TY - THES A1 - Kocic, Nikola T1 - Bestimmung des Keimbildungsexponenten für die Kristallisation von Polymeren durch nicht-isotherme DSC-Analysen T1 - Determination of the nucleation parameter for the crystallization of polymers by non-isothermal DSC-analysis N2 - Thermoplastische Kunststoffe (sog. Thermoplaste) lassen sich in einem be-stimmten Temperaturbereich beliebig oft schmelzen und in einer gewünschten Form erstarren. Grundvoraussetzung für eine bestimmte Anwendung eines thermoplastischen Bauteils sind die Gebrauchseigenschaften des Materials, die im Wesentlichen vom Ablauf der Erstarrung abhängen. Die Moleküle einiger Thermoplaste können bei der Erstarrung geordnete kristalline Bereiche bilden. Dies sind die sog. teilkristallinen Kunststoffe, deren Erstarrungsprozess Kristallisation genannt wird. Die dabei entstehenden Kristallstrukturen werden zusammen mit deren Charakteristiken allgemein als Morphologie der teilkristallinen Kunststoffe bezeichnet. Die Morphologie hat einen signifikanten Einfluss auf die mechanischen, thermischen und optischen Eigenschaften des Materials. Dementsprechend stellen Kenntnisse über die Kristallisation eine wertvolle Hilfe bei der Vorhersage der Gebrauchseigenschaften eines teilkristallinen Kunststoffs dar. Um die Kristallisation zu starten, muss zunächst eine Energiebarriere überwunden werden, die an erster Stelle vom molekularen Aufbau des Kunststoffs abhängt. Somit weisen beispielsweise Kunststoffe mit linearen, regelmäßigen Molekülen und kleinen Seitengruppen eine niedrigere Energiebarriere und aus diesem Grund eine starke Neigung zur Kristallisation auf. Einige Zusatzstoffe wie z. B. unterschiedliche Additive, Farbstoffe oder Füllstoffe können die Energiebarriere und infolgedessen die Kristallisation eines teilkristallinen Kunststoffs wesentlich beeinflussen. Das Ziel dieser Dissertation war es, ein bestehendes Kristallisationsmodell zu erweitern und es an gefüllte oder additivmodifizierte teilkristalline Kunststoffe anzupassen. Das erweiterte Modell soll die Ermittlung eines Kristallisationspa-rameters, des sog. Keimbildungsexponenten, eines gefüllten oder additivmodifizierten teilkristallinen Kunststoffs bei der nicht-isothermen Kristallisation ermöglichen. Der Keimbildungsexponent ist mit der erwähnten Energiebarriere eng verbunden und bestimmt somit den Ablauf des Kristallisationsprozesses bzw. die daraus folgende Morphologie. Ein wesentlicher Schwerpunkt der Arbeit lag darin, die vorgeschlagene Modellerweiterung bei verschiedenen Abkühlgeschwindigkeiten zu überprüfen. Im Anschluss sollten die Beziehungen zwischen den berechneten Keimbildungsexponenten und experimentell ermittelten me-chanischen Eigenschaften (E-Modul, Streckspannung und Schlagzähigkeit) überprüft werden. Für die Untersuchungen wurden drei verschiedene Polymersysteme verwendet: PP / Talkum, HDPE / Talkum sowie PA6 / Bentonit. Hierbei weist der Füllstoff eine stark positive, schwach positive bzw. inhibierende Wirkung auf die Kristallisation der entsprechenden Polymermatrix auf. Hinsichtlich reiner Polymere wurde eine gute Übereinstimmung zwischen den ermittelten und Literaturwerten des Keimbildungsexponenten festgestellt. Die Zugabe von positiv wirkendem Talkum in PP bzw. HDPE führt zu einer Abnah-me des Keimbildungsexponenten, was zu dickeren Kristallen des jeweiligen Kunststoffs führte. Im Gegensatz dazu bewirkte die Bentonitzugabe einen zu-nehmenden Keimbildungsexponenten, was anschließend dünnere PA6-Kristalle zur Folge hat. Die durchgeführten Untersuchungen zeigen außerdem, dass die Füllstoffpartikelgröße einen ausgeprägten Einfluss auf den ermittelten Keimbildungsexponenten hat. Weiterhin wurde festgestellt, dass der ermittelte Keimbildungsexponent durch die (DSC)-Abkühlgeschwindigkeit beeinflusst wird. Es wurde ferner gezeigt, dass sich dieser Einfluss ab einer bestimmten Abkühlgeschwindigkeit (20 K/min im Falle des PP und HDPE bzw. 15 K/min im Falle des PA6) nicht mehr ändert, was zu einem konstanten Keimbildungsexponenten führt. Um den Einfluss der Abkühlgeschwindigkeit auf die modellierte Größe zu berücksichtigen, sind weitere Untersuchungen nötig. Die Ergebnisse der Arbeit zeigen weiterhin, dass der berechnete Keimbildungsexponent mit den experimentell ermittelten Werten für E-Modul, Streckspannung und Charpy-Schlagzähigkeit bei talkumgefülltem PP gut korreliert. Solche Korrelationen wurden jedoch bei den HDPE- und PA6-Proben nicht gefunden. Der Grund hierfür könnte eine ausgeprägte Orientierung der HDPE-Makromoleküle bzw. ein starker mikromechanischer Effekt des exfolierten Bentonits sein. Diese Effekte konnten im Rahmen der Arbeiten bestätigt werden. Die in dieser Arbeit erzielten Ergebnisse zeigen, dass die vorgeschlagene Mo-dellerweiterung auch bei gefüllten oder additivmodifizierten Kunststoffen zufriedenstellende Resultate liefert. Die entsprechende Berechnung erfordert dabei lediglich eine DSC-Messung, was im Vergleich zum Stand der Technik in einen niedrigeren Messaufwand resultiert. Die vorliegende Arbeit liefert daher einen signifikanten Beitrag zur Erstellung des Zusammenhangs zwischen der Kristallisation, der Morphologie und dem mechanischen Verhalten von teilkristallinen Polymeren. N2 - Thermosoftening polymers, also called thermoplastics, can be repeatedly melt-ed and solidified into a desired shape in a certain temperature range. The basic requirements for a particular application of a thermoplastic component are its functional characteristics, which significantly depend on the solidification pro-cess. The molecules of some thermoplastics can form ordered crystalline regions during the solidification process. These are so-called semi-crystalline polymers, whose solidification process is called crystallization. The resulting crystal struc-ture elements, together with their properties, are commonly referred to as the morphology of semi-crystalline polymers. The morphology has a significant in-fluence on the mechanical, thermal and optical properties of the material. Ac-cordingly, knowledge about the crystallization is a valuable aid in predicting the final properties of a semi-crystalline polymer. In order for the crystallization to start, it is necessary for an activation energy barrier to be overcome. The activation energy barrier depends on the molecular structure of the polymer. Polymers with linear, regular molecules and small side groups possess a low activation energy barrier and therefore crystallize most easily. Some ingredients, such as various additives, pigments or fillers, can significantly affect the energy barrier and consequently the crystallization of a semi-crystalline polymer. The aim of this thesis was to extend an existing crystallization model and adapt it to filled or additive-modified semi-crystalline polymers. The extended model should allow the determination of a crystallization parameter, the so-called nu-cleation parameter of filled or additive-modified semi-crystalline polymers during non-isothermal crystallization. The nucleation parameter is closely connected with the activation energy barrier and thus determines the crystallization process and consequentially the resulting morphology. An important task in this work was to verify the proposed model extension for different cooling rates. In addition, the correlations of the calculated nucleation parameter with experimentally determined mechanical properties (Young’s modulus, yield stress and impact strength) are established and discussed. In this research, three different polymer systems were used: PP / talc, HDPE / talc and PA6 / bentonite. In these three materials, the filler has a strong positive, a weak (positive) and a negative influence on the crystallization of a given polymer, respectively. A good agreement between the values of the nucleation parameter determined in this work and those found in literature was obtained as regards pure poly-mers. The addition of positive-acting talc in PP and HDPE leads to a decreased nucleation parameter, resulting in an increase of the crystal thickness of PP and HDPE. By contrast, the addition of bentonite increases the nucleation parameter of PA6 and therefore leads to a decrease in the crystal thickness of PA6. It was also shown that the filler particle size has a significant influence on the nucleation parameter. Furthermore, it was shown that the DSC cooling rate up to a certain value (20 K/min as regards PP und HDPE i.e. 15 K/min regarding PA6) has an influence on the determined nucleation parameter. Afterwards, the nucleation parameter reaches a plateau and shows no further changes with the cooling rate. To be able to add the influence of the cooling rate into the model, further studies are needed. Furthermore, it was shown that the obtained nucleation parameters correlates well with the Young modulus, yield stress and impact strength as regards PP filled with talc. In contrast to PP, such correlations were not found for HDPE and PA6 samples. The possible reason for the absence of correlations could be the orientation of the HDPE molecules, i.e. the strong reinforcing effects of the intercalated bentonite in PA6. These effects were confirmed in the scope of the work. The results obtained in this work show that the proposed model extension is applicable as regards filled semi-crystalline polymers. In comparison to the state of the art, the proposed model extension requires only a single DSC-measurement resulting in a lower measuring expenditure. Therefore, the pre-sent work provides a significant contribution to establishing the mathematical relationship between the crystallization, morphology and the mechanical behavior of semi-crystalline polymers. KW - Kristallisation KW - Polymer KW - Morphologie KW - Polymere KW - Keimbildung KW - Kalorimetrie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113950 ER - TY - THES A1 - Graßmann, Olaf T1 - Biomimetische Materialabscheidung in funktionalisierten Hydrogelmatrices T1 - Biomimetic materials synthesis in functionalized hydrogel matrices N2 - In Analogie zu natürlichen Proteingerüsten wurden poly-Acrylamid-Hydrogele mit polaren funktionellen Gruppen modifiziert, die in der Biomineralisation eine wichtige Rolle spielen. Durch gezielte Variation der Synthesebedingungen ist es möglich, Art, Gehalt und räumliche Anordnung der ionischen Funktionalitäten in den Copolymernetzwerken einzustellen. Die Hydrogele wurden in einer Doppeldiffusionsanordnung zur Mineralisation von CaCO3 eingesetzt und die Ergebnisse mit Gelatinegel als natürlichem Reaktionsmedium verglichen. Entgegen der ursprünglichen Erwartungen konnten in Gelatinegel keine Hinweise auf molekular-chemische Wechselwirkungen zwischen dem Proteinnetzwerk und den Mineralisationsprodukten nachgewiesen werden. Im Verlauf der Kristallisation wird die organische Matrix lediglich passiv inkorporiert. Allerdings bewirkt die heterogene Verteilung in den hantelähnlichen Kompositpartikeln die Auffächerung der Wachstumsfronten, so daß sich im Verlauf des Kristallwachstums eine Zwillingsstruktur der makroskopischen Produkte ausbildet. Der Netzwerkeffekt der organischen Matrix wird jedoch von dem lokalen chemischen Milieu in dem Gelkörper überlagert. Die Ähnlichkeit der Produkte mit natürlichen Biomineralen weist darauf hin, daß auch Biomineralisationsprozesse lediglich Folge eines unspezifischen chemischen Milieus sein können. Deutliche Analogien zu natürlichen Biomineralisationsprodukten wurden bei der Materialabscheidung in unfunktionalisierten poly-Acrylamid-Hydrogelen beobachtet. Die oktaedrische Form der Mineralisationsprodukte ist untypisch für Calcit und kennzeichnet einen spezifischen Kristallisationsmechanismus. Obwohl die Aggregate aus zahlreichen rhomboedrischen Calcit-Bausteinen zusammengefügt sind, weisen die makroskopischen Produkte eine gestörte einkristalline Struktur auf. Das große Mosaik der Röntgenbeugungsmaxima ist auf die Fehlorientierung kohärent streuender Bereiche zurückzuführen. Basierend auf den Untersuchungsergebnissen wurde ein Aggregationsmodell postuliert: Die simultane orientierte Verwachsung rhomboedrischer Untereinheiten sowie das Flächenwachstum dieser Bausteine führt zu der oktaedrischen Morphologie der Aggregate. Die prinzipielle Analogie der Mineralisationsprodukte mit vielen Biomineralen richtet den Blick auf die Frage, inwieweit alleine die physikalische Struktur extrazellulärer Matrices eine wichtige Rolle bei der Biomineralisation spielt. Die Ergebnisse der Mineralisationsversuche in Sulfonat-funktionalisierten Hydrogelen untermauern den dominanten Effekt der Netzwerkstruktur. Die stark polaren funktionellen Gruppen modifizieren lediglich die Morphologie der Aggregate, führen aber nicht zu einer grundlegenden Veränderung der Nukleation und des Wachstumsmechanismus. Demgegenüber zeigt sich in Carboxylat-funktionalisiertem poly-Acrylamid eine deutlich erhöhte Keimdichte und eine intermediäre Stabilisierung von Vaterit. Dieser spezifische Einfluß der Carboxylatgruppen auf die Keimbildung relativiert das oft für Biomineralisationsvorgänge postulierte ionotrope Nukleationsmodell und unterstreicht die Notwendigkeit einer stereochemischen Verwandtschaft zwischen den organischen Funktionalitäten und der entstehenden Kristallphase. Besonders deutlich wird die Bedeutung der Carboxylatgruppen bei der Mineralisation in Gelmatrices, die mit poly-L-Aspartat versetzt wurden. Die Wirkungsweise des Gelatinegels sowie der Kompartimenteffekt des poly-Acrylamid wird durch die Wechselwirkung des Additivs mit der anorganischen Phase überkompensiert: Im Verlauf der Doppeldiffusion entstehen in den untersuchten Hydrogelen Vaterit-Agglomerate, die permanent stabilisiert sind. Da die Kristallisationsmechanismen der reinen Gelmatrices rhomboedrische Calcit-Keimkristalle voraussetzen, werden die Netzwerkeffekte durch die Bildung sphärischer Vaterit-Partikel außer Kraft gesetzt. Möglicherweise beruht auch die Morphogenese natürlicher Biomineralisationsprodukte auf einem Wechselspiel des physikalischen Netzwerkeffekts einer extrazellulären Matrix und der Wirkungsweise modifikationsselektiver Makromoleküle. In den unterschiedlichen Hydrogelmatrices sind, trotz einheitlicher Versuchsbedingungen, drei grundsätzlich verschiedene Kristallisationsmechanismen des Calcits wirksam: In Gelatinegel kommt es zu lagenweisem Wachstum, die oktaedrischen Produkte aus poly-Acrylamid gehen auf die Aggregation vorgeformter Untereinheiten zurück und in Carboxylat-funktionalisierten Netzwerken entstehen sphärolithische Kristalle. Diese Ergebnisse belegen auf anschauliche Weise eine Wechselwirkung der organischen Matrix mit der anorganischen Phase. In natürlichen Systemen wird dieser Effekt durch komplexe genetische und zelluläre Prozesse gesteuert, die sich in-vitro nicht simulieren lassen. Allerdings weisen die Analogien der Mineralisationsversuche mit natürlichen Biomineralisationsprozessen auf vergleichbare Prinzipien hin. Demzufolge können die Mechanismen der Biomineralisation verhältnismäßig trivial sein, allein die biologische Reproduzierbarkeit der Materialabscheidung setzt ein hohes Maß an genetischer Steuerung voraus. Von einer weiterführenden Untersuchung der Mechanismen, die der Biomineralisation zugrunde liegen, sind wesentliche Impulse für eine biomimetische Materialsynthese zu erwarten. Wie die spezifische Wechselwirkung der Carboxylatgruppen mit der Kristallphase nahelegt, sollten die molekular-chemischen Effekte polarer funktioneller Gruppen im Mittelpunkt des Interesses stehen. Für ein besseres Gesamtverständnis muß daher eine Brücke zwischen der "mesoskopischen" Wirkung gelartiger Medien und entsprechenden Vorgängen auf atomarer Skala geschlagen werden. Die atomaren Mechanismen bei der Kristallisation von CaCO3 in Gegenwart verschiedener Additive werden in einem Partnerprojekt an der Universität Münster untersucht [Set03]. Die Zusammenführung dieser beiden Sichtweisen läßt ein tiefgreifendes Verständnis der allgemeinen Prinzipien der Biomineralisation erwarten. N2 - By analogy to natural protein networks poly-acrylamide hydrogels were modified with polar functional groups, that are relevant for biomineralization processes. The copolymer synthesis is modified in order to adjust the type, content and spatial arrangement of ionic functional groups within the network. CaCO3 particles are grown in these matrices using a counter-diffusion arrangement. The results are compared to the mineralization in a natural reference medium of gelatin hydrogel. Although the microstructural analysis revealed a heterogeneous intergrowth of gelatin and inorganic phases within the particles, the composite growth is rather a consequence of the local chemical environment. The incorporated organic matrix, however, interacts with the crystal faces of a rhombohedral nucleus. For steric reasons, the lamellar assembly of the organic and inorganic material leads to twinning of the macroscopic products in the course of crystal growth. The analogy of the dumbbell-shaped composite particles to some biominerals suggests that biological crystallization may take place under comparable conditions. The crystal aggregates isolated from unfunctionalized poly-acrylamide hydrogel show striking similarities to natural biomineralization products. The octahedral morphology of the aggregates is unexpected for calcite crystals. Although the aggregates consist of independent rhombohedral calcite building blocks, the structure of the macroscopic products corresponds to distorted single crystals. The large mosaic spread of the X-ray diffraction spots is a consequence of the misalignment of coherent scattering domains within the macrocrystal structure. Based on the results a specific aggregate growth model is proposed: The observed octahedral morphology is attributed to the simultaneous oriented attachment of rhombohedral subunits and the layer-by-layer growth of these building blocks. Because of the general analogy of the hydrogel-grown aggregates with many biominerals the question arises, whether the physical structure of extracellular matrices is important for biomineralization as well. Experiments in copolymers containing sulfonate groups confirm the dominant effect of the network structure for the mineralization within hydrogel matrices. The morphology of the aggregates is just slightly altered by the highly polar functional groups. The aggregation-based growth of the products corresponds to the mechanism observed for the mineralization in unfunctionalized poly-acrylamide. On the other hand, the crystallization in matrices containing carboxylate groups is fundamentally different. Within these hydrogels the density of nucleation is increased and vaterite is intermediatly stabilized. This specific influence of the functional groups on the crystallization of CaCO3 extends the commonly proposed ionotropic model of biomineral nucleation. Within the biomimetic model system the mineralization is highly affected by the stereochemical matching of organic functional groups and the inorganic crystal phase. The significance of the carboxylate groups for the mineralization of CaCO3 is emphasized by the experimental results using hydrogels containing poly-L-aspartate. The addition of poly-L-aspartate to the pore solution of either gelatin or poly-acrylamide hydrogel appears to overcompensate the physical properties of the organic matrix, leading to permanently stabilized vaterite agglomerates. Since the crystal growth mechanism in pure hydrogel matrices is based on rhombohedral calcite nuclei, the morphogenetic effect of the physical hydrogel structure is suspended due to formation of spherical vaterite particles. Possibly, the interaction between the network structure of extracellular matrices and the polymorph selective effect of organic macromolecules is relevant for the morphogenesis in biological systems as well. Three fundamentally different mechanisms of crystal growth are observed for the mineralization in the matrices used: Corresponding to classical models of crystallization the products isolated from gelatin hydrogel grow by a layer-by-layer mechanism, assembly of preformed building blocks within unfunctionalized poly-acrylamide leads to octahedral aggregates and within networks containing carboxylate groups spherolitic crystal growth is observed. These results obviously prove extensive interactions between the organic matrix and the inorganic phase. In natural systems these effects are adjusted by complex genetic and cellular processes, that are not accessible for in-vitro methods. However, the analogies of the experiments with biomineralization processes indicate comparable principles. Whereas the biological reproducibility of biomineralization implies a high degree of genetic control, the underlying mechanisms could be rather trivial. It is expected that further investigations of the mechanisms of biomineralization will provide fundamental stimuli for the field of biomimetic materials synthesis. As indicated by the specific interactions of carboxylate groups and the evolving crystal phase, further research should focus on the molecular-chemical influence of polar functional groups. To unravel the mechanisms of biomineralization the described mesoscopic effects of the hydrogel matrices and the respective processes at an atomar scale should be combined. The molecular-chemical mechanisms in the course of CaCO3 crystallization in aqueous solutions containing various organic additives are studied within an associate project at the University of Münster [Set03]. The combination of both approaches should provide an improved understanding of the general principles of biomineralization. KW - Hydrogel KW - Copolymerisation KW - Biomineralisation KW - Diffusion KW - Hydrogel KW - Kristallisation KW - Biomineralisation KW - Copolymerisation KW - diffusion KW - hydrogel KW - crystallization KW - biomineralization KW - copolymerization Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6521 ER - TY - THES A1 - Stempka, Martin T1 - Expression und Reinigung der SARS-Coronavirus-Mpro und deren Co-Kristallisation mit spezifischen Inhibitoren T1 - Expression and purification of the SARS coronavirus mpro and its co-crystallization with specific inhibitors N2 - Bei SARS („Schweres akutes respiratorisches Syndrom“) handelt es sich um eine Infektionskrankheit des Menschen, welche im November 2002 erstmalig auftrat. Als Erreger dieser Krankheit wurde das SARS-assoziierte Coronavirus identifiziert. Dessen viruseigene Reproduktionsmaschinerie wird vor allem durch die katalytische Aktivität einer Cysteinprotease, der SARS-Coronavirus-Hauptprotease (SARS-CoV-Mpro), und die damit verbundene Prozessierung von viralen Polyproteinen, aufrechterhalten. Diese Schlüsselfunktion der SARS-CoV-Mpro macht sie zu einem vielversprechenden Zielobjekt bei der Entwicklung von spezifischen Inhibitoren für diese Protease, welche somit eine Vermehrung des Virus verhindern. In dieser Arbeit wurde die SARS-CoV-Mpro mit optimierten Methoden exprimiert und gereinigt. Mit der Methode der ESI-MS-Analyse konnte ein kovalentes, irreversibles Bindungsverhalten verschiedener Inhibitoren gezeigt werden und erstmals auch die Bindung von Fragmenten von Inhibitormolekülen an die Protease. So zeigten die SARS-CoV-Mpro-Inhibitoren MH211A und UK-VI-1g eine kovalente Bindung des kompletten Moleküls pro Enzym-Monomer: überraschenderweise hatten bis zu vier Moleküle MH211A bzw. zwei Moleküle UK-VI-1g an ein Proteasemolekül gebunden. Die Bindung von UK-VI-1g an die Protease wurde an zwei Peptiden im Bereich von den Aminosäuren 62 bis 76 bzw. 280 bis 298 nachgewiesen, wobei beide nicht in der Nähe der active site lokalisiert sind. Im Falle des Inhibitors Lit1 bindet der 2,6-Dinitro-4-trifluoromethyl-phenyl-Rest, bei TS48 das Zimtsäure-Thioester-Fragment kovalent an jedes Monomer im dimeren Enzym. Die SARS-CoV-Mpro wurde erstmals ohne Abtrennung des C-terminalen His-tag mit spezifischen Inhibitoren co-kristallisiert. Drei mögliche Orientierungen des Inhibitors TS174 wurden in der active site der Protease identifiziert. Aufgrund der schwachen Elektronendichte des Inhibitors konnten diese nicht weiter untersucht werden. Das Iod-Isatin-Derivat IISBT wurde ebenfalls mit der SARS-CoV-Mpro zusammen co-kristallisiert und es konnte erstmalig eine kovalente Bindung eines Isatin-Derivats an die SARS-CoV-Mpro anhand einer Röntgenstruktur klar gezeigt werden. Diese Struktur zeigte dann, dass früher veröffentlichte molekulare docking-Studien, die eine nicht-kovalente Bindung von IISBT und anderen Isatin-Derivaten veranschaulichen, nochmal überdacht werden sollten. Basierend auf einer ESI-MS-Analyse und früheren Ergebnissen von MALDI- und Dialyse-Experimenten, kann man sicher annehmen, dass IISBT in einer kombinierten kovalent-reversiblen Art und Weise an die SARS-CoV-Mpro bindet. N2 - SARS („severe acute respiratory syndrome”), a respiratory disease in humans, appeared in November 2002 for the first time. The causative agent of this disease is the SARS-associated coronavirus. Its replication machinery is maintained by the catalytic activity of a cysteine protease, named SARS coronavirus main protease (SARS-CoV-Mpro) that processes the virus derived polyproteins. Based on this key role the SARS-CoV-Mpro is an attractive target for the development of specific inhibitors against this protease thereby inhibiting the reproduction of the virus. In this work, the SARS-CoV-Mpro was expressed and purified by optimized methods. Through ESI-MS analysis an irreversible covalent interaction of various inhibitors was detected but also for the first time the binding of fragments of the inhibitors to the protease. Accordingly the SARS-CoV-Mpro inhibitors MH211A and UK-VI-1g displayed a covalent binding of the complete molecule to the enzyme monomer: surprisingly up to four molecules of MH211A and two molecules of UK-VI-1g respectively bound to one protease molecule. The interaction of UK-VI-1g with the protease was detected for two peptides ranging from amino acids 62 to 76 and 280 to 298 both of which are not located near the active site. In case of inhibitor Lit1 the 2,5-dinitro-4-trifluormethlphenyl-fragment and in TS48 the cinnamic acid-thioester-fragment binds covalently to each monomer in the dimeric enzyme. For the first time the SARS-CoV-Mpro was co-crystallized with specific inhibitors without cleaving the C-terminal His-tag. Three possible orientations of the inhibitor TS174 were identified in the active site of the protease. They could not be further resolved due to the weak electron density for the inhibitor. The iodoisatin derivative IISBT was co-crystallized with SARS-CoV-Mpro as well and a covalent binding mechanism of an isatin derivative to the SARS-CoV-Mpro was clearly shown for the first time in an X-ray structure. This structure then indicates that the previously published molecular docking studies demonstrating a noncovalent binding mode of IISBT and other isatin derivatives should be reconsidered. Based on an ESI-MS analysis and previous results of MALDI and dialysis experiments it is safe to assume that IISBT binds to the SARS-CoV-Mpro in a combined covalent reversible manner. KW - SARS KW - Kristallisation KW - Proteaseinhibitor KW - ESI-MS KW - Coronavirus KW - SARS KW - protease inhibitor KW - crystallization Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57083 ER - TY - THES A1 - Krüger, Reinhard T1 - Pyrolyse- und Sinterverhalten Sol-Gel-abgeleiteter Al2O3-YAG-Fasern T1 - Pyrolysis and Sintering Behavior of Sol–Gel-Derived Al2O3-YAG Fibers N2 - Nichtwäßrige Sol-Gel-Vorstufen, die zu einem Mischgefüge aus Al2O3 und YAG führen (Volumenverhältnis 45 : 55), wurden zu Fasern versponnen, in unterschiedlichen Atmosphären pyrolysiert und abschließend gesintert. Die strukturelle Ent-wicklung während der Pyrolyse der Gel-Fasern wurde in Abhängigkeit von Pyrolysetemperatur (200-850 °C) und -atmosphäre beschrieben. Die Zusammenhänge zwischen den mittels der Pyrolyseparameter variierten amorphen Strukturen und dem daraus resultierenden Kristallisations- und Sinterverhalten sowie den mechanischen Fasereigenschaften wurden gezeigt. Die isotropen Gel-Fasern sind frei von Poren und weisen lokal regelmäßig angeordnete, organische Domänen mit mittleren Abständen von 2 nm innerhalb des anorganischen Matrixgerüsts auf. Während der Pyrolyse auftretende Strukturveränderungen hängen stark von der Atmosphäre und der Temperatur ab. In Luft- und Sauerstoffatmosphäre trat ab 600 °C innerhalb der Fasern lokal eine Kristallisation von YAG und Korund in Form kugeliger Bereiche auf, die zum Bruch der Fasern bereits während der Pyrolyse führten. Die Abgabe organischer Bestandteile erfolgte bei Pyrolyse in Stickstoff im wesentlichen zwischen 300 °C und 500 °C, blieb jedoch auch bei höheren Temperaturen unvollständig. In Wasserdampf-Atmosphäre kam es durch Hydrolysereaktionen zwischen 250 °C und 385 °C zu einer verbesserten Abgabe der organischen Bestandteile. Der Kohlenstoffgehalt sinkt bei 385 °C unter 2 Masse-%. Werden dem Wasserdampf saure Gase wie z.B. Stickoxide zugesetzt, wird um 200 °C die Hydrolyse und Abgabe der Organik zusätzlich verstärkt. Nach Pyrolyse in Stickstoff oder wasserhaltigen Atmosphären blieben die Fasern amorph. Bei Pyrolyse in Stickstoff war die Struktur der Fasern porenfrei, wobei die organischen Pyrolysatreste wie in den Gel-Fasern als regelmäßig angeordnete, isolierte Bereiche innerhalb einer anorganischen Matrix vorlagen. In Wasserdampf bildete sich ab 250 °C aus den organischen Domänen eine geordnete Porenstruktur, die sich mit ansteigender Temperatur vergröberte. Auch in der aus verdampfter Salpetersäure erzeugten Atmosphäre bildeten sich Poren. Die Porendurchmesser und spezifischen Oberflächen der Fasern blieben jedoch geringer als in reinem Wasserdampf. In dem anorganischen Matrixgerüst änderten sich durch die Pyrolyse die Koordinationsverhältnisse der Al-Ionen. Ausgehend von der mehrheitlich 6-fachen Koordination in den Gel-Fasern kam es zunehmend zur Umlagerung in die 4- und 5-fache Koordination. Bei Pyrolyse in reinem Wasserdampf war diese Koordinationsveränderung deutlich schwächer ausgeprägt als in Stickstoff oder der Atmosphäre aus verdampfter Salpetersäure. Während der Sinterung treten intermediär gamma-Al2O3 und hexagonales YAlO3 als metastabile Phasen vor der Kristallisation von YAG auf. Mit der Kristallisation von Korund schließt die Phasenbildung der Al2O3-YAG-Fasern je nach vorangegangener Pyrolysebehandlung zwischen 1275 °C und 1315 °C ab. Die Abweichungen in der Kristallisationstemperatur bzw. Keimbildungsdichte von Korund und im Sinterverhalten ließen sich auf die Unterschiede in den amorphen Strukturen der pyrolysierten Fasern zurückführen. Hohe Anteile 6-fach koordinierter Al-Ionen und eine zu hohen spezifischen Oberflächen führende, feine Porosität erwiesen sich als günstige Strukturmerkmale für pyrolysierte Fasern. Die dabei entstandenen feinkörnigen, homogenen Gefüge konnten dicht gesintert werden und hatten die höchsten Festigkeiten und E-Moduln. Kohlenstoffgehalte bis zu 2 Masse-% wirkten sich in den offenporigen Zwischenprodukten nicht negativ auf das Sinterverhalten aus. In dieser Arbeit wurde gezeigt, daß die Kristallisation der Sol-Gel-abgeleiteten Fasern und damit auch die Ausbildung der keramischen Gefüge in entscheidendem Maße von den Pyrolysebedingungen abhängen. Bei einheitlicher Synthese der Gel-Fasern lassen sich durch die Pyrolysebehandlung unterschiedliche Strukturen in den amorphen Zwischenprodukten einstellen, die durch ihre spezifisches Kristallisations- und Sinterverhalten zu unterschiedlichen keramischen Gefügen in den Fasern führen. Die Optimierung der Gefüge vorstufenabgeleiteter Keramiken durch Zusatz von Keimen ("Seeding") ist seit längerem bekannt. In Ergänzung dazu bietet die gezielte Wahl der Pyrolysebedingungen eine weitere Möglichkeit zur Steuerung der Gefügeausbildung in Sol-Gel-Keramiken. N2 - Ceramic fibers of Al2O3-YAG composition (volume ratio 45 : 55) were prepared by spinning non-aqueous sol-gel precursors to fibers which were then pyrolyzed in various atmospheres and finally sintered. Structural development of the gel fibers upon pyrolysis at temperatures between 200 °C and 850 °C was described for different atmospheres. Variation of pyrolysis conditions lead to different amorphous structures. A correlation between the amorphous structures and their crystallization and sintering behavior as well as mechanical fiber properties could be established. The gel fibers have an isotropic, pore-free structure which is characterized by an inorganic matrix that contains organic domains in a locally ordered arrangement with mean distances of 2 nm. Alteration of this structure strongly depends on the type of atmosphere and temperature during pyrolysis. In air and oxygen above 600 °C local, spherulitic crystallization of YAG and corundum occurs within the fibers and leads to fracture of the fibers. In nitrogen, organic constituents are mainly removed between 300 and 500 °C, but residues remain even at higher temperatures. Water vapor hydrolyses organic constituents and enhances their release at 200-385 °C. Thus carbon contents drops below 2 wt.-% at 385 °C. Additional acceleration of hydrolysis at ~200 °C can be achieved by addition of acidic gases like nitric oxide to the moist atmosphere. The structure of fibers pyrolysed in nitrogen or moist atmospheres remains amorphous. After pyrolysis in nitrogen the fibers are pore-free and the organic residues still appear as locally ordered domains within an inorganic matrix. In water vapor from 250 °C on, the release of organics leads to the formation of ordered micropores that coarsen with further increasing temperature. In the atmosphere of evaporated nitric acid, pores form too, but pore sizes and specific surface areas of the fibers are lower than in pure water vapor. The coordination of Al-ions in the inorganic network is altered by pyrolysis. Gel fibers mainly contain 6-fold coordinated Al-ions. With increasing temperature a rearrangement of part of the octahedrally coordinated Al-ions to 4- and 5-fold coordination was observed. While this rearrangement was only weakly pronounced for fibers pyrolysed in water vapor, in nitrogen or the atmosphere that was derived from evaporated nitric acid a significantly higher proportion of 6-fold coordinated Al-ions rearranged to lower coordination numbers. During the sintering process gamma-Al2O3 and hexagonal YAlO3 are formed as intermediate metastable phases prior to the crystallization of YAG. Formation of crystalline phases in the Al2O3-YAG fibers completes with the crystallization of corundum at 1275 to 1315 °C depending on pyrolysis conditions. Differences in crystallization temperature and nucleation density of corundum were put down the structural features of pyrolysed, amorphous fibers. A high proportion of 6-fold coordinated Al-ions and a high specific surface caused by fine pores revealed as favorable characteristics of low corundum crystallization temperature and high nucleation density. Such fibers could be fully densified resulting in the highest strength and Young's moduli in the ceramic fibers. Carbon contents up to 2 wt.-% were not deleterious to the densification of pyrolysed fibers with an open porous structure. The results presented in this study show that crystallization and microstructural evolution of sol-gel derived ceramic fibers critically depend on pyrolysis conditions. Different amorphous structures that lead to altered ceramic microstructures can be obtained from uniformly synthesized gel fibers by variation of pyrolysis conditions. Seeding is a well known process for the microstructural optimization of precursor derived ceramics. As a supplement the choice of suitable pyrolysis conditions is a further tool for the microstructure control in sol-gel ceramics. KW - Keramikfaser KW - Sol-Gel-Verfahren KW - Pyrolyse KW - Kristallisation KW - Sintern KW - Mechanische Eigenschaft KW - Korund KW - YAG KW - Mikrostruktur KW - Pyrolyse KW - Struktur KW - Sol-Gel KW - Faser KW - Al2O3 KW - pyrolysis KW - structure KW - sol-gel KW - fiber KW - Al2O3 Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6827 ER -