TY - THES A1 - Zimmermann, Henriette T1 - Antigenic variation and stumpy development in \(Trypanosoma\) \(brucei\) T1 - Antigene Variation und Stumpy Entwicklung in \(Trypanosoma\) \(brucei\) N2 - The eukaryotic parasite Trypanosoma brucei has evolved sophisticated strategies to persist within its mammalian host. Trypanosomes evade the hosts' immune system by antigenic variation of their surface coat, consisting of variant surface glycoproteins (VSGs). Out of a repertoire of thousands of VSG genes, only one is expressed at any given time from one of the 15 telomeric expression sites (ES). The VSG is stochastically exchanged either by a transcriptional switch of the active ES (in situ switch) or by a recombinational exchange of the VSG within the active ES. However, for infections to persist, the parasite burden has to be limited. The slender (sl) bloodstream form secretes the stumpy induction factor (SIF), which accumulates with rising parasitemia. SIF induces the irreversible developmental transition from the proliferative sl to the cell cycle-arrested but fly-infective stumpy (st) stage once a concentration threshold is reached. Thus, antigenic variation and st development ensure persistent infections and transmissibility. A previous study in monomorphic cells indicated that the attenuation of the active ES could be relevant for the development of trypanosomes. The present thesis investigated this hypothesis using the inducible overexpression of an ectopic VSG in pleomorphic trypanosomes, which possess full developmental competence. These studies revealed a surprising phenotypic plasticity: while the endogenous VSG was always down-regulated upon induction, the ESactivity determined whether the VSG overexpressors arrested in growth or kept proliferating. Full ES-attenuation induced the differentiation of bona fide st parasites independent of the cell density and thus represents the sole natural SIF-independent differentiation trigger to date. A milder decrease of the ES-activity did not induce phenotypic changes, but appeared to prime the parasites for SIF-induced differentiation. These results demonstrate that antigenic variation and development are linked and indicated that the ES and the VSG are independently regulated. Therefore, I investigated in the second part of my thesis how ES-attenuation and VSG-silencing can be mediated. Integration of reporters with a functional or defective VSG 3'UTR into different genomic loci showed that the maintenance of the active state of the ES depends on a conserved motif within the VSG 3'UTR. In situ switching was only triggered when the telomere-proximal motif was partially deleted, suggesting that it serves as a DNA-binding motif for a telomere-associated protein. The VSG levels seem to be additionally regulated in trans based on the VSG 3'UTR independent of the genomic context, which was reinforced by the regulation of a constitutively expressed reporter with VSG 3' UTR upon ectopic VSG overexpression. N2 - Der eukaryotische Parasit Trypanosoma brucei hat komplexe Strategien entwickelt, um in seinem Säugetierwirt zu überleben. Die Grundlage der Immunevasion ist die antigene Variation des Oberflächenmantels, der aus dem variablen Oberflächenglykoprotein (VSG) besteht. Von mehreren tausend VSG-Genen wird zu jedem Zeitpunkt nur ein einziges aus einer der 15 telomerischen Expressionsstellen (ES) exprimiert. Das VSG kann entweder durch einen transkriptionellen Wechsel der aktiven ES (in situ Wechsel) oder durch einen rekombinatorischen Wechsel des VSG-Gens innerhalb der aktiven ES stochastisch ausgetauscht werden. Damit jedoch eine langanhaltende Infektion des Wirts möglich wird, muss gleichzeitig der Parasitenbefall begrenzt werden. Mit ansteigender Parasitämie akkumuliert der 'stumpy induction factor' (SIF), welcher von der 'slender' (sl) Blutstromform sekretiert wird. Sobald ein Schwellenwert in der SIF-Konzentration erreicht ist, wird die irreversible Differenzierung der proliferativen sl in die zellzyklusarretierte 'stumpy'(st) Form eingeleitet, welche infektiös für den Fliegenvektor ist. Somit stellen antigene Variation und st- Differenzierung das Persistieren der Infektion und die Übertragung des Parasiten sicher. Eine frühere Arbeit mit monomorphen Zellen deutete darauf hin, dass die Attenuierung der aktiven ES eine Rolle für die Differenzierung der Trypanosomen spielen könnte. Diese Hypothese wurde in der vorliegenden Dissertation untersucht, indem in pleomorphen Zellen mit vollständiger Entwicklungskompetenz ein ektopisches VSG induzierbar überexprimiert wurde. Diese Studien offenbarten eine erstaunliche phänotypische Plastizität: während das endogene VSG nach Induktion runter reguliert wurde, arretierten die VSG-Überexpressoren in Abhängigkeit von der ES-Aktivität entweder im Wachstum oder teilten sich weiter. Die vollständige ES-Attenuierung löste die Differenzierung zu echten st Zellen unabhängig von der Zelldichte aus und ist somit der bisher einzige natürliche SIF-unabhängige Differenzierungsauslöser. Eine mildere Abnahme der ES-Aktivität verursachte keinen Phänotyp, scheint aber die Zellen auf die SIF-induzierte Differenzierung vorzubereiten. Diese Ergebnisse zeigen, dass antigene Variation und Differenzierung verbunden sind und deuteten an, dass die ES und das VSG unabhängig voneinander reguliert werden. Daher habe ich im zweiten Teil meiner Dissertation untersucht, wie ES-Attenuierung und VSG-Stilllegung vermittelt werden können. Die Integration eines Reporters mit funktioneller oder defekter VSG 3'UTR an verschiedenen Orten im Genom zeigte, dass die Aufrechterhaltung der ES-Aktivität von einem konservierten Motiv in der VSG 3'UTR abhängig ist. Ein in situ Wechsel wurde nur ausgelöst, wenn Teile des Telomer-proximalen Motiv deletiert wurden, was nahelegt, dass das Motiv auf DNA-Ebene von einem Telomerbindeprotein erkannt wird. Die VSG-Level scheinen unabhängig vom genomischen Kontext zusätzlich in trans basierend auf der VSG 3'UTR reguliert zu werden, was durch die Regulation eines konstitutiv exprimierten Reporters mit VSG 3'UTR nach VSG-Überexpression bekräftigt wurde. KW - Trypanosoma brucei KW - Genexpression KW - Entwicklung KW - Parasit KW - VSG KW - antigenic variation KW - monoallelic expression KW - stumpy development KW - differentiation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146902 ER - TY - THES A1 - Cicova, Zdenka T1 - Characterization of a novel putative factor involved in host adaptation in Trypanosoma brucei T1 - Charakterisierung einer neuen Komponente für die Wirtsanpassung in Trypanosoma brucei N2 - Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level in a systematic way. However, a detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor (Tb927.11.2400) identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin like (TbFlabarinL) and demonstrate that it is a result of a gene duplication event, which occurred in African trypanosomes. TbFlabarinL is not essential for growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated a TbFlabarinL-specific antibody and showed that it localizes in the flagellum. The co-immunoprecipitation experiment together with a biochemical cell fractionation indicated a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod. N2 - Trypansomen zeigen sich im Laufe ihres komplexen Lebeszyklus als Meister der Adaption an verschiedene Umweltbedingungen ihrer Wirte. Umfangreiche proteomische Analysen geben systematisch Auskunft über Änderungen auf zellulärer Ebene. Detailierte Arbeit an einzelnen Komponenten ist jedoch nötig, um die Adaptionsmechanismen auf molekularer Ebene zu verstehen. Wir haben im Rahmen dieser Arbeit eine detaillierte Charakterisierung eines stadienspezifischen mutmaßlich flagellaren Wirtsadaptionsfaktors der Blutstromform (BSF) durchgeführt (Tb927.11.2400), der zuvor in einer SILAC-basierten vergleichenden Proteomstudie idendifiziert wurde. Tb927.11.2400 teilt 38% der mit TbFlabarin (Tb927.11.2410), eines stadienspezifischen flagellaren BAR- domänen Proteins der prozyklischen Form (PCF). Wir haben Tb927.11.2400 TbFlabarin like (TbFlabarinL) genannt und zeigen, dass es das Ergebnis eines Genduplikations-Ereignisses darstellt, das in afrikanischen Trypanosomen aufgetreten ist. TbFlabarinL ist nicht essentiell für das Wachstum der Parasiten unter Zellkultur-Bedingungen und entbehrlich für den Differenzierungprozess von BSF zu PCF in vitro. Wir haben einen TbFlabarinL-spezifischen Antikörper entwickelt und zeigen, dass er in der Flagelle lokalisiert. Das Co-immunoprezipitations-Experiment deutet zusammen mit einer biochemischen Zellfraktionierung darauf hin, dass TbFlabarinL mit der flagellaren Membran und Komponenten der paraflagellaren Stab binär assoziiert ist. KW - Trypanosoma brucei KW - Wirt KW - Anpassung KW - stage specific regulation KW - Geißel KW - flagellum KW - Flabarin Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142462 ER - TY - THES A1 - Reis, Helena T1 - Characterization of telomere protein complexes in Trypanosoma brucei T1 - Charakterisierung von telomerischen Proteinkomplexen in Trypanosoma brucei N2 - African trypanosomiasis is a disease endemic to sub-Saharan Africa. It affects humans as well as wild and domestic animals. The human form of the disease is known as sleeping sickness and the animal form as nagana, which are usually fatal if left untreated. The cause of African trypanosomiasis is the unicellular parasite Trypanosoma brucei. During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host the parasite multiplies as bloodstream form (BSF) extracellularly in the bloodstream or the lymphatic system. Survival of BSF parasites relies on immune evasion by antigenic variation of surface proteins because its extracellular lifestyle leads to direct exposure to immune responses. At any given time each BSF cell expresses a single type of variant surface glycoprotein (VSG) on its surface from a large repertoire. The active VSG is transcribed from one of 15 specialized subtelomeric domains, termed bloodstream expression sites (BESs). The remaining 14 BESs are silenced. This monoallelic expression and periodic switching of the expressed VSG enables to escape the immune response and to establish a persistent infection in the mammalian host. During developmental differentiation from BSF to the insect vector-resident procyclic form (PCF), the active BES is transcriptionally silenced to stop VSG transcription. Thus, all 15 BESs are inactive in the PCF cells as surface protein expression is developmentally regulated. Previous reports have shown that the telomere complex components TbTRF, TbRAP1 and TbTIF2 are involved in VSG transcriptional regulation. However, the precise nature of their contribution remains unclear. In addition, no information is available about the role of telomeres in the initiation and regulation of developmental BES silencing. To gain insights into the regulatory mechanisms of telomeres on VSG transcription and developmental repression it is therefore essential to identify the complete composition of the trypanosome telomere complex. To this end, we used two complementary biochemical approaches and quantitative label-free interactomics to determine the composition of telomere protein complexes in T. brucei. Firstly, using a telomeric pull-down assay we found 17 potential telomere-binding proteins including the known telomere-binding proteins TbTRF and TbTIF2. Secondly, by performing a co-immunoprecipitation experiment to elucidate TbTRF interactions we co-purified five proteins. All of these five proteins were also enriched with telomeric DNA in the pull-down assay. To validate these data, I characterized one of the proteins found in both experiments (TelBP1). In BSF cells, TelBP1 co-localizes with TbTRF and interacts with already described telomere-binding proteins such as TbTRF, TbTIF2 and TbRAP1 indicating that TelBP1 is a novel component of the telomere complex in trypanosomes. Interestingly, protein interaction studies in PCF cells suggested a different telomere complex composition compared to BSF cells. In contrast to known members of the telomere complex, TelBP1 is dispensable for cell viability indicating that its function might be uncoupled from the known telomere-binding proteins. Overexpression of TelBP1 had also no effect on cell viability, but led to the discovery of two additional shorter isoforms of TelBP1. However, their source and function remained elusive. Although TelBP1 is not essential for cell viability, western blot analysis revealed a 4-fold upregulation of TelBP1 in the BSF stage compared to the PCF stage supporting the concept of a dynamic telomere complex composition. We observed that TelBP1 influences the kinetics of transcriptional BES silencing during developmental transition from BSF to PCF. Deletion of TelBP1 caused faster BES silencing compared to wild-type parasites. Taken together, TelBP1 function illustrates that developmental BES silencing is a fine-tuned process, which involves stage-specific changes in telomere complex formation. N2 - Afrikanische Trypanosomiasis ist eine Krankheit, die in Afrika südlich der Sahara endemisch vorkommt und sowohl Menschen als auch Wild- und Haustiere betrifft. Die menschliche Form der Krankheit ist als Schlafkrankheit und die Tierform als Nagana bekannt. Ohne Behandlung verläuft die Krankheit in der Regel tödlich. Der einzellige Parasit Trypanosoma brucei ist die Ursache dieser Krankheit. Während seines Lebenszyklus bewegt sich der Parasit zwischen einem Säugetierwirt und einem Insektenvektor, der Tsetsefliege. Im Säugetierwirt vermehrt sich der Parasit als Blutstromform (BSF) extrazellulär im Blutkreislauf und im Lymphsystem. Das Fortbestehen der BSF-Parasiten im Wirt beruht auf einer Immunausweichstrategie durch antigene Variation der Oberflächenproteine. Diese Abwehrstrategie ist erforderlich, da der Parasit durch seinen extrazellulären Lebensstil direkt der Immunantwort ausgesetzt ist. Zu jedem Zeitpunkt wird nur ein variables Oberflächenprotein (VSG) auf der Zelloberfläche aus einem großen Repertoire exprimiert. Dabei wird das aktive VSG von einer von 15 spezialisierten telomerproximalen Transkriptionseinheiten transkribiert, den sogenannten Blutstromform Expression Sites (BESs). Die restlichen 14 BESs sind inaktiv. Diese monoallelische Expression und das periodische Wechseln des exprimierten VSG ermöglichen dem Parasiten der Immunantwort zu entgehen und eine persistente Infektion im Säugetierwirt zu etablieren. Während der Differenzierung von BSF zur Insektenvektor-residenten prozyklischen Form (PCF) wird die aktive BES transkriptionell herunter reguliert um die VSG-Transkription zu stoppen. Somit sind alle 15 BESs in PCF-Zellen inaktiv, da die Expression von Oberflächenproteinen stadienspezifisch reguliert ist. Frühere Veröffentlichungen haben gezeigt, dass die Proteine TbTRF, TbRAP1 und TbTIF2 des Telomerkomplexes an der Transkriptionsregulation von VSG-Genen beteiligt sind. Es ist jedoch unklar, wie genau sie zur Regulation beitragen. Darüber hinaus gibt es keine Informationen über die Rolle von Telomeren bei der Initiation und Regulation der BES-Inaktivierung während der Differenzierung. Um Einblicke in die regulatorischen Mechanismen von Telomeren auf die VSG-Transkription und differenzierungsbedingte Repression der aktiven BES zu gewinnen, ist es daher notwendig, die vollständige Zusammensetzung der Telomerkomplexe in Trypanosomen zu identifizieren. Zu diesem Zweck wurden zwei komplementäre biochemische Ansätze und quantitative Massenspektrometrie genutzt um die Zusammensetzung von Telomerproteinkomplexen in T. brucei zu bestimmen. Zunächst wurden mittels einer Affinitätschromatographie mit TTAGGG-Oligonukleotiden 17 potentielle telomerbindende Proteine gefunden. Darunter waren auch die bereits bekannten telomerbindenden Proteine TbTRF und TbTIF2. Zweitens wurde mit Hilfe eines Co-Immunpräzipitationsexperiments um die Interaktionen von TbTRF aufzuklären, fünf Proteine aufgereinigt. Alle diese fünf Proteine wurden auch mit telomerischer DNA in der Affinitätschromatographie angereichert. Um diese Daten zu validieren, wurde eines der in beiden Experimenten gefundenen Proteine (TelBP1) charakterisiert. In BSF-Zellen co-lokalisiert TelBP1 mit TbTRF und interagiert mit bereits beschriebenen telomerbindenden Proteinen wie TbTRF, TbTIF2 und TbRAP1. Dies deutet darauf, dass TelBP1 eine weitere Komponente des Telomerkomplexes in Trypanosomen ist. Interessanterweise deuteten Proteininteraktionsstudien in PCF-Zellen auf eine andere Zusammensetzung des Telomerkomplexes im Vergleich zu BSF-Zellen. Im Gegensatz zu den bekannten Mitgliedern des Telomerkomplexes ist TelBP1 für das Zellwachstum nicht essentiell. Damit könnte die Funktion von TelBP1 von den bekannten telomerbindenden Proteinen entkoppelt sein. Die Überexpression von TelBP1 zeigte auch keinen Einfluss auf das Zellwachstum, führte aber zur Entdeckung von zwei weiteren kürzeren Isoformen von TelBP1. Ihr Ursprung und Funktion blieben jedoch ungeklärt. Obwohl TelBP1 für das Zellwachstum entbehrlich ist, zeigten Westernblot-Analysen eine 4-fache Hochregulierung von TelBP1 in BSF-Zellen im Vergleich zu PCF-Zellen. Die stadienspezifische Regulation von TelBP1 unterstützt damit das Konzept von einer dynamischen Zusammensetzung der Telomerkomplexe. Zudem wurde beobachtet, dass TelBP1 die Kinetik der Inaktivierung der aktiven BES während der Differenzierung von der BSF zur PCF beeinflusst. Die Deletion von TelBP1 führte zu einem schnelleren Abschalten der BES im Vergleich zu Wildtyp-Parasiten. Zusammengefasst zeigt die Funktion von TelBP1, dass das Abschalten der aktiven BES während der Differenzierung ein fein abgestimmter Prozess ist, der stadienspezifische Veränderungen der Telomerkomplexe beinhaltet. KW - Trypanosoma brucei KW - Genexpression KW - Telomer KW - telomere-binding protein KW - chromatin remodeling KW - developmental differentiation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151323 ER - TY - THES A1 - Weisert, Nadine T1 - Characterization of telomere-associated proteins in \(Trypanosoma\) \(brucei\) T1 - Charakterisierung Telomer-assoziierter Proteine in \(Trypanosoma\) \(brucei\) N2 - The unicellular pathogen Trypanosoma brucei is the causative agent of African trypanosomiasis, an endemic disease prevalent in sub-Saharan Africa. Trypanosoma brucei alternates between a mammalian host and the tsetse fly vector. The extracellular parasite survives in the mammalian bloodstream by periodically exchanging their ˈvariant surface glycoproteinˈ (VSG) coat to evade the host immune response. This antigenic variation is achieved through monoallelic expression of one VSG variant from subtelomeric ˈbloodstream form expression sitesˈ (BES) at a given timepoint. During the differentiation from the bloodstream form (BSF) to the procyclic form (PCF) in the tsetse fly midgut, the stage specific surface protein is transcriptionally silenced and replaced by procyclins. Due to their subtelomeric localization on the chromosomes, VSG transcription and silencing is partly regulated by homologues of the mammalian telomere complex such as TbTRF, TbTIF2 and TbRAP1 as well as by ˈtelomere-associated proteinsˈ (TelAPs) like TelAP1. To gain more insights into transcription regulation of VSG genes, the identification and characterization of other TelAPs is critical and has not yet been achieved. In a previous study, two biochemical approaches were used to identify other novel TelAPs. By using ˈco-immunoprecipitationˈ (co-IP) to enrich possible interaction partners of TbTRF and by affinity chromatography using telomeric repeat oligonucleotides, a listing of TelAP candidates has been conducted. With this approach TelAP1 was identified as a novel component of the telomere complex, involved in the kinetics of transcriptional BES silencing during BSF to PCF differentiation. To gain further insights into the telomere complex composition, other previously enriched proteins were characterized through a screening process using RNA interference to deplete potential candidates. VSG expression profile changes and overall proteomic changes after depletion were analyzed by mass spectrometry. With this method, one can gain insights into the functions of the proteins and their involvement in VSG expression site regulation. To validate the interaction of proteins enriched by co-IP with TbTRF and TelAP1 and to identify novel interaction proteins, I performed reciprocal affinity purifications of the four most promising candidates (TelAP2, TelAP3, PPL2 and PolIE) and additionally confirmed colocalization of two candidates with TbTRF via immunofluorescence (TelAP2, TelAP3). TelAP3 colocalizes with TbTRF and potentially interacts with TbTRF, TbTIF2, TelAP1 and TelAP2, as well as with two translesion polymerases PPL2 and PolIE in BSF. PPL2 and PolIE seem to be in close contact to each other at the telomeric ends and fulfill different roles as only PolIE is involved in VSG regulation while PPL2 is not. TelAP2 was previously characterized to be associated with telomeres by partially colocalizing with TbTRF and cells show a VSG derepression phenotype when the protein was depleted. Here I show that TelAP2 interacts with the telomere-binding proteins TbTRF and TbTIF2 as well as with the telomere-associated protein TelAP1 in BSF and that TelAP2 depletion results in a loss of TelAP1 colocalization with TbTRF in BSF. In conclusion, this study demonstrates that characterizing potential TelAPs is effective in gaining insights into the telomeric complex's composition and its role in VSG regulation in Trypanosoma brucei. Understanding these interactions could potentially lead to new therapeutic targets for combatting African trypanosomiasis. N2 - Der einzellige Pathogen Trypanosoma brucei ist der Erreger der afrikanischen Trypanosomiasis, eine endemische Krankheit vertreten in der Sub-Sahara Zone Afrikas. Trypanosoma brucei wechselt zwischen einem Säugerwirt und dem Insektenvektor, der Tsetse-Fliege. Der im Blutstrom des Säugers vorkommende, extrazelluläre Parasit ändert seinen Oberflächenmantel bestehend aus dem ˈvariablen Oberflächenproteinˈ (VSG) in periodischen Abständen, um der Immunantwort des Wirtes auszuweichen. Diese antigenetische Variation wird durch die monoallelische Expression einer einzelnen VSG-Variante, lokalisiert auf den ˈBlutstromform Expressionsseitenˈ (BES), zu einem bestimmten Zeitpunkt erreicht. Diese stadienspezifischen Oberflächenproteine werden während der Differenzierung der ˈBlutstromformˈ (BSF) zur ˈprozyklischen Formˈ (PCF) im Mitteldarm der Tsetse-Fliege stillgelegt und durch Prozykline ersetzt. Wegen der subtelomeren Lokalisation wird die VSG Transkription und Stilllegung teilweise durch Homologe des Säuger Telomerkomplexes TbTRF, TbTIF2 und TbRAP1 als auch durch Telomer-assoziierte Proteine (TelAPs) wie TelAP1 reguliert. Um Einblicke in die Transkriptionsregulation der VSG Gene zu erhalten, ist die Identifikation und Charakterisierung anderer Telomer-assoziierter Proteine von großem Interesse. In einer vorherigen Studie wurden zwei komplementäre biochemische Versuchsansätze verwendet, um weitere neue TelAPs zu identifizieren. Es wurde eine ko-Immunpräzipitation (co-IP) durchgeführt, um mögliche Interaktionspartner von TbTRF zu identifizieren, sowie eine Affinitätschromatographie unter Verwendung telomerischen Wiederholungseinheiten. Hierdurch wurde eine Liste von potenziellen Kandidaten generiert. Mit diesem Ansatz wurde TelAP1 als neue Komponente des Telomerkomplexes identifiziert, welches an der Kinetik der transkriptionellen BES-Stilllegung während der Differenzierung von BSF zu PCF beteiligt ist. Um weitere Einblicke in die Zusammensetzung des Telomerkomplexes zu erhalten, wurden zuvor angereicherte Proteine durch einen Screening-Prozess unter Verwendung von RNA-Interferenz charakterisiert. Nach der Depletion von 21 Proteinen wurden massenspektrometrische Analysen der VSG Expressionsprofiländerungen sowie allgemeine Veränderungen des Proteomenprofils analysiert. Mit dieser Methode können Erkenntnisse über die Funktion der jeweiligen Proteine und ihrer Beteiligung an der Regulierung der antigenetischen Variation von T. brucei gewonnen werden. Um die Interaktionen von Proteinen zu validieren, welche bei den Co-Immunpräzipitationen mit TbTRF und TelAP1 angereichert wurden, habe ich eine reziproke Affinitätschromatographie mit vier der vielversprechendsten Kandidaten durchgeführt (TelAP2, TelAP3, PPL2 und PolIE). Zusätzlich bestätigte ich die Co-lokalisation von zwei Kandidaten mit TbTRF via Immunfluoreszenzaufnahmen (TelAP2, TelAP3). TelAP3 ko-lokalisiert mit TbTRF und TelAP1 und interagiert potenziell mit TbTRF, TbTIF2, TelAP1 und TelAP2 als auch mit den zwei Transläsionspolymerasen PPL2 und PolIE in BSF. PPL2 und PolIE stehen in engem Kontakt zueinander und nehmen an den Telomerenden unterschiedliche Funktionen ein, da nur PolIE an der VSG Regulation beteiligt ist. TelAP2 wurde in einer vorherigen Publikation als Telomer-assoziiertes Protein durch partielle Co-Lokalisation mit TbTRF identifiziert und Zellen zeigen nach der Depletion von TelAP2 eine Derepression von zuvor stillgelegten VSGs. In dieser Studie zeige ich, dass TelAP2 mit den Telomer-bindenden Proteinen TbTRF und TbTIF2 sowie mit dem telomerassoziierten Protein TelAP1 in BSF interagiert und dass die Depletion von TelAP2 zu dem Verlust der Co-Lokalisation von TelAP1 mit TbTRF in BSF führt. Zusammenfassend zeigt diese Studie, dass die Charakterisierung potenzieller TelAPs dazu beiträgt, Einblicke in die Zusammensetzung des Telomerkomplexes und dessen Rolle bei der VSG-Regulation in Trypanosoma brucei zu gewinnen. Das Verständnis dieser Interaktionen könnte möglicherweise zu neuen therapeutischen Ansatzpunkten zur Bekämpfung der afrikanischen Trypanosomiasis führen. KW - Telomer KW - Trypanosoma brucei KW - telomere-associated protein Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-352732 ER - TY - JOUR A1 - Siegel, T. Nicolai A1 - Vasquez, Juan-José A1 - Hon, Chung-Chau A1 - Vanselow, Jens T. A1 - Schlosser, Andreas T1 - Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages N2 - While gene expression is a fundamental and tightly controlled cellular process that is regulated at multiple steps, the exact contribution of each step remains unknown in any organism. The absence of transcription initiation regulation for RNA polymerase II in the protozoan parasite Trypanosoma brucei greatly simplifies the task of elucidating the contribution of translation to global gene expression. Therefore, we have sequenced ribosome-protected mRNA fragments in T. brucei, permitting the genome-wide analysis of RNA translation and translational efficiency. We find that the latter varies greatly between life cycle stages of the parasite and ∼100-fold between genes, thus contributing to gene expression to a similar extent as RNA stability. The ability to map ribosome positions at sub-codon resolution revealed extensive translation from upstream open reading frames located within 5' UTRs and enabled the identification of hundreds of previously un-annotated putative coding sequences (CDSs). Evaluation of existing proteomics and genome-wide RNAi data confirmed the translation of previously un-annotated CDSs and suggested an important role for >200 of those CDSs in parasite survival, especially in the form that is infective to mammals. Overall our data show that translational control plays a prevalent and important role in different parasite life cycle stages of T. brucei. KW - Ribosom KW - Profilierung KW - Trypanosoma brucei KW - Entwicklung KW - Lebenszyklus Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112657 ER - TY - THES A1 - Reuter, Christian Steffen T1 - Development of a tissue-engineered primary human skin infection model to study the pathogenesis of tsetse fly-transmitted African trypanosomes in mammalian skin T1 - Entwicklung eines primären humanen Hautinfektionsmodells basierend auf Gewebezüchtung zur Erforschung der Pathogenese von Tsetsefliegen-übertragenen Afrikanischen Trypanosomen in der Säugetierhaut N2 - Many arthropods such as mosquitoes, ticks, bugs, and flies are vectors for the transmission of pathogenic parasites, bacteria, and viruses. Among these, the unicellular parasite Trypanosoma brucei (T. brucei) causes human and animal African trypanosomiases and is transmitted to the vertebrate host by the tsetse fly. In the fly, the parasite goes through a complex developmental cycle in the alimentary tract and salivary glands ending with the cellular differentiation into the metacyclic life cycle stage. An infection in the mammalian host begins when the fly takes a bloodmeal, thereby depositing the metacyclic form into the dermal skin layer. Within the dermis, the cell cycle-arrested metacyclic forms are activated, re-enter the cell cycle, and differentiate into proliferative trypanosomes, prior to dissemination throughout the host. Although T. brucei has been studied for decades, very little is known about the early events in the skin prior to systemic dissemination. The precise timing and the mechanisms controlling differentiation of the parasite in the skin continue to be elusive, as does the characterization of the proliferative skin-residing trypanosomes. Understanding the first steps of an infection is crucial for developing novel strategies to prevent disease establishment and its progression. A major shortcoming in the study of human African trypanosomiasis is the lack of suitable infection models that authentically mimic disease progression. In addition, the production of infectious metacyclic parasites requires tsetse flies, which are challenging to keep. Thus, although animal models - typically murine - have produced many insights into the pathogenicity of trypanosomes in the mammalian host, they were usually infected by needle injection into the peritoneal cavity or tail vein, bypassing the skin as the first entry point. Furthermore, animal models are not always predictive for the infection outcome in human patients. In addition, the relatively small number of metacyclic parasites deposited by the tsetse flies makes them difficult to trace, isolate, and study in animal hosts. The focus of this thesis was to develop and validate a reconstructed human skin equivalent as an infection model to study the development of naturally-transmitted metacyclic parasites of T. brucei in mammalian skin. The first part of this work describes the development and characterization of a primary human skin equivalent with improved mechanical properties. To achieve this, a computer-assisted compression system was designed and established. This system allowed the improvement of the mechanical stability of twelve collagen-based dermal equivalents in parallel through plastic compression, as evaluated by rheology. The improved dermal equivalents provided the basis for the generation of the skin equivalents and reduced their contraction and weight loss during tissue formation, achieving a high degree of standardization and reproducibility. The skin equivalents were characterized using immunohistochemical and histological techniques and recapitulated key anatomical, cellular, and functional aspects of native human skin. Furthermore, their cellular heterogeneity was examined using single-cell RNA sequencing - an approach which led to the identification of a remarkable repertoire of extracellular matrix-associated genes expressed by different cell subpopulations in the artificial skin. In addition, experimental conditions were established to allow tsetse flies to naturally infect the skin equivalents with trypanosomes. In the second part of the project, the development of the trypanosomes in the artificial skin was investigated in detail. This included the establishment of methods to successfully isolate skin-dwelling trypanosomes to determine their protein synthesis rate, cell cycle and metabolic status, morphology, and transcriptome. Microscopy techniques to study trypanosome motility and migration in the skin were also optimized. Upon deposition in the artificial skin by feeding tsetse, the metacyclic parasites were rapidly activated and established a proliferative population within one day. This process was accompanied by: (I) reactivation of protein synthesis; (II) re-entry into the cell cycle; (III) change in morphology; (IV) increased motility. Furthermore, these observations were linked to potentially underlying developmental mechanisms by applying single-cell parasite RNA sequencing at five different timepoints post-infection. After the initial proliferative phase, the tsetse-transmitted trypanosomes appeared to enter a reversible quiescence program in the skin. These quiescent skin-residing trypanosomes were characterized by very slow replication, a strongly reduced metabolism, and a transcriptome markedly different from that of the deposited metacyclic forms and the early proliferative trypanosomes. By mimicking the migration from the skin to the bloodstream, the quiescent phenotype could be reversed and the parasites returned to an active proliferating state. Given that previous work has identified the skin as an anatomical reservoir for T. brucei during disease, it is reasonable to assume that the quiescence program is an authentic facet of the parasite's behavior in an infected host. In summary, this work demonstrates that primary human skin equivalents offer a new and promising way to study vector-borne parasites under close-to-natural conditions as an alternative to animal experimentation. By choosing the natural transmission route - the bite of an infected tsetse fly - the early events of trypanosome infection have been detailed with unprecedented resolution. In addition, the evidence here for a quiescent, skin-residing trypanosome population may explain the persistence of T. brucei in the skin of aparasitemic and asymptomatic individuals. This could play an important role in maintaining an infection over long time periods. N2 - Zahlreiche Arthropoden wie Stechmücken, Zecken, Wanzen und Fliegen sind Überträger für krankheitserregende Parasiten, Bakterien und Viren. Hierzu gehört der einzellige Parasit Trypanosoma brucei (T. brucei), welcher durch Tsetsefliegen übertragen wird und die Afrikanische Trypanosomiasis bei Menschen und Tieren verursacht. Der Entwicklungszyklus des Parasiten in der Fliege ist komplex und endet in der Speicheldrüse mit der Differenzierung in das metazyklische Lebensstadium. Diese metazyklischen Formen werden durch den Biss der blutsaugenden Tsetsefliege in die dermale Hautschicht des Säugetierwirts injiziert. Die zellzyklusarretierten metazyklischen Formen werden in der Dermis aktiviert und der Widereintritt in den Zellzyklus sowie die Differenzierung zu proliferativen Trypanosomen eingeleitet. Anschließend breitet sich der Parasit systemisch im Säugetierwirt aus. Obwohl T. brucei bereits seit Jahrzehnten erforscht wird, ist nur sehr wenig über das frühe Infektionsgeschehen in der Haut bekannt. Der genaue Zeitpunkt und die Mechanismen, die der Differenzierung des Parasiten in der Haut zugrunde liegen, sind unbekannt. Ebenso wurden die proliferativen Trypanosomen in der Haut bisher nur unzureichend charakterisiert. Das Verständnis über die ersten Schritte einer Infektion ist jedoch von entscheidender Bedeutung für die Entwicklung von neuen Strategien, die die Krankheitsentstehung und deren Fortschreiten verhindern sollen. Ein großes Hindernis bei der Erforschung der humanen Afrikanischen Trypanosomiasis ist der Mangel an geeigneten Infektionsmodellen, die den Krankheitsverlauf authentisch nachbilden. Außerdem werden für die Erzeugung der infektiösen metazyklischen Parasiten Tsetsefliegen benötigt, die aufwändig zu züchten sind. Tiermodelle haben es ermöglicht - hauptsächlich Mäuse -, viele Erkenntnisse über die Pathogenese von Trypanosomen im Säugetierwirt zu erlangen. Allerdings wurden diese überwiegend durch Nadelinjektion in den Bauchraum oder die Kaudalvene infiziert, wodurch die Haut als erste Eintrittspforte umgangen wurde. Darüber hinaus lassen Tiermodelle nicht immer Rückschlüsse auf den Infektionsverlauf beim Menschen zu. Zusätzlich erschwert die geringe Anzahl von metazyklischen Parasiten, die von Tsetsefliegen injiziert werden, die Isolation, Nachweis und Untersuchung im tierischen Wirt. Das Ziel der vorliegenden Arbeit war es, ein rekonstruiertes menschliches Hautäquivalent zu entwickeln und als Infektionsmodell zu validieren, um die Entwicklung von natürlich übertragenen metazyklischen Parasiten von T. brucei in der Säugetierhaut zu untersuchen. Der erste Teil dieser Arbeit beschreibt die Entwicklung und Charakterisierung eines primären menschlichen Hautäquivalents mit verbesserten mechanischen Eigenschaften. Zu diesem Zweck wurde ein computergesteuertes Kompressionssystem entworfen und hergestellt. Dieses System ermöglichte die gleichzeitige Verbesserung der mechanischen Stabilität von zwölf kollagenbasierten dermalen Äquivalenten durch plastische Kompression, die mittels Rheologie evaluiert wurden. Die verbesserten dermalen Äquivalente dienten als Fundament für die Erzeugung der Hautäquivalente und reduzierten deren Kontraktion und Gewichtsverlust während der Gewebebildung. Dadurch wurde ein hohes Maß an Standardisierung und Reproduzierbarkeit erreicht. Die Hautäquivalente wurden durch immunhistochemische und histologische Techniken charakterisiert und bildeten wichtige anatomische, zelluläre und funktionelle Aspekte der nativen menschlichen Haut nach. Des Weiteren wurde die zelluläre Heterogenität durch Einzelzell-RNA-Sequenzierung untersucht. Mit dieser Technik wurde ein umfangreiches Spektrum an extrazellulären Matrix-assoziierten Genen identifiziert, die von verschiedenen Zellsubpopulationen in der künstlichen Haut exprimiert werden. Zusätzlich wurden experimentelle Bedingungen etabliert, damit Tsetsefliegen eingesetzt werden konnten, um die Hautäquivalente auf natürlichem Weg mit Trypanosomen zu infizieren. Im zweiten Teil dieser Arbeit wurde die Entwicklung der Trypanosomen in der künstlichen Haut im Detail untersucht. Dies umfasste die Etablierung von Methoden zur erfolgreichen Isolierung der Trypanosomen aus der Haut, um deren Proteinsyntheserate, Zellzyklus- und Stoffwechselstatus, sowie Morphologie und Transkriptom zu bestimmen. Zusätzlich wurden Mikroskopietechniken zur Untersuchung der Trypanosomenmotilität und migration in der Haut optimiert. Nach der Injektion in die künstliche Haut durch Tsetsefliegen wurden die metazyklischen Parasiten schnell aktiviert und etablierten innerhalb eines Tages eine proliferative Population. Dieser Entwicklungsprozess wurde begleitet von (I) einer Reaktivierung der Proteinsynthese, (II) einem Wiedereintritt in den Zellzyklus, (III) einer Veränderung der Morphologie und (IV) einer erhöhten Motilität. Des Weiteren wurden diese Beobachtungen mit potentiell zugrundeliegenden entwicklungsbiologischen Mechanismen in Verbindung gebracht, indem eine Einzelzell RNA-Sequenzierung der Trypanosomen zu fünf verschiedenen Zeitpunkten nach der Infektion durchgeführt wurde. Nach der ersten proliferativen Phase traten die Tsetse-übertragenen Trypanosomen in der Haut in ein reversibles Ruhestadium ein. Diese ruhenden Trypanosomen waren durch eine sehr langsame Zellteilung, einen stark reduzierten Stoffwechsel und ein Transkriptom gekennzeichnet, dass sich deutlich von dem der injizierten metazyklischen Formen und der ersten proliferativen Trypanosomen unterschied. Durch Nachahmung der Migration von der Haut in den Blutkreislauf konnte dieser Phänotyp reaktiviert werden und die Parasiten kehrten in einen aktiven, proliferierenden Zustand zurück. Unter Berücksichtigung, dass vorangegangene Forschungsarbeiten die Haut als anatomisches Reservoir für T. brucei während des Krankheitsverlaufs identifiziert haben, ist anzunehmen, dass das Ruheprogramm eine authentische Facette im Verhalten des Parasiten in einem infizierten Wirt darstellt. Zusammenfassend zeigt diese Arbeit, das primäre menschliche Hautäquivalente eine neue und vielversprechende Möglichkeit bieten, vektorübertragene Parasiten unter naturnahen Bedingungen als Alternative zu Tierversuchen zu untersuchen. Durch die Verwendung des natürlichen Infektionsweges - dem Biss einer infizierten Tsetsefliege -, konnten die frühen Prozesse einer Trypanosomen-Infektion mit noch nie dagewesener Detailtiefe nachvollzogen werden. Des Weiteren könnte der hier erbrachte Nachweis einer ruhenden, hautresidenten Trypanosomen-Population die Persistenz von T. brucei in der Haut von aparasitämischen und asymptomatischen Personen erklären. Dies könnte eine wichtige Rolle bei der Aufrechterhaltung einer Infektion über lange Zeiträume spielen. KW - Trypanosoma brucei KW - Tissue Engineering KW - Trypanosomiasis KW - 3D-Zellkultur KW - Transkriptomanalyse KW - developmental differentiation KW - skin equivalent KW - artificial human skin KW - single-cell RNA sequencing KW - quiescence Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251147 ER - TY - THES A1 - Vasquez Ospina, Juan Jose T1 - Development of tools for the study of gene regulation in Trypanosoma brucei T1 - Entwicklung neuer Methoden zur Untersuchung der Genregulation in Trypanosoma brucei N2 - The protozoan parasite Trypanosoma brucei is the causal agent of sleeping sickness and besides its epidemiological importance it has been used as model organism for the study of many aspects of cellular and molecular biology especially the post-transcriptional control of gene expression. Several studies in the last 30 years have shown the importance of mRNA processing and stability for gene regulation. In T. brucei genes are unusually arranged in polycistronic transcription units (PTUs) and a coupled process of trans-splicing and polyadenylation produces the mature mRNAs. Both processes, mRNA processing and stability, cannot completely explain the control of gene expression in the different life cycle stages analyzed in T. brucei so far. In recent years, the relevance of expression regulation at the level of translation has become evident in other eukaryotes. Therefore, in the first part of my thesis I studied the impact of translational regulation by means of a genome-wide ribosome profiling approach. My data suggest that translational efficiencies vary between life cycle stages of the parasite as well as between genes within one life cycle stage. Furthermore, using ribosome profiling I was able to identify many new putative un-annotated coding sequences and to evaluate the coding potential of upstream open reading frames (uORF). Comparing my results with previously published proteomic and RNA interference (RNAi) target sequencing (RIT-seq) datasets allowed me to validate some of the new coding sequences and to evaluate their relevance for the fitness of the parasite. In the second part of my thesis I used the transcriptomic and translatomic profiles obtained from the ribosome profiling analysis for the identification of putative non-coding RNAs (ncRNAs). These results led to the analysis of the coding potential in the regions upstream and downstream of the expressed variant surface glycoprotein (VSG), which is outlined in the third part of the results section. The region upstream of the VSG, the co-transposed region (CTR), has been implicated in an increase of the in situ switching rate upon its deletion. The ribosome profiling results indicated moderate transcription but not translation in this region. These results raised the possibility that the CTR may be transcribed into ncRNA. Therefore, in the third part of my thesis, I performed a primary characterization of the CTR-derived transcripts based on northern blotting and RACE. The results suggested the presence of a unique transcript species of about 1,200 nucleotides (nt) and polyadenylated at the 3’-end of the sequence. The deletion of the CTR sequence promoting and increase of the in situ switching rates was performed around 20 years ago by means of inserting reporter genes. With the recent development of endonuclease-based tools for genome editing, it is now possible to delete sequences in a marker-free way. In the fourth part of my thesis, I show the results on the implementation of the highly efficient genome-editing CRISPR-Cas9 system in T. brucei using episomes. As a proof of principle, I inserted the sequence coding for the enhanced green fluorescent protein (eGFP) at the end of the SCD6 coding sequence (CDS). Fluorescent cells were observed as early as two days after transfection. Therefore, after the successful set up of the CRISPR-Cas9 system it will be possible to modify genomic regions with more relevance for the biology of the parasite, such as the substitution of codons present in gene tandem arrays. The implementation of ribosome profiling in T. brucei opens the opportunity for the study of translational regulation in a genome-wide scale, the re-annotation of the currently available genome, the search for new putative coding sequences, the detection of putative ncRNAs, the evaluation of the coding potential in uORFs and the role of unstranslated regions (UTRs) in the regulation of translation. In turn, the implementation of the CRISPR-Cas9 system offers the possibility to manipulate the genome of the parasite at a nucleotide resolution and without the need of including resistant makers. The CRISPR-Cas9 system is a powerful tool for editing ncRNAs, UTRs, multicopy gene families and CDSs keeping their endogenous UTRs. Moreover, the system can be used for the modification of both alleles after just one round of transfection and of codons coding for amino acids carrying post-translational modifications (PTMs) among other possibilities.     N2 - Trypanosoma brucei ist nicht nur als Erreger der Schlafkrankheit von großer epidemiologischer Bedeutung, sondern dient auch der Zell-­‐ und Molekularbiologie – insbesondere zur Erforschung der Genregulation auf posttranskriptionaler Ebene – als wichtiger Modellorganismus. In den vergangenen 30 Jahren konnten mehrere Forschungsarbeiten zeigen, dass mRNA-­‐Stabilität und –Prozessierung maßgeblich zur Regulation der Genexpression beitragen. Anders als in den meisten Eukaryoten sind die Gene in T. brucei in polycistronischen Transkriptionseinheiten (PTUs) angeordnet. Die reife mRNA entsteht aus dem polycistronischen Transkript in einem gekoppelten Prozess aus Trans-­‐splicing und paralleler Polyadenylierung. Beide Vorgänge allein, mRNA-­‐Stabilität und –Prozessierung, reichen nicht aus, um die Regulation der Genexpression in T. brucei vollständing zu erklären und zusätzliche Mechanismen müssen wirksam sein. Daher habe ich im ersten Teil meiner hier vorliegenden Doktorarbeit die Genregulation auf Ebene der Translation mittels genomweitem Ribosome Profiling untersucht. Die dabei gewonnen Daten deuten darauf hin, dass die Translationseffizienzen nicht nur zwischen prozyklischen-­‐ und Blutstromformen des Parasiten differieren, sondern auch die Gene innerhalb eines Stadiums verschieden effizient translatiert werden. Zudem war es mir mit diesem Ansatz möglich, neue, noch nicht annotierte kodierende Sequenzen zu identifizieren und das Kodierungspotenzial der jeweils vorgelagerten offenen Leseraster (ORFs) zu evaluieren. Mithilfe bereits veröffentlichter Proteom-­‐ und RNA Interferenz-­‐ Studien (RIT-­‐seq) konnte ich einige der neu identifizierten kodierenden Sequenzen validieren und deren Bedeutung für die Fitness des Parasiten bestimmen. Im zweiten Teil der Arbeit wurden die ermittelten Translations-­‐ und Transkriptionsprofile miteinander verglichen, um auf diese Weise mögliche nicht-­‐kodierende RNAs (ncRNAs) zu identifizieren. Dies führte zu einer eingehenderen Betrachtung der Kodierungspotenziale der dem exprimierten variablen Oberflächenproteins (VSG) vor-­‐ und nachgeschalteten Regionen. In früheren Arbeiten wurde bereits beschrieben, dass eine Deletion der dem VSG vorgelagerten, sogenannten co-­‐transposed region (CTR), vermehrt zu einer Aktivierung einer alternativen VSG Expressionsseite (in situ switches) führt. Ribosome Profiling zeigte, dass eben jede Regionen zwar moderat transkribiert, jedoch nicht translatiert werden. Da diese Ergebnisse vermuten ließen, dass die CTR für eine ncRNA kodiert, hab ich im dritten Teil meiner Arbeit die CTR Transkripte mittels Northern Blot und RACE weiter charakterisiert. Auf diese Weise konnte ich spezifische, 1200 Nukleotide (nt) lange und am 3`-­‐Ende polyadenylierte Transkripte nachweisen. Die bereits erwähnte Deletion der CTR verbunden mit einer erhöhten Rate an in situ switches wurde vor etwa 20 Jahren durch Insertion von Reportergenen durchgeführt. Heute ist es möglich mithilfe von Endonukleasen Genome ohne solche Marker zu editieren. So beschreibt der vierte Teil der Arbeit die Konstruktion von Episomen zur Etablierung und Anwendung des CRISPR-­‐ Cas9 Systems in T. brucei. Als Machbarkeitsnachweis wurde die kodierende Sequenz des grün fluoreszierenden Proteins (eGFP) am Ende des SCD6 Gens als Fusionsprotein inseriert. Grün fluoreszierende Zellen konnten bereits zwei Tage nach der Transfektion nachgewiesen werden. Nachdem CRISPR-­‐Cas9 erfolgreich in T. brucei etabliert werden konnte, werde ich im Folgenden weitere relevante Regionen im Genom modifizieren und beispielsweise die Deletion zweier Histonvarianten durchführen. Die Ribosome Profiling Studie in T. brucei erlaubt es uns, genomweit Genregulation auf Ebene der Translation zu analysieren, das uns zurzeit vorliegende Genom zu re-­‐annotieren, neue kodierende Sequenzen wie auch ncRNAs zu identifizieren und den Einfluss nicht-­‐kodierender Sequenzen auf die Translation zu untersuchen. Gleichzeitig ermöglicht die Etablierung des CRISPR-­‐ Cas9 Systems in T. brucei eine hochpräzise Manipulation des Genoms ohne den Einsatz von Resistenzmarkern. Auf diese Weise ist es möglich, Gene zu modifizieren und dabei die zugehörigen untranslatierten Bereiche (UTRs) zu erhalten, aber auch ncRNAs, UTRs und mehrfache Kopien eines Gens (gleichzeitig) zu editieren. Ebenso können einzelne Kodons in der Sequenz und somit posttranslational modifizierte Aminosäuren im Genprodukt verändert werden, was uns weitere Möglichkeiten zur Erforschung der Genregulation eröffnet. KW - Trypanosoma brucei KW - Ribosom KW - Posttranskriptionelle Regulation KW - Trypanosoma brucei KW - Gene expression regulation KW - Ribosome profiling KW - CRISPR Cas9 KW - CRISPR Cas9 system Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133996 ER - TY - THES A1 - Batram, Christopher T1 - Die Kontrolle der monoallelen Expression, antigenen Variation und Entwicklung in Trypanosoma brucei T1 - The control of monoallelic expression, antigenic variation and development of Trypanosoma brucei N2 - Die ausschließliche Expression von nur einem Gen aus einer großen Genfamilie ist ein weit verbreitetes Phänomen, das als monoallele Expression bezeichnet wird. In dem Blutparasiten Trypanosoma brucei stellt die Expression eines einzigen variablen Oberflächenglykoproteins (VSG) aus einem Repertoire von über 1000 verschiedenen Genen die Grundlage für die Immunevasion dar. Durch einen periodischen Wechsel der VSG Expression (Antigene Variation) bleibt der Parasit vom Immunsystem des Wirtes unerkannt. Die VSG Gene werden aus telomerischen Blutstromform Expressionsstellen (BES) transkribiert, von denen nur eine zu einem bestimmten Zeitpunkt aktiv ist. Die Kontrolle der monoallelen VSG Expression ist somit einer der wichtigsten Virulenzfaktoren von T. brucei. Ziel dieser Arbeit war es, die Vorgänge eines transkriptionellen Wechsels zwischen zwei BESs zu beschreiben. Das Ausschalten des aktiven VSGs durch RNA-Interferenz hatte zuvor gezeigt, dass dies nicht zu einer erhöhten Wechselrate führt. Es wurde daher untersucht, welche Auswirkungen das Anschalten einer zweiten BES auf die monoallele Expression hat. Da es bisher keine Möglichkeit gibt, eine inaktive BES gezielt zu aktivieren, wurde ein artifizielles System gewählt, das die gezielte induzierbare Expression eines Gens ermöglicht. Die BESs unterscheiden sich in der Anzahl und Zusammensetzung der Expressionsstellen-assoziierte-Gene (ESAGs), jedoch besitzt jede BES ein telomernahes VSG. Somit wird, bei einer BES Aktivierung, in jedem Fall ein neues VSG exprimiert. Durch die induzierbare Expression eines zweiten VSGs wurde so das Anschalten einer neuen BES simuliert. Mithilfe dieses Systems konnte gezeigt werden, dass das VSG selbst für die Kontrolle der monoallelen Expression verantwortlich ist. Die ektopische Überexpression eines zweiten VSGs führte zu einer graduellen Inaktivierung der BES. Infolge dessen verlangsamte sich der Zellzyklus und die Zellen verblieben bis zu fünf Tage in einem ruhenden Zustand. Genauere Analysen dieses Zustandes zeigten, dass es sich hierbei um ein bisher unbekanntes, reversibles Zwischenstadium zwischen proliferierenden sogenannten Long Slender und arretierten sogenannten Short Stumpy Formen handelt. Die Ergebnisse dieser Arbeit führten zu einem neuen Modell, das die Kontrolle der monoallelen VSG Expression mit der Entwicklung der Trypanosomen mechanistisch verbindet. N2 - The exclusive expression of only one gene from a gene family is a common phenomenon, known as monoallelic expression. The blood parasite Trypanosoma brucei evades the host immune system by expressing only one variant surface glycoprotein (VSG) from a repertoire of hundreds of different VSG genes. By periodically switching VSG expression (antigenic variation) the parasites evade the host antibody response. The VSG genes are transcribed from specialized telomeric bloodstream form expression sites (BESs), of which only one is active at any given time. Thus, monoallelic VSG expression is one of T. brucei's most important virulence factors. The aim of this work was to describe the processes occuring while transcription switches from one BES to another. The depletion of the active VSG by RNA interference (RNAi) was shown previously to have no effect on switching frequency. It was therefore investigated here, which influence the activation of a new BES would have on monoallelic expression. So far, it has not been possible to specifically activate a silent BES. Therefore, an artificial system was chosen which allows for inducible expression of a particular gene. The BESs differ in number and composition of expression site associated genes (ESAGs), but all contain a telomeric VSG gene. Thus, activation of a new BES will inevitably lead to expression of a second VSG. To simulate - in the most straightforward manner - the activation of a new BES, a second VSG was inducibly expressed. Using this system, it was shown that the VSG itself controls its own monoallelic expression. The ectopic overexpression of a second VSG led to a gradual inactivation of the BES. This, in turn, led to a prolonged cell division cycle and the cells remained in a dormant stage for up to 5 days. Further analyzes of this stage revealed a new, reversible intermediate stage between proliferating long slender and arrested short stumpy forms. The results of this work led to a new model that mechanistically links the control of monoallelic VSG expression and development in trypanosomes. KW - Trypanosoma brucei KW - VSG KW - antigene Variation KW - monoallele Expression KW - Genexpression Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90037 ER - TY - THES A1 - Strasen, Jörn T1 - Experimentelle Untersuchungen und Hypothesen zur Zytotoxizität von Naphtylisochinolin-Alkaloiden bei Trypanosoma brucei T1 - Naphthylisoquinoline alkaloids against African trypanosomiasis – hypotheses on their mode of action N2 - Die Schlafkrankheit hat ihren Schrecken seit den Zeiten Robert Kochs und Paul Ehrlichs nicht verloren. Die zielgerichtete Entwicklung neuer Medikamente ist für die Menschen in den Endemiegebieten damals wie heute von elementarer Bedeutung. Die Naphtylisochinolin-Alkaloide stellen eine neue chemische Substanzklasse dar, die gute Kandidaten für die Entwicklung neuer Medikamente enthält. Mit GBAP 94 im speziellen liegt eine Substanz vor, die gute Startvorrausetzungen hierfür mitbringt. Diese sind eine sehr gute Wirksamkeit gegen Trypanosomen, gepaart mit einer hohen Selektivität durch einen sehr wahrscheinlich relativ spezifisch anti-trypanosomalen Wirkmechanismus. Die verwendeten Naphtylisochinolin-Alkaloide GBAP 94 und GBAP 146 wurden nach unterschiedlichen Gesichtspunkten ausgewählt. GBAP 94 wurde aufgrund seiner guten antitrypanosomalen Wirkung und seiner hohen Selektivität für Trypanosomen ausgewählt. Die IC50 liegt mit 0,383 µmol/l im Vergleich zu den aktuell verwendeten Medikamenten sehr niedrig. Die Selektivitätsindices (IC50 Trypanosoma brucei brucei / IC50 Makrophagen J774.1) mit 85,6 und (IC50 Try-panosoma brucei brucei / IC50 Leishmania major) mit 15,1 liegen in einem sehr günstigen Bereich. GBAP 146 wurde hauptsächlich wegen seiner guten Fluoreszenz-Eigenschaften ausgewählt. Die antitrypanosomale Aktivität ist mit einer IC50 von 0,289 µmol/l zwar sehr gut, eine große Selektivität ist aber nicht gegeben. Die beiden Alkaloide waren aufgrund ihrer Eigenfluoreszenz gut fluoreszenz-mikroskopisch in den Parasiten zu detektieren. Nach 10 min war in den ersten Trypanosomen die Anreicherung der Wirkstoffe erkennbar. Nach 30 min war bei fast allen Parasiten eine Färbung erkennbar. Die Wirkstoffe reicherten sich zunächst in mehreren kleinen Vakuolen an. Bei längeren Inkubationszeiten zeigte sich eine fast homogene Verteilung innerhalb des kompletten Parasiten. Durch-gängig ausgespart blieb eine vakuolische Struktur. Diese entwickelte oder vergrößerte sich im Verlauf der Inkubationszeit im vorderen Drittel des Parasiten, etwa im Bereich des Kinetoplasten. Diese Vakuole konnte auch lichtmikroskopisch in der Giemsa-Färbung nachgewiesen werden. Der Anteil der veränderten Trypanosomen lag bei diesen Untersuchungen nach 1 h bei 25,4%, stieg bis zum Zeitpunkt 2 h auf 46,6% und stabilisierte sich nach 4 h bei 44,8%. Die vakuolische Struktur führte durch ihre Vergrößerung zur zunehmenden Verplumpung der Trypanosomen bis zu einer kugelförmigen Zellform mit geisselartig-wirkender Flagelle. Aufgrund der veränderten Form wurden die Zellorganellen verdrängt. Dies konnte durch die Fluoreszenzmarkierung des Mitochondriums mit Rodamine B Hexylester und der sauren Kompartimente, besonders des Lysosoms, mit LysoTracker® gezeigt werden. Die Vakuolisierung von Trypanosomen im Zusammenhang mit Apoptose ist bekannt. Die neu entstehende Vakuole konnte weder mit LysoTracker® green, noch mit dem endosomalen Farbstoff FM 4-64 angefärbt werden. Damit können eine lysosomale und eine endosomale Herkunft der Vakuole ausgeschlossen werden. Eine genaue Klärung der Genese der Vakuole steht noch aus. In den Untersuchungen mit Annexin V und Propidium-Jodid im FACS® konnte gezeigt werden, dass die Wirkung der NIQs sehr wahrscheinlich Apoptose induziert. Annexin V ist auch bei Trypanosomen als Marker für Apoptose etabliert. Zudem zeigte sich ein Anstieg der Anzahl apoptotischer Trypanosomen mit Periode von 6 h – 8 h. Diese Dauer entspricht ungefähr der Dauer des trypanosomalen Zellzyklus. Ein Eingriff der NIQs in den Zellzyklus ist somit sehr wahrscheinlich. Eine Hemmung von Teilen des Zellzyklus ist als Auslöser für Apoptose bekannt. Über die genaue Zielstruktur der NIQs kann allerdings nur spekuliert werden. Die apotose-induzierende Wirkung anderer Alkaloide auf Trypanosomen ist inzwischen nachgewiesen. Ein weiteres Indiz ist, dass die Ergebnisse von Ponte-Sucre mit den NIQs bei Leishmanien ebenfalls in Richtung Apoptose weisen. N2 - The trypanosomiasis is still an emerging problem in sub-Saharan Africa. Due to the limitations of the currently used drugs and emerging drug resistance, there is an urgent need for the target-oriented development of novel therapies. Naturally occurring naphthylisoquinoline alkaloids (NIQs), axially chiral acetogenic products derived from tropical plants, have been investigated for their activity against Trypanosoma brucei brucei TC 221. The NIQ N-(3'-Methoxyphenyl)-6,8-dimethoxy-1,3-dimethylisochinoliniumtetrafluoroborate seems to be quite specific antitrypanosomal agent. This compound shows a low IC50-value of 0.383 µmol/l against Trypanosoma brucei brucei TC 221 in comparison to the current drugs. For controls another NIQ, N-(4'-N'-Dansylaminophenyl)-6,8-dimethoxy-1,3-dimethylisochinoliniumtrifluoro-acetate, eflornithine an amphotericin B, witch is described to induce apoptosis in trypanosomes, were used. Both NIQ could be detected directly because of their self-fluorescence in the fluorescence-microscopy. After 10 min an accumulation in the first parasites could be detected. After 30 min almost all parasites show the compounds. After an initial accumulation in small vesicles the NIQ spread homogeneous over nearly the whole parasite. Only a vacuole was spared. This structure developed or increased during incubation time. It was located in the front part of the parasite near the kinetoplast. This vacuole could also be detected in light-microscopy of Giemsa-stained parasites. The fraction of the affected trypanosomes was after 1 h 25.4% and increased up to 46.6% after 2 h and stayed almost in this level (44.8% after 4 h). The increase of the vacuole induced a dumpier up to spherical shape. The organelles were displaced. This could be shown by fluorescence-labelled mitochondria, stained with rodamine-B-hexylester, and the acidic compartments, especially the lysosome stained with LysoTracker®. The vacuolisation of trypanosoma brucei is described during apoptosis. The staining of the developing vacuole wasn’t possible neither with LysoTracker® nor with the endosomal staining FM 4-64®. A lysosomal or endosomal origin of this vacuole could be excluded. The genesis of this vacuole needs further investigation. In the FACS®-investigations with annexin V and propidium-iodide staining we got strong hints that the NIQs induce apoptosis. Annexin V is established as a marker for apoptosis in trypanosome. We found an increase of apoptotic parasites in a 6 h – 8 h period. This is also the time for the trypanosomal cell cycle. NIQs seem to interfere with the cell cycle. This is descried from various authors as a trigger for apoptosis. The target structure is however still unknown. Results of other groups indicate an apoptosis-inducing effect of alkaloids in trypanosoma or leishmania. KW - Trypanosomiase KW - Trypanosoma brucei KW - Apoptosis KW - Alkaloid KW - Naphthylisochinolinalkakolide KW - Trypanosomiase KW - Trypanosoma brucei KW - apoptosis KW - alkakolids Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66388 ER - TY - JOUR A1 - Batram, Christopher A1 - Jones, Nivola G. A1 - Janzen, Christian J. A1 - Markert, Sebastian M. A1 - Engstler, Markus T1 - Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei JF - eLife N2 - We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness. KW - antigenic variation KW - expression site attenuation KW - developmental reprogramming KW - cell biology KW - genes and chromosomes KW - Trypanosoma brucei KW - variant surface glycoprotein (VSG) KW - monoallelic expression Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119727 SN - 2050-084X VL - 3 IS - e02324 ER -