produzierten Mikrozine M und H47 konnten hier für einen Teil des beobachteten anti-adhäsiven Effektes von EcN auf die pathogenen E. coli Stämme verantwortlich gemacht werden. Die Mikrozine wurden hier als einzige Substanz, die das Wachstum der pathogenen E. coli Stämme beeinflusst, identifiziert. Einer der wichtigsten Virulenzfaktoren von EAHEC und EHEC Stämmen ist das Shiga Toxin. In dieser Arbeit konnte gezeigt werden, dass EcN die Shiga Toxin Produktion der am häufigsten auftretenden EHEC Stämme (´Big Five´: O157:H7, O26:H11, O103:H2, O111:H-, O145:H25) und der klinischen Isolate von EAHEC O104:H4 im Zellkulturmedium DMEM hemmt. Auffällig war, dass die Stx1 Produktion von EHEC O103:H2 und O111:H- nicht nur von EcN, sondern auch von E. coli K-12 Stamm MG1655, gehemmt wurde, im Gegensatz zur EcN-spezifischen Blockierung der Stx2-Produktion in den Serotypen O104:H4, O26:H11, O145:H25. Die Reduktion der Stx-Produktion in EAHEC O104:H4 TY3730 und TY3456, sowie EHEC O26:H11 war zum Teil von der Mikrozinproduktion abhängig. Diese hatte jedoch keinen Einfluss auf die Stx-Produktion in EHEC O157:H7 EDL933 und EHEC O145:H25. Bei Verwendung von LB-Medium zeigte sich im Gegensatz zum DMEM-Medium keine Mikrozin-Abhängigkeit der Toxinproduktion bei den EAHEC Isolaten TY3730 und TY3456. Die Toxinproduktion von EHEC EDL933 wurde ebenfalls nicht durch die Deletion der Mikrozin-Gene in EcN beeinflusst. Studien der Toxinproduktion in SCEM-Medium zeigten ebenfalls eine EcN-Dosisabhängige Reduktion der Stx-Produktion in Co-Kultur. Um den Mechanismus der Hemmung der Stx-Produktion zu untersuchen, wurden Versuche mit der EcN-Mutante EcN::luxS durchgeführt. Diese Deletion des AI-2 ´Quorum sensing´ Moleküls in EcN hatte allerdings keinen Einfluss auf die Hemmung der Stx-Produktion. Der Einsatz von Acetat führte, im Gegensatz zu publizierten Ergebnissen, nicht zu einer Reduktion der Stx-Produktion. Auch eine Beeinflussung der Lyse der EHEC-Bakterien, oder der Verminderung der Sekretion von Shiga Toxin durch EcN, konnte widerlegt werden. Zur Untersuchung der Stx-Expression wurde ein Assay mit einem biolumineszenten C-P (Chromosom-Plasmid) Reporter System etabliert. Damit konnte die Shiga Toxin Expression im Stammhintergrund EHEC EDL933 in Echtzeit untersucht werden. Hier wurde wiederum eine Reduktion der Shiga Toxin Expression in Co-Kultur mit EcN erfolgreich nachgewiesen. In weiteren Versuchen konnte gezeigt werden, dass EcN nicht nur die Shiga Toxin Produktion von nicht-induzierten EAHEC Bakterien, sondern auch in mit Mitomycin C induzierten Bakterien hemmt. Als wichtiger Sicherheitsaspekt einer Behandlung mit EcN wurde die Resistenz von EcN gegenüber Shiga Toxin Phagen untersucht. Die Infektion der Bakterien wurde hierbei mit stx-spezifischer PCR, Phagen-Plaque-Assay, Stx-ELISA und K+-Efflux Assay untersucht. Es konnte durch diese verschiedenen Methoden erfolgreich gezeigt werden, dass EcN nicht durch Shiga Toxin Phagen infiziert wird. Als möglicher Resistenzmechanismus kommt hier eine Mutation vom Phagenrezeptor LamB in Frage, was jedoch noch bestätigt werden muss. Zusammenfassend wurden in dieser Arbeit wichtige antagonistische Effekte von EcN auf pathogene E. coli Stämme untersucht, die als Grundlage von neuen und dringend benötigten Behandlungen von EHEC-Infektionen dienen können. N2 - Due to extensive studies in the last decades and its centennial application as a pharmaceutical, E. coli Nissle 1917 (EcN) is among the best characterized probiotics. EcN is used as remedy for remission maintenance of ulcerative colitis, chronic obstipation and diarrhea in children. The enteroaggregative – haemorrhagic - E. coli (EAHEC) strain O104:H4 was responisible for one of the biggest outbreaks of EHEC recorded so far, that took place in Germany in 2011. Currently, there is no effective prophylaxis or treatment available for EHEC infections in humans. Therefore, alternative therapeutics are desperately needed. The antagonistic effects of EcN on pathogenic E. coli strains like the EHEC O157:H7 strain EDL933 or clinical isolates of EAHEC O104:H4 were investigated in this study. The influence of EcN on adhesion to human epithelial cell lines, the growth and the Shiga toxin production of pathogenic strains were analysed. Furthermore, the resistence of EcN against Shiga toxin phages was proven. Initially, the adhesion efficiency of EcN and pathogenic E. coli strains were determined in monocultures. EcN showed the lowest number of adhering bacteria to Caco-2 and LS-174T cells. This was insofar surprising, since probiotics are expected to adhere more efficiently to epithelial cells than pathogens. Regardless of this fact, it could be shown that EcN is inhibiting the adhesion of two EAHEC O104:H4 isolates, the closely related EAEC strain 55989 and the EHEC O157:H7 strain EDL933 to both cell lines. The microzins M and H47, which are produced by EcN, can be held responsible for a fraction of the observed anti-adhesive effect of EcN. The Microzins were also identified as the only substance that was influencing the growth of the pathogenic E. coli strains. One of the most important virulence factors of EHEC and EAHEC strains is Shiga toxin. In this study could be shown, that EcN is inhibiting the Shiga toxin production of the most common EHEC strains (big five: O157:H7, O26:H11, O103:H2, O111:H-, O145:H25) and two clinical isolates of EAHEC O104:H4 in the cell culture medium DMEM. Interesingly, the Shiga toxin 1 production of EHEC O103:H2 and O111:H- was not only reduced by EcN, but also the E. coli K-12 strain MG1655. In contrast, the Stx2 production of the serotypes O104:H4, O26:H11, O145:H25 was only blocked by EcN. The reduction of the Shiga toxin production in EAHEC O104:H4 TY3730 und TY3456, as well as EHEC O26:H11 was partly dependent on the microcin production of EcN. No influence of microzins on the Stx production of EHEC O157:H7 EDL933 and EHEC O145:H25 was detected. When using LB-medium instead of DMEM-medium, no influence of microzin on the Shiga toxin production of neither EAHEC TY3730 and TY3456, nor EHEC EDL933 could be shown. Experiments with SCEM-medium also resulted in an EcN-dose-dependent inhibition of Shiga toxin production of pathogenic E. coli strains in co-culture with EcN. In order to investigate the mechanism responsible for the observed effects, the EcN mutant EcN::luxS was used in co-culture experiments. However, the deletion of the quorum sensing molecule AI-2 in EcN::luxS had no influence on the Stx production. Using acetate in the experiments did not, in contrast to published results, lead to a reduction of Shiga toxin production. In addition, an influence of EcN on lysis of EHEC strains or the secretion of Shiga toxin could be ruled out. To study the Shiga toxin expression an assay with a bioluminescent C-P (chromosome-plasmid) reporter system was successfully established. Here, Shiga toxin expression could be monitored in real time with the strain background EHEC EDL933. Moreover, a reduction of Shiga toxin expression in co-culture with EcN could be detected. In further experiments could be shown, that EcN is not only reducing the Shiga toxin production in uninduced bacteria, but also in the Mitomycin C induced EAHEC O104:H4 strain TY3730. An important safety issue, in order to use EcN as a pharmaceutical against EHEC strains, is the resistance of EcN against Shiga toxin phages. The infection of bacteria was here investigated with phage plaque assay, stx-PCR, Stx-ELISA and K+-efflux assay. With these different methods could be successfully shown, that EcN is not infected by the tested Shiga toxin phages. A mutation in the phage receptor LamB could be a possible, but still unconfirmed, phage resistance mechanism of EcN. In summary, this study showed important antagonistic effects of EcN against pathogenic E. coli strains, which could be the foundation of new and desperately needed treatment options of EHEC infections. KW - EHEC KW - Probiotikum KW - Escherichia coli KW - E. coli Nissle Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-104837 ER - TY - THES A1 - Bury, Susanne T1 - Molekularbiologische Untersuchungen der antagonistischen Effekte des probiotischen \(Escherichia\) \(coli\) Stamms Nissle 1917 auf Shiga-Toxin produzierende \(Escherichia\) \(coli\) Stämme T1 - Molecular biological investigations on the antagonistic effects of the probiotic \(Escherichia\) \(coli\) strain Nissle 1917 towards Shiga toxin producing \(Escherichia\) \(coli\) N2 - Shiga toxin produzierende E. coli (STEC) stellen mit einer Infektionsdosis von gerade einmal 100 Bakterien ein großes Risiko für unsere Gesundheit dar. Betroffene Patienten können milde Krankheitssymptome wie wässrigen Durchfall aufweisen, welcher sich allerdings zu blutigem Durchfall oder dem hämolytisch urämischen Syndrom (HUS) weiterentwickeln kann. Die Ursache für das Krankheitsbild ist das zytotoxische Protein Shiga-Toxin (Stx), welches von STEC Stämmen produziert wird, eukaryotischen Zellen angreift und den apoptotischen Zelltod induziert. Es konnte gezeigt werden, dass infizierte Patienten in ihrem Krankheitsverlauf stark variieren, was unter anderem auf die Zusammensetzung ihrer Mikrobiota zurückzuführen sein könnte. Diesbezüglich können zum Beispiel einige Bakterien bereits die Darmbesiedlung von STEC Stämmen unterbinden, wohingegen andere die Toxin Produktion der pathogenen Stämme beeinflussen und wieder andere von den stx tragenden Phagen infiziert werden können und daraufhin selbst zu Toxin produzierenden Stämmen werden. Da die genetischen Informationen für das Toxin auf einem Prophagen im Genom der STEC Stämme kodiert ist, führt eine Antibiotika Behandlung von infizierten Patienten zwar zum Tod der Bakterien, hat allerdings auch einen Wechsel vom lysogenen zum lytischen Phagen Zyklus und damit einen enormen Anstieg an freigesetztem Stx zur Folge. In den letzten Jahrzehnten kam es immer wieder zu Epidemien mit STEC Stämmen, welche auch einige Todesopfer forderten. Die Behandlung von Patienten erfolgt auf Grund von mangelnden Behandlungsmöglichkeiten meist nur symptomatisch, weswegen neue Strategien für die Behandlung einer STEC Infektion dringend benötigt werden. Der probiotische E. coli Stamm Nissle 1917 (EcN) zählt bereits seit mehr als 100 Jahren als Medikament für Behandlungen von Darmentzündungen. In vitro und in vivo Studien mit dem probiotischen Stamm und STEC Stämmen konnten zeigen, dass EcN die Produktion von Stx unterdrückt und gleichzeitig die STEC Zellzahl reduziert. Diese Ergebnisse waren der Anlass für diese Studie in der die Auswirkungen von EcN auf STEC Stämme genauer untersucht wurden, um eine mögliche Behandlung von STEC Infektionen mit dem Probiotikum zu gewährleisten. Eines der Hauptziele dieser Studie war es, herauszufinden, ob EcN von stx-Phagen infiziert werden kann und damit selbst zu einem Toxin Produzenten wird. In diesem Falle wäre eine Behandlung mit dem E. coli Stamm ausgeschlossen, da es den Krankheitsverlauf verschlimmern könnte. Verschiedene experimentelle Ansätze in denen versucht wurde den YaeT stx-Phagen Rezeptor tragenden Stamm zu infizieren schlugen fehl. Weder mittels PCR Analysen, Phagen Plaque Assays oder der Phagen Anreicherung konnte eine Lyse oder eine Prophagen Integration nachgewiesen werden. Transkriptom Analysen konnten zeigen, dass Gene eines lambdoiden Prophagen in EcN in Anwesenheit von stx-Phagen stark reguliert sind. Auch andere E. coli Stämme, welche sich ebenfalls durch eine Resistenz gegenüber einer stx-Phagen Infektion auswiesen, wurden positiv auf lambdoide Prophagen untersucht. Einzig dem stx-Phagen sensitiven K-12 Stamm MG1655 fehlt ein kompletter lambdoider Prophage, weswegen die Vermutung nahe liegt, dass ein intakter lambdoider Prophage vor der Superinfektion mit stx-Phagen schützten kann. In weiteren Experimenten wurde der Einfluss der Mikrozin-negativen EcN Mutante SK22D auf STEC Stämme untersucht. Es konnte gezeigt werden, dass SK22D nicht nur die Produktion des zytotoxischen Proteins unterdrückt, sondern auch mit der Produktion der stx-Phagen von allen getesteten STEC Stämmen interferiert (O157:H7, O26:H11, O145:H25, O103:H2, O111:H- und zwei O104:H4 Isolate vom STEC Ausbruch in Deutschland im Jahr 2011). Transwell Studien konnten zeigen, dass der Faktor, welcher die Transkription des Prophagen unterdrückt, von SK22D sekretiert wird. Die Ergebnisse lassen vermuten, dass die Präsenz von SK22D den lysogenen Zustand des Prophagen stützt und somit den lytischen Zyklus unterdrückt. Da stx-Phagen eine große Gefahr darstellen andere E. coli Stämme zu infizieren, haben wir uns in weiteren Studien dem Einfluss von EcN auf isolierte Phagen gewidmet. Die Kultivierungsexperimente von EcN mit Phagen zeigten, dass der probiotische Stamm in der Lage war die stx-Phagen in ihrer Effizienz der Lyse des K 12 Stammes MG1655 von~ 1e7 pfus/ml auf 0 pfus/ml nach einer 44 stündigen Inkubation zu inaktivieren. Diese Inaktivierung konnte auf die Aktivität eines hitzestabilen Proteins, welches in der stationären Wachstumsphase synthetisiert wird, zurückgeführt werden. Studien welche einen Anstieg der Biofilmmasse zur Folge hatten zeigten eine gesteigerte Effizienz in der Phagen Inaktivierung, weswegen Komponenten des Biofilms möglicherweise die Phagen Inaktivierung herbeiführen. Neben dem direkten Einfluss auf die Phagen wurde auch ein Schutzeffekt von SK22D gegenüber dem stx-Phagen empfänglichen K 12 Stämmen untersucht. Lysogene K 12 Stämme zeichneten sich durch eine enorme Stx und stx-Phagen Produktion aus. Die Präsenz von SK22D konnte den K 12 vermittelten Anstieg der pathogenen Faktoren unterbinden. Transwell Ergebnisse und Kinetik Studien lassen vermuten, dass SK22D eher die Phagen Infektion von K-12 Stämmen unterbindet als die Lyse von lysogenen K-12 Stämmen zu stören. Eine mögliche Erklärung für den Schutz der K-12 Stämme vor einer stx-Phagen Infektion könnte darin liegen, dass die K-12 Stämme innerhalb der SK22D Kultur wachsen und dadurch von den infektiösen Phagen abgeschirmt werden. Zusammenfassend konnte in dieser Studie gezeigt werden, dass der probiotische Stamm EcN sowohl die Lyse von STEC Stämmen unterdrückt als auch die infektiösen stx-Phagen inaktiviert und sensitive E. coli Stämme vor der Phagen Infektion schützen kann. Diese Ergebnisse sollten als Grundlage für in vivo Studien herangezogen werden, um eine mögliche Behandlung von STEC infizierten Patienten mit dem Probiotikum zu gewährleisten. N2 - Shiga toxin producing E. coli strains (STEC) are a great concern to human health. Upon an infection with as few as 100 bacteria, humans can develop disease symptoms ranging from watery to bloody diarrhea or even develop the hemolytic uremic syndrome (HUS). The major factor contributing to the disease symptoms is Shiga toxin (Stx) which can bind to the eukaryotic cells in the intestine of the human and induce cell death via apoptosis. Based, among other things, on the microbiota composition, the impact of STEC can vary. Some bacteria of the microbiota can interfere with the colonization of STEC strains in the first place. Others cannot impair the colonization but interfere with the toxin production and there are still others which are even infected by stx encoding phages, being released from STEC strains. Those previously harmless bacteria subsequently contribute to the toxin increase and worsen the disease progression. Since the genetic information of Stx is encoded on a prophage, antibiotic treatment of patients can lead to an increased toxin and stx-phage release and is therefore not recommended. Several STEC epidemics in different countries, which even resulted in the death of some patients, demonstrated that there is an urgent need for alternative treatment strategies. The E. coli strain Nissle 1917 (EcN) has been used as a probiotic to treat gastrointestinal infections for more than 100 years. It harbors several fitness factors which contribute to the establishment of an intact intestinal barrier in the human gut. Moreover, studies with EcN unraveled that the probiotic E. coli can interfere with the colonization of STEC strains and their toxin production. This study aimed to investigate if EcN could be a possible alternative or supplementary treatment strategy for STEC infected patients, or a preventive treatment for the patient’s close contact persons. Therefore, EcN was firstly investigated for a possible stx-prophage integration into its’s genome which would eliminate it from being a potential treatment due to the possibility of disease worsening. Despite the presence of the stx-phage surface receptor YaeT, EcN demonstrated a complete resistance towards the lysis and the lysogeny by stx-phages, which was proven by PCR, phage-plaque assays and phage enrichment approaches. Transcriptome data could unravel that a lambdoid prophage in the genome of EcN is involved in the resistance towards the phage infection. Other commensal E. coli tested presented a stx-phage resistance as well and in silico analysis revealed that all of them harbor a complete lambdoid prophage besides the stx-phage susceptible K-12 strain MG1655. We assume that the resistance of EcN towards a stx-phage infection is connected to the presence of an intact lambdoid prophage which interferes with superinfection. Further experiments regarding the impact of the microcin negative EcN mutant SK22D towards STEC strains depicted that SK22D did not only interfere with the toxin production but also negatively regulated the transcription of the entire stx-prophage in coculture with all STEC strains tested (O157:H7, O26:H11, O145:H25, O103:H2, O111:H- and two O104:H4 isolates from the 2011 outbreak in Germany). This influence on the pathogenic factor production was evinced to be cell contact independent as SK22D could even interfere with the pathogenic factor production when being separated from the STEC strain EDL933 by a Transwell membrane with the pore size of 0.4 µm. From this data we concluded, that factor(s) released by SK22D interfere with the lysis of STEC strains by stabilizing the lysogenic state. Another positive aspect of EcN towards the pathogenicity of STEC strains was encountered when EcN was incubated with isolated stx-phages. The probiotic strain could reduce the infectivity of the phages towards a MG1655 lysis from ~ 1e7 pfus/ml to 0 after 44 h of incubation. Various approaches to determine the characteristics of the factor(s) of EcN which are involved in the phage inactivation depicted it to be a heat resistant stationary phase protein on the surface of EcN, which could be a component of its biofilm. Regarding the protective role of EcN we could further evince that SK22D was capable of interfering with the lysogenic K 12 mediated increase of Stx and stx phages. Lysogenic K-12 strains were characterized by a huge increase of Stx and stx-phage production. The presence of SK22D anyhow, could interfere with this K-12 mediated pathogenic factor increase. Transwell and stx phage infection kinetics led to the proposal that SK22D interfered with the stx-phage infection of K-12 strains in the first place rather than disturbing the lysis of lysogenic K 12. The protection from the phage infection could be due to the growth of K 12 strains within the SK22D culture, whereby the phage susceptible strains are masked from phage detection. Summarizing, this work could underline the beneficial attributes of EcN towards the STEC pathogenicity in vitro. These results should be considered as pioneers for future in vivo studies to enable EcN medication as a supportive STEC infection treatment strategy. KW - EHEC KW - Probiotikum KW - Bakteriophagen KW - E. coli Nissle 1917 KW - EHEC KW - Probiotikum KW - stx-Phagen KW - Lambdoide Prophagen KW - probiotica KW - stx-phages KW - lambdoid prophage Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163401 ER -