TY - THES A1 - Papastathopoulos, Evangelos T1 - Adaptive control of electronic excitation utilizing ultrafast laser pulses T1 - Adaptive Kontrolle elektronischer Anregung mitels Femtosekunden-Laserpulsen N2 - The subject of this work has been the investigation of dynamical processes that occur during and after the interaction of matter with pulses of femtosecond laser radiation. The experiments presented here were performed in the gas phase and involve one atomic and several model molecular systems. Absorption of femtosecond laser radiation by these systems induces an electronic excitation, and subsequently their ionization, photofragmentation or isomerization. The specific adjustment of the excitation laser field properties offers the possibility to manipulate the induced electronic excitation and to influence the formation of the associated photoproducts. From the perspective of the employed spectroscopic methods, the development of photoelectron spectroscopy and its implementation in laser control experiments has been of particular interest in this thesis. This technique allows for a most direct and intuitive observation of electronic excitation dynamics in atomic as well as in complex polyatomic molecular systems. The propagation of an intermediate electronic transient state, associated to the formation of a particular photoproduct, can be interrogated by means of its correlation to a specific state of the atomic or molecular continuum. Such correlations involve the autoionization of the transient state, or by means of a second probe laser field, a structural correlation, as summarized by the Koopman's theorem (section 2.4.1). The technique of adaptive femtosecond quantum control has been the subject of development in our group for many years. The basic method, by which the temporal profile of near-infrared laser pulses at a central wavelength of 800 nm, can be adjusted, is a programmable femtosecond pulse-shaper that comprises of a zero dispersion compressor and a commercial liquid crystal modulator (LCD). This experimental arrangement was realized prior to this thesis and served as a starting point to extend the pulse-shaping technique to the ultraviolet spectral region. This technological development was realized for the purposes of the experiments presented in Chapter 5. It involves a combination of the LCD-pulse-shaper with frequency up-conversion techniques on the basis of producing specifically modulated laser pulses of central wavelength 266 nm. Furthermore, the optical method X-FROG had to be developed in order to characterize the often complex structure of generated ultraviolet pulses. In the adaptive control experiments presented in this work, the generated femtosecond laser pulses could be automatically adjusted by means of specifically addressing the 128 independent voltage parameters of the programmable liquid-crystal modulator. Additionally a machine learning algorithm was employed for the cause of defining laser pulse-shapes that delivered the desired (optimal) outcome in the investigated laser interaction processes. In Chapter 4, the technique of feedback-controlled femtosecond pulse shaping was combined with time-of-flight mass spectroscopy as well as photoelectron spectroscopy in order to investigate the multiphoton double ionization of atomic calcium. A pronounced absolute enhancement of the double ionization yield was obtained with optimized femtosecond laser pulses. On the basis of the measured photoelectron spectra and of the electron optimization experiments, a non-sequential process was found, which plays an important role in the formation of doubly charged Calcium ions. Then in Chapter 5, the dynamics following the pp* excitation of ethylene-like molecules were investigated. In this context, the model molecule stilbene was studied by means of femtosecond photoelectron spectroscopy. Due to the simplicity of its chemical structure, stilebene is one of the most famous models used in experimental as well as theoretical studies of isomerization dynamics. From the time-resolved experiments described in that chapter, new spectroscopic data involving the second excited electronic state S2 of the molecule were acquired. The second ethylenic product was the molecule tetrakis (dimethylamino) ethylene (TDMAE). Due to the presence of numerous lone pair electrons on the four dimethylamino groups, TDMAE exhibits a much more complex structure than stilbene. Nevertheless, previously reported studies on the dynamics of TDMAE provided vital information for planning and conducting a successful optimisation control experiment of the wavepacket propagation upon the (pp*) S1 excited potential surface of the molecule. Finally, in Chapter 6 the possibility of employing femtosecond laser pulses as an alternative method for activating a metallocene molecular catalyst was addressed. By means of an adaptive laser control scheme, an optimization experiment was realized. There, the target was the selective cleavage of one methyl-ligand of the model catalyst (Cp)^2Zr(CH3)^2, which induces a catalytic coordination position on the molecule. The spectroscopic studies presented in that chapter were performed in collaboration to the company BASF A.G. and constitute a proof-of principle attempt for a commercial application of the adaptive femtosecond quantum control technique. N2 - Das Thema der hier vorgestellten Arbeit umfasst die Untersuchung von dynamischen Prozessen, die während der Wechselwirkung von Femtosekunden Laserpulsen mit Atomen und Molekülen stattfinden. Die entsprechenden Experimente sind in der Gasphase durchgeführt worden, wobei ein Atom- und mehrere Molekül-Modellsysteme untergesucht wurden. Die Absorption von Femtosekunden-Laserstrahlung induziert die elektronische Anregung der quantumsmechanischen Systeme und eventuell deren Ionisation, Photofragmentnation oder Isomerisierung. Die gezielte Einstellung der Laserfeldeigenschaften bietet die Möglichkeit, diese Prozesse zu beeinflussen, beziehungsweise die Formung von entsprechenden Photoprodukten zu steuern. Im Hinblick auf die verwendeten spektroskopischen Methoden wurde besonderes Interesse auf die Entwicklung von Photoelektronen-Spektroskopie und in deren Einsatz zur Durchführung von laserinduzierten Kontrollexperimente gelegt. Photoelektronen-Spektroskopie ermöglicht die direkte und intuitive Beobachtung elektronischer Anregungsdynamik in Atomen sowie in komplexen mehreratomaren Molekülsystemen. Die zeitliche Entwicklung von angeregten elektronischen Zuständen ist oft bei der Formung von bestimmten Photoprodukten assoziiert. Die Dynamik kann mittels der Korrelation des sich entwickelnden Zustandes zu den Kontinuumzuständen des Atom- oder Molekül-Systems untersucht werden. Das detektionsverfahren umfasst die Autoionization oder, mittels eines zweiten Laserpulses, die Weiteranregung des Systems ins Kontinuum. Denn, die Beobachtung der entsprechenden Strukturänderungen des Systems erfolgt mittels der Korrelation des zwischenangeregten Zustand zu den verschiedenen Kontinuumzuständen (Koopman Theorem). Seit mehreren Jahren wurde die Methode der adaptiven Femtosekunden-Pulsformung in unserer Gruppe entwickelt. Die anfängliche experimentelle Anordnung besteht aus einer Kombination von einem Flüssig-Kristall-Modulator (LCD) und einen Null-Dispersions-Kompressor. Damit ist es möglich, das zeitliche Profil von Laserpulsen im Infrarot (800 nm) Spektralbereich automatisch zu modulieren. Diese Entwicklungsarbeit stand bereits zu Verfügung vor dem Anfang der vorgestellten Dissertation. Hier wurde die Erweiterung dieser Methode in den uravioletten Spektralbereich vorgestellt (Kapitel 5). Es umfasst eine Kombination von dem bestehenden LCD-Pulsformer und einem Verfahren zur Frequenzkonversion, das die Erzeugung von modulierten aserpulsen mit eine Wellenlänge 266 nm ermöglicht. Die entsprechende Charakterisierungsmethoden (X-FROG) wurden ebenfalls entwickelt. Die Femtosekunden-Laserpulse können automatisch moduliert werden durch die entsprechende Einstellung der 128 unabhängigen Spannungsparametern des LCD-Modulators. Zusätzlich wurden die optimale Parameter für die Kontrolle eines bestimmten anregungsprozess mittels eines Machine-Learning Algorithmus gefunden. In Kapitel 4 wurde die Mehrphoton-Doppleionization von Calciumatomen untersucht. Dabei wurde die Methode der adaptiven Pulsformung zusammen mit time-of-flight Massenspektroskopie und Photoelektronenspektroskopie ingesetzt. Das absolute Signal der Doppleionization konnte verdoppelt werden durch die Anregung mit bestimmten komplexen Pulsformen. Gerade bei den Optimierungexperimenten an photoelektronenspektra konnte ein „non-sequential" Prozess entdeckt werden, der eine wichtige Rolle bei der Doppleionization von Calcium spielt. In Kapitel 5 wurde die Dynamik von pp* Anregungsprozessen von Ethylenähnlichen-Moleküle untersucht. Im diesen Zusammenhang wurde das Modelmolekül Stilbene mittels Photoelektronenspektroskopie weiteruntersucht. Wegen seiner einfachen Struktur ist Stilbene eines der meistbenutzten Moleküle für Untersuchungen zur Photoisomerisierungsdynamik. Gerade bei den hier dargestellten zeitaufgelüsten Messungen wurde neu spektroskopische Information über den zweiten angeregten elektronische Zustand S2 entdeckt. Das zweite untersuchte Molekül ist Tetrakis Dimethylamino) Ethylen (TDMAE). Wegen den zahlreichen „Lone-Pair" Elektronen an seinen Dimethylamino Gruppen ist die gesamte Struktur des Moleküls deutlich komplexer im Vergleich zu Stilbene. Allerdings, ausgehend von gegebenen spektroskopischen Informationen aus der Literatur konnte ein erfolgreiches Kontrollexperiment an der Wellenpackets-Propagation des pp* Anregungsprozesses (auf dem S1 Zustand) geplant und durchgeführt werden. In Kapitel 6 wurde schließlich die Möglichkeit erforscht, einen Metallocene-Katalysator mittels Femtosekunden-Laserpulsen zu aktivieren. Das Kotrollschema der adaptiven Pulsformung wurde dabei eingesetzt, um eine der zwei identischen Methylgruppen des Moleküls selektiv abzuspalten, was zur Aktivierung des Katalysators führt. Diese spektroskopische Untersuchung wurde in Kollaboration mit der Firma BASF A.G. durchgeführt. Es stellt einen Grundlagenversuch der industriellen Anwendung der adaptiven Quantumskontrollemethode dar. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Molekulardynamik KW - Photochemische Reaktion KW - Regelung KW - Laser KW - Femtosekundendynamik KW - Photofragmentation KW - Isomerizierung KW - Ionization KW - Laser KW - Femtosecond dynamics KW - Photofragmentation KW - Isomerization KW - Ionization Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12533 ER - TY - THES A1 - Dietl, Christian T1 - Beobachtung und Steuerung molekularer Dynamik mit Femtosekunden-Laserpulsen T1 - Observation and control of molecular dynamics using femtosecond laser pulses N2 - In dieser Arbeit wurden zwei Aspekte der Femtochemie mit den Methoden der Femtosekunden--Laserspektroskopie untersucht. Dabei wurden folgende Ziele verfolgt: Einerseits sollte die jüngst entwickelte Technik der adaptiven Pulsformung auf das Problem bindungsselektiver Photodissoziationsreaktionen angewandt werden, zum Anderen bestand die Aufgabe darin, die nichtadiabatische, photoinduzierte Dynamik am Beispiel der Photoisomerisierung von Stilben mit Hilfe der Photoelektronenspektroskopie zeitaufgelöst zu untersuchen. Die Methode der adaptiven Pulsformung wurde mit dem Ziel eingesetzt, eine bindungsselektive Photodissoziation zu verwirklichen. Dazu wurde diese Technik in Verbindung mit einem massenspektroskopischen Nachweis der Photofragmente verwendet. Die Experimente wurden an einigen Spezies der Methylhalogenide CH2XY (X,Y = Halogen) durchgeführt. Diese Verbindungen wurden als Modellsysteme gewählt, da sich gezeigt hat, dass auf Grund stark gekoppelter konkurrierender Dissoziationskanäle durch modenselektive Laseranregung keine Kontrolle erreicht werden kann. Mit dem hier durchgeführten Experiment an CH2ClBr wurde erfolgreich erstmals die Anwendung der adaptiven Femtosekunden-Pulsformung auf das Problem einer bindungsselektiven Photodissoziation demonstriert. Dabei konnte eine Steigerung der Dissoziation der stärkeren Kohlenstoff-Halogen Bindung um einen Faktor zwei erreicht werden. Weiterhin konnte experimentell gezeigt werden, dass das optimierte Produktverhältnis nicht durch eine einfache Variation der Laserpulsdauer oder Laserpulsenergie erzielt werden kann. Es wurde ein möglicher Mechanismus für die Kontrolle diskutiert, der im Gegensatz zu einem unmodulierten Laserpuls die Wellenpaketdynamik auf neutralen dissoziativen Potentialflächen zur Steuerung des Produktverhältnisses involviert. Wie sich aus einer genaueren Analyse des Fragmentspektrums ergab, wird durch den optimalen Laserpuls die Dissoziation in komplexer Weise moduliert. Dies zeigte sich z.B. auch durch eine Änderung des Isotopenverhältnisses in der Ausbeute des dissoziierten Br-Liganden vor und nach der Optimierung. Dieser Frage nach einer isotopenselektiven Photodissoziation wurde in einem weiteren Experiment an CH2Br2 nachgegangen. Dabei konnte jedoch nur eine geringe Variation von etwa fünf Prozent gegenüber dem natürlichen Isotopenverhältnis festgestellt werden. Als größtes experimentelles Problem stellte sich dabei die starke Intensitätsabhängigkeit der Produktausbeuten heraus, was die Suche nach der optimalen Pulsform stark einschränkte. Anhand des molekularen Photodetachments CH2I2-->CH2+I2 wurde gezeigt, dass durch die Analyse der optimalen Pulsformen Informationen über die Dynamik dieses Prozesses gewonnen werden können. Dazu wurde zunächst in einem Pump-Probe-Experiment die Dynamik der I2-Fragmentation nach einer Mehrphotonen-Anregung von CH2I2 mit 266nm Laserpulsen untersucht. Dieses Experiment ergab, dass das Molekül über einen angeregten Zwischenzustand auf einer sehr schnellen Zeitskala über Dissoziationskanälen zerfallen kann. Der dominante Kanal führt zu einer sequentiellen Abgabe einer der I-Liganden und resultiert in den Photoprodukten CH2I und I Im anderen Kanal, dem molekularen Photodetachment, werden die Photoprodukte I2 und CH2 gebildet. In einem Kontrollexperiment wurde dann versucht, das molekulare Photodetachment gegenüber dem dominanten sequentiellen Kanal mit geformten 800nm Laserpulsen zu optimieren. Es wurden Optimierungen mit dem Ziel der Maximierung der Ausbeute an den Photoprodukten I2 und CH2 gegenüber CH2I durchgeführt. Diese Experimente ergaben, dass für beide Fragmente des molekularen Photodetachments eine Steigerung des Produktverhältnisses um etwa einen Faktor drei möglich ist. Dabei zeigte sich, dass eine Maximierung auf ein Produktverhältnis (z.B. I2/CH2I) eine Steigerung des anderen um etwa den gleichen Faktor hervorruft. Dies ist ein deutlicher Hinweis, dass beide Photoprodukte über denselben Dissoziationskanal gebildet werden. Ein weiterer inweis wurde aus der Analyse der optimalen Pulsformen erhalten: In beiden Fällen weisen diese eine markante Doppelpulsstruktur mit einem zeitlichen Abstand von etwa 400fs auf. Dies erinnert stark an die Situation des Pump-Probe--Experiments, wo durch die Analyse des transienten Signals ebenfalls eine optimale Verzögerungszeit zwischen dem Pump- und Probe-Laserpuls von etwa 400fs ermittelt werden konnte, bei der die Produktverhältnisse gerade maximal sind. Im Vergleich zur Massenspektroskopie liefert die Photoelektronenspektroskopie in der kinetischen Energie der Photoelektronen eine zusätzliche Messgröße, die direkt Informationen über die Kerngeometrie des Systems liefern kann. Mit dieser Technik wurde die trans-cis-Photoisomerisierung von Stilben im ersten elektronisch angeregten Zustand S1(1Bu) zeitaufgelöst untersucht. Dabei ging es speziell um die Frage nach der Existenz eines weiteren 1Bu Zustandes, der in neueren theoretischen Untersuchungen diskutiert wurde. In einem Pump-Probe-Experiment wurde dazu das im Molekularstrahl präparierte trans-Stilben durch einen 266nm Laserpuls angeregt und die Dynamik durch einen weiteren 266nm Laserpuls abgefragt. Im Photoelektronenspektrum konnten zwei signifikante Beiträge mit unterschiedlicher Dynamik gefunden werden. Das transiente Signal des ersten Beitrags weist eine Zeitkonstante von etwa 20ps auf und konnte eindeutig der Isomerisierung des S1 Zustandes zugeordnet werden. Im Gegensatz dazu zeigte das Signal des zweiten Beitrags eine Zeitkonstante von 100fs. Dieses Signal könnte aus der Ionisation des S2 Zustandes resultieren, welcher bislang experimentell nicht beobachtet werden konnte. N2 - Adaptive femtosecond quantum control has proven to be a very successful method in many different scientific fields like physics, chemistry or biology. This technique allows to go beyond observation, another important field of femtosecond laser spectroscopy, and to obtain active control over quantum-mechanical systems. It uses interference phenomena in the time and/or frequency domain to achieve selectivity among different reaction channels available to the system. Adaptive femtosecond quantum control has been implemented using automated control algorithms, namely genetic algorithms, embedded in a feedback loop. The Feedback is obtained directly in the experiment. This means, that no information is needed about the underlying complex physical processes. Adaptive pulse shaping in combination with mass spectroscopy was employed in order to control the photo dissociation dynamics of some methyl halides (CH2XY). In this context, methyl halides serve as a model system in order to study bond selective photochemistry, as it is known that mode selective laser excitation failed to achieve control due to strong non adiabatic coupling between the different dissociation channels. In a first experiment bond selective photodissociation on CH2ClBr was demonstrated. The results show, that by using optimally tailored laser pulses the cleavage of stronger carbon halogen bond can be enhanced by a factor of two. This enhancement cannot be explained by a simple variation of laser pulse energy or intensity, respectively. Further spectroscopic results indicate that the optimally formed laser pulse found in the optimization experiment involves dynamics on neutral dissociative potential surfaces. A more detailed analysis of the optimal pulse shape found in the control experiment revealed that the optimal laser pulse alters the photodissociation of CH2ClBr in subtle way. This was seen in the change of the branching ratio of the bromine isotopes following the excitation with the optimal laser pulse. In order to investigate this further, optimization of the bromine isotope ratio in CH2Br2 was studied, where however, only a small change could be achieved. This can mainly be explained by a strong laser intensity dependence of the absolute yield of the photoproduct, which leads to large errors in the product ration and thus confuses the optimization algorithm.In a third experiment it was demonstrated that the analysis of the optimal pulse shapes allows extracting information about the underlying molecular processes. Therefore the molecular photodetachment CH2I2-->CH2+I2 was investigated using pump-probe spectroscopy as well as adaptive pulse shaping. The photoproducts were again detected using mass spectroscopy. Time resolved experiments reveal an ultrafast dissociation of the molecule via an intermediate state resulting in the dominant photoproducts CH2I and I. As a minor contribution molecular photodetachment is observed leading to the products CH2 and I2. In an automated control experiment the branching ratio of these two reaction channels is varied by a factor of three as compared to a bandwidth limited laser pulse. It is found that maximization of one product ratio (e.g. I2/CH2I) also results in a maximization of the other (CH2/CH2I). This shows that the photoproducts I2 and CH2 originate form one common intermediate species. Analysis of the optimal pulse shape reveals a double pulse with a distance of 400fs between the two features. This can be directly compared to the results of the pump-probe experiment. There the ratio of the transient signals of I2 versus CH2I was analysed. It was found that the maximum is reached after 400fs after the excitation of the molecule by the pump laser pulse. In the second part of the thesis photoelectron spectroscopy in combination with time-resolved femtosecond laser spectroscopy was employed to investigate the isomerization dynamics of trans-Stilbene in its first excited state S1 (1Bu). In a pump-probe experiment the molecule was excited by a 266nm laser pulse to its first excited state about 0.5eV above the isomerization barrier. The dynamics of the intermediate species was probed by ionization with a second time delayed 266nm laser pulse and the kinetic energy of the photoelectrons was measured as a function of the pump-probe delay. The spectra obtained clearly indicate contributions from two distinct reaction pathways. The transient signal of the first contribution shows a time constant of about 20ps and can be assigned to the isomerization dynamics of trans-Stilbene on the S1 state. The second contribution exhibits an ultrafast dynamics of about 100fs decay time and can be attributed to a second electronics state. Theoretical studies indeed predict a second electronic state of same symmetry as S1in the energy region reached by the experiment. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Molekulardynamik KW - Photochemische Reaktion KW - Regelung KW - Femtosekunden-Laserspektroskopie KW - Adaptive Quanten Kontrolle KW - molekulare Dynamik KW - Massenspektroskopie KW - Photoelektronenspektroskopie KW - femtosecond laser spectroscopy KW - adaptive quantum control KW - molecular Dynamics KW - mass spectrocopy KW - photoelectron spectroscopy Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12182 ER - TY - THES A1 - Merget, Benjamin T1 - Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall T1 - Computermethoden zur Bestimmung von Protein-Ligand Verweilzeiten in bakteriellen Enoyl-ACP Reduktasen und Vorhersage der Permeabilitätswahrscheinlichkeit kleiner Moleküle gegenüber der \(Mycobacterium\) \(tuberculosis\) Zellwand N2 - \textbf{Molecular Determinants of Drug-Target Residence Times of Bacterial Enoyl-ACP Reductases.} Whereas optimization processes of early drug discovery campaigns are often affinity-driven, the drug-target residence time $t_R$ should also be considered due to an often strong correlation with \textit{in vivo} efficacy of compounds. However, rational optimization of $t_R$ is not straightforward and generally hampered by the lack of structural information about the transition states of ligand association and dissociation. The enoyl-ACP reductase FabI of the fatty acid synthesis (FAS) type II is an important drug-target in antibiotic research. InhA is the FabI enzyme of \textit{Mycobacterium tuberculosis}, which is known to be inhibited by various compound classes. Slow-onset inhibition of InhA is assumed to be associated with the ordering of the most flexible protein region, the substrate binding loop (SBL). Diphenylethers are one class of InhA inhibitors that can promote such SBL ordering, resulting in long drug-target residence times. Although these inhibitors are energetically and kinetically well characterized, it is still unclear how the structural features of a ligand affect $t_R$. Using classical molecular dynamics (MD) simulations, recurring conformational families of InhA protein-ligand complexes were detected and structural determinants of drug-target residence time of diphenyl\-ethers with different kinetic profiles were described. This information was used to deduce guidelines for efficacy improvement of InhA inhibitors, including 5'-substitution on the diphenylether B-ring. The validity of this suggestion was then analyzed by means of MD simulations. Moreover, Steered MD (SMD) simulations were employed to analyze ligand dissociation of diphenylethers from the FabI enzyme of \textit{Staphylococcus aureus}. This approach resulted in a very accurate and quantitative linear regression model of the experimental $ln(t_R)$ of these inhibitors as a function of the calculated maximum free energy change of induced ligand extraction. This model can be used to predict the residence times of new potential inhibitors from crystal structures or valid docking poses. Since correct structural characterization of the intermediate enzyme-inhibitor state (EI) and the final state (EI*) of two-step slow-onset inhibition is crucial for rational residence time optimization, the current view of the EI and EI* states of InhA was revisited by means of crystal structure analysis, MD and SMD simulations. Overall, the analyses affirmed that the EI* state is a conformation resembling the 2X23 crystal structure (with slow-onset inhibitor \textbf{PT70}), whereas a twist of residues Ile202 and Val203 with a further opened helix $\alpha 6$ corresponds to the EI state. Furthermore, MD simulations emphasized the influence of close contacts to symmetry mates in the SBL region on SBL stability, underlined by the observation that an MD simulation of \textbf{PT155} chain A with chain B' of a symmetry mate in close proximity of the SBL region showed significantly more stable loops, than a simulation of the tetrameric assembly. Closing Part I, SMD simulations were employed which allow the delimitation of slow-onset InhA inhibitors from rapid reversible ligands. \textbf{Prediction of \textit{Mycobacterium tuberculosis} Cell Wall Permeability.} The cell wall of \textit{M. tuberculosis} hampers antimycobacterial drug design due to its unique composition, providing intrinsic antibiotic resistance against lipophilic and hydrophilic compounds. To assess the druggability space of this pathogen, a large-scale data mining endeavor was conducted, based on multivariate statistical analysis of differences in the physico-chemical composition of a normally distributed drug-like chemical space and a database of antimycobacterial--and thus very likely permeable--compounds. The approach resulted in the logistic regression model MycPermCheck, which is able to predict the permeability probability of small organic molecules based on their physico-chemical properties. Evaluation of MycPermCheck suggests a high predictive power. The model was implemented as a freely accessible online service and as a local stand-alone command-line version. Methodologies and findings from both parts of this thesis were combined to conduct a virtual screening for antimycobacterial substances. MycPermCheck was employed to screen the chemical permeability space of \textit{M. tuberculosis} from the entire ZINC12 drug-like database. After subsequent filtering steps regarding ADMET properties, InhA was chosen as an exemplary target. Docking to InhA led to a principal hit compound, which was further optimized. The quality of the interaction of selected derivatives with InhA was subsequently evaluated using MD and SMD simulations in terms of protein and ligand stability, as well as maximum free energy change of induced ligand egress. The results of the presented computational experiments suggest that compounds with an indole-3-acethydrazide scaffold might constitute a novel class of InhA inhibitors, worthwhile of further investigation. N2 - \textbf{Molekulare Determinanten von Wirkstoff-Angriffsziel Verweilzeiten bakterieller Enoyl-ACP Reduktasen.} In frühen Phasen der Wirkstoffentwicklung sind Optimierungsprozesse häufig affini\-täts\-geleitet. Darüber hinaus sollte zusätzlich die Wirkstoff-Angriffsziel Verweilzeit $t_R$ berücksichtigt werden, da diese oft eine starke Korrelation zur \textit{in vivo} Wirksamkeit der Substanzen aufweist. Rationale Optimierung von $t_R$ ist jedoch auf Grund eines Mangels an struktureller Information über den Übergangszustand der Ligandbindung und Dissoziierung nicht einfach umsetzbar. Die Enoyl-ACP Reduktase FabI der Fettsäurebio\-synthese (FAS) Typ II ist ein wichtiger Angriffspunkt in der Antibiotikaforschung. InhA ist das FabI Enzym des Organismus \textit{Mycobacterium tuberculosis} und kann durch Substanzen diverser Klassen gehemmt werden. Es wird vermutet, dass Hemmung von InhA durch langsam-bindende (``slow-onset'') Inhibitoren mit der Ordnung der flexibelsten Region des Enzyms assoziiert ist, dem Substratbindungsloop (SBL). Diphenylether sind eine InhA Inhibitorenklasse, die eine solche SBL Ordnung fördern und dadurch lange Verweilzeiten im Angriffsziel aufweisen. Obwohl diese Inhibitoren energetisch und kinetisch gut charakterisiert sind, ist noch immer unklar, wie die strukturellen Eigenschaften eines Liganden $t_R$ beeinflussen. Durch die Verwendung klassischer Molekulardynamik (MD) Simulationen wurden wiederkehrende Konformationsfamilien von InhA Protein-Ligand Komplexen entdeckt und strukturelle Determinanten der Wirkstoff-Angriffsziel Verweilzeit von Diphenylethern mit verschiedenen kinetischen Profilen beschrieben. Anhand dieser Ergebnisse wurden Richtlinien zur Wirksamkeitsoptimierung von InhA Inhibitoren abgeleitet, einschließlich einer 5'-Substitution am Diphenylether B-Ring. Die Validität dieses Vorschlags wurde mittels MD Simulationen nachfolgend analysiert. Darüber hinaus wurden ``Steered MD'' (SMD) Simulationen als MD Technik für umfangreicheres Sampling verwendet um die Liganddissoziation von Diphenylethern aus dem FabI Enzym von \textit{Staphylococcus aureus} zu untersuchen. Dieser Ansatz resultierte in einem sehr akkuraten, quantitativen linearen Regressionsmodell der experimentellen Verweilzeit $ln(t_R)$ dieser Inhibitoren als Funktion der berechneten maximalen freien Energieänderung induzierter Ligandextraktion. Dieses Modell kann genutzt werden um die Verweilzeiten neuer potentieller Inhibitoren aus Kristallstrukturen oder validen Dockingposen vorherzusagen. Die korrekte strukturelle Charakterisierung des intermediären und des finalen Zustandes (EI und EI*-Zustand) eines Enzym-Inhibitor Komplexes bei einem zweistufigen Inhibitionsmechanismus durch langsam-bindende Hemmstoffe ist essentiell für rationale Verweilzeitoptimierung. Daher wurde die gegenwärtige Ansicht des EI und EI*-Zustandes von InhA mittels Kristallstrukturanalyse, MD und SMD Simulationen erneut aufgegriffen. Insgesamt bestätigten die Analysen, dass der EI*-Zustand einer Konformation ähnlich der 2X23 Kristallstruktur (mit langsam-bindenden Inhibitor \textbf{PT70}) gleicht, während eine Drehung der Reste Ile202 und Val203 mit einer weiter geöffneten Helix $\alpha 6$ dem EI-Zustand entspricht. Des Weiteren zeigten MD Simulationen den Einfluss naher Kristallkontakte zu Symmetrie-Nachbarn in der SBL Region auf die SBL Stabilität. Dies wird durch die Beobachtung hervorgehoben, dass die Ketten A und B' eines InhA-\textbf{PT155}-Komplexes und des angrenzenden Symmetrie-Nachbars, welche in engem Kontakt in der SBL Region stehen, signifikant stabilere SBLs aufweisen, als die Ketten A und B in einer Simulation des Tetramers. Zum Abschluss von Teil I wurden SMD Simulationen angewandt, auf deren Basis es möglich war, langsam-bindende InhA Inhibitoren von schnell-reversiblen (``rapid reversible'') Liganden zu unterscheiden. \textbf{Vorhersage von \textit{Mycobacterium tuberculosis} Zellwand Permeabilität.} Die Zellwand von \textit{M.~tuberculosis} erschwert die antimycobakterielle Wirkstofffindung auf Grund ihrer einzigartigen Zusammensetzung und bietet eine intrinsische Antibiotikaresistenz gegenüber lipophilen und hydrophilen Substanzen. Um den chemischen Raum wirkstoffähnlicher Moleküle gegen diesen Erreger (``Druggability Space'') einzugrenzen, wurde eine groß angelegte Dataminingstudie durchgeführt, welche auf multivariater statistischer Analyse der Unterschiede der physikochemischen Zusammensetzung eines normalverteilten wirkstoffähnlichen chemischen Raumes und einer Datenbank von antimycobakteriellen -- und somit höchstwahrscheinlich permeablen -- Substanzen beruht. Dieser Ansatz resultierte in dem logistischen Regressionsmodell MycPermCheck, welches in der Lage ist die Permeabilitätswahrscheinlichkeit kleiner organischer Moleküle anhand ihrer physikochemischen Eigenschaften vorherzusagen. Die Evaluation von MycPermCheck deutet auf eine große Vorhersagekraft hin. Das Modell wurde als frei zugänglicher online Service und als lokale Kommandozeilenversion implementiert. Methodiken und Ergebnisse aus beiden Teilen dieser Dissertation wurden kombiniert um ein virtuelles Screening nach antimycobakteriellen Substanzen durchzuführen. Myc\-PermCheck wurde verwendet um den chemischen Permeabilitätsraum von \textit{M.~tuberculosis} anhand der gesamten ZINC12 Datenbank wirkstoffähnlicher Moleküle abzuschätzen. Nach weiteren Filterschritten mit Bezug auf ADMET Eigenschaften, wurde InhA als exemplarisches Angriffsziel ausgewählt. Docking nach InhA führte schließlich zu einer Treffersubstanz, welche in darauffolgenden Schritten weiter optimiert wurde. Die Interaktionsqualität ausgewählter Derivate mit InhA wurde daraufhin mittels MD und SMD Simulationen in Bezug auf Protein und Ligand Stabilität, sowie auch der maximalen freien Energieänderung induzierter Ligandextraktion, untersucht. Die Ergebnisse der vorgestellten computerbasierten Experimente legen nahe, dass Substanzen mit einem Indol-3-Acethydrazid Gerüst eine neuartige Klasse von InhA Inhibitoren darstellen könnten. Weiterführende Untersuchungen könnten sich somit als lohnenswert erweisen. KW - Computational chemistry KW - Arzneimitteldesign KW - Molekulardynamik KW - Permeabilität KW - Tuberkelbakterium KW - Computational drug-design KW - steered molecular dynamics KW - molecular dynamics KW - residence time KW - mycobacterium tuberculosis KW - staphylococcus aureus KW - permeability KW - InhA KW - FabI KW - Enoyl-acyl-carrier-protein-Reductase KW - Drug design KW - Computational chemistry Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127386 ER - TY - THES A1 - Schaefer, Benjamin T1 - Computergestützte Untersuchungen zur Inhibition und Dynamik der ß-Ketoacyl-ACP-Synthase I (KasA) aus Mycobacterium tuberculosis T1 - Computer-based Investigations on Inhibition and Dynamics of Mycobacterium tuberculosis ß-Ketoacyl-ACP-Synthase I (KasA) N2 - Die vorliegende Arbeit beschreibt die Durchführung computergestützter Untersuchungen an den Wildtyp-Kristallstrukturen dieses Enzyms – einerseits zur Suche nach neuen Inhibitoren im Rahmen von virtuellen Screening- (VS-) Studien, andererseits zur Charakterisierung der strukturellen Flexibilität mit Hilfe von Molekulardynamik- (MD-) Simulationen. Für ein erstes VS wurde zunächst eine Datenbank von mehreren Millionen kommerziell erhältlichen Verbindungen mit Arzneistoff-ähnlichen physikochemischen Eigenschaften erstellt. Als Ausgangspunkt der Screening-Studie diente ein Teildatensatz, welcher mit Hilfe eines auf dem nativen Bindemodus des KasA-Inhibitors Thiolactomycin (TLM) beruhenden Pharmakophormodells erhalten wurde. Diese Verbindungen wurden in die Bindetasche von KasA gedockt und die Qualität der erhaltenen Posen in einem Re- und Konsensus-Scoring-Verfahren bewertet. Schließlich wurden 14 Substanzen käuflich erworben und im Rahmen einer Fluoreszenz-Bindungsstudie experimentell getestet. Für sechs Moleküle war gegenüber KasA eine schwache, zu TLM vergleichbare Aktivität zu verzeichnen. Eine zweite VS-Studie befasste sich mit der Bewertung der Bindungsaffinität synthetisch leicht zugänglicher Derivate von GS95, einem gegenüber dem KasA-Wildtyp aktiven Molekül mit einer 1-Benzyluracil-Grundstruktur. Anhand geeigneter Synthesebausteine wurde eine virtuelle Datenbank von insgesamt 16 Derivaten erstellt, welche in die Bindetasche des Enzyms gedockt wurden. Für die vorhergesagten Bindemodi erfolgte dann eine Abschätzung der freien Bindungsenthalpie. Nach einer Bewertung der Orientierungen auf Basis der errechneten ΔG-Werte sowie einer visuellen Analyse wurden schließlich elf Verbindungen synthetisiert und im Fluoreszenz-Experiment getestet, wobei für alle Uracilderivate eine Aktivität zu beobachten war. Die Kd-Werte fallen jedoch ähnlich hoch aus wie bei GS95. Zur Untersuchung der Strukturdynamik des KasA-Wildtyps wurden drei MD-Simulationen des homodimeren Proteins von je 15 ns Länge durchgeführt. Mit Hilfe von 2D-RMSD-Berechnungen und einer hierarchischen Clusteranalyse wurden aus den drei Simulationen insgesamt zehn repräsentative Snapshots entnommen, welche die im Rahmen der Simulationszeit von insgesamt 90 ns produzierte strukturelle Vielfalt der Bindetasche von KasA wiedergeben. Wie die Analysen zeigen, wird ein dualer Charakter hinsichtlich der Flexibilität der unmittelbaren Taschenreste beobachtet. Hierbei zeigt Phe404 eine besonders ausgeprägte strukturelle Vielfalt; diese Beobachtung deckt sich mit der gatekeeper-Rolle der Aminosäure zwischen der Malonyl-Bindetasche und dem Acyl-Bindekanal, welcher für die Unterbringung der wachsenden Fettsäurekette im Enzym während der Katalyse verantwortlich zeichnet. Darüber hinaus erklärt die hohe Flexibilität von Phe404 möglicherweise die recht schwache Bindungsaffinität von TLM gegenüber dem Wildtyp von KasA, da die gatekeeper–Aminosäure nur in der geschlossenen Form einen stabilisierenden Effekt auf den Liganden ausübt. Besondere Bedeutung kommt hierbei einem Wassermolekül zu, welches als eine Art molekularer Schalter für die Flexibilität von Phe404 betrachtet werden kann und somit die Fixierung von TLM in der Bindetasche maßgeblich beeinflusst. Des Weiteren wurden innerhalb der Tasche hohe Besetzungsraten für je ein Wassermolekül identifiziert. Die aus den MD-Simulationen gewonnenen Erkenntnisse wurden anschließend zur Aufstellung von Empfehlungen für das Design neuartiger KasA-Inhibitoren verwendet. Des Weiteren wurde die Dynamik des oben erwähnten Acyl-Bindekanals, welcher sich aus den Aminosäuren 115-147 zusammensetzt, näher charakterisiert. Hierbei wurden die Reste 115-119 und insbesondere Leu116 als zweiter gatekeeper identifiziert, welcher die Öffnung des Acyl-Bindekanals zur Oberfläche des Proteins reguliert und somit eine entscheidende Funktion bei der Unterbringung der langkettigen Fettsäuresubstrate übernimmt. Schließlich wurden zwei repräsentative Bindetaschenkonformationen aus den MD-Simulationen hinsichtlich einer Verwendung in strukturbasierten VS-Studien näher untersucht. Mit Hilfe von hot spot Analysen und unter Berücksichtigung oben genannter Empfehlungen für das Design neuartiger KasA-Inhibitoren wurden verschiedene Pharmakophormodelle erstellt, welche nach Durchsuchung der zu Anfang dieses Kapitels erwähnten virtuellen Moleküldatenbank zwischen 149 und 420 verschiedene hit-Strukturen lieferten. Folglich scheint eine Adressierung der beiden Konformationen durch arzneistoffartige Verbindungen prinzipiell möglich. Unter den erhaltenen Verbindungen herrscht eine hohe strukturelle Vielfalt; außerdem unterscheiden sich diese im Allgemeinen deutlich von den Molekülen aus den vorangegangenen VS Studien, was das Potential der beiden Bindetaschenkonformationen zur Identifizierung von potentiellen KasA-Inhibitoren mit neuartigen Grundstrukturen zum Ausdruck bringt. N2 - In the present study, computer-based investigations were applied to the wildtype crystal structures of this enzyme – on one hand, to identify new inhibitors in virtual screening (VS) studies and, on the other, to gather information about the dynamic behavior of KasA by means of molecular dynamics (MD) simulations. In a first VS, an in silico database containing several millions of commercially available drug-like compounds was built. This collection was screened via a pharmacophore model following the native binding mode of the KasA inhibitor thiolactomycin (TLM. The resulting subset then served as starting point for consequent docking studies and the predicted binding modes within the catalytic pocket of the protein were ranked by a re- and consensus-scoring approach. After additional visual inspection, 14 compounds were purchased and tested by means of direct binding fluorescence titrations. Six substances turned out to be active, even though only moderate dissociation constants similar to the data obtained for TLM (244.7 µM / 255.0 µM) were observed. In a second VS approach, the binding affinity was assessed for readily synthesizeable analogues of GS95, a 1 benzyluracil derivative showing an activity of 107.2 µM against wildtype KasA in the above mentioned fluorescence experiments. Based on appropriate building blocks which were in stock at the laboratory of Prof. Holzgrabe’s working group, a virtual library of 16 benzyl- and phenylethyluracil derivatives was created. The molecule structures were docked to the active site of KasA and the free energy of binding was estimated for the generated poses. By means of the ΔG values and visual analysis, a total of eleven compounds were selected to be synthesized and experimentally tested. All substances proved active in the fluorescence assay, yet showed only Kd values comparable to GS95. Moreover, no correlation was observed between experimentally determined and predicted free energies of binding. To probe the dynamic behavior of wildtype KasA (PDB codes 2WGD and 2WGE), three 15-ns MD simulations were performed of the homodimeric. By means of 2D RMSD calculations and a hierarchical cluster analysis, ten representative snapshots were extracted, reflecting the con-formational space of the binding pocket over a timescale of 90 ns in total. The analysis reveals a dual nature of the binding pocket in terms of flexibility. While the residues of the catalytic triad, Cys171, His311, and His345, plus Phe237, constitute the rather rigid part, a more flexible behavior is observed for the remaining residues. Among those, Phe404 presents the largest conformational alterations, which complies with its known role as a gatekeeper between the active site and the acyl-binding channel that accommodates the long-chain fatty acid substrates during catalysis. Furthermore, the high flexibility of Phe404 may account for the weak binding affinity of TLM to wildtype KasA, as only closed conformations of the gatekeeper side chain turned out to have a stabilizing effect on the ligand. In this regard, a water molecule between Ala209 and Ser138 was found to be of functional relevance, acting as a molecular switch that toggles the flexible behavior of the Phe404 side chain and, thereby, the fixation of TLM in the binding pocket. Also, high occupancy rates for a water molecule were registered at two positions within the active. Following the above findings, suggestions for the design of new KasA inhibitors were derived. Furthermore, the dynamics of the aforementioned acyl-binding channel comprising residues 115 147 were analyzed. Residues 115 119 and, in particular, Leu116 were identified as a second gatekeeper which regulates the opening between the acyl channel and the outside of the protein. Finally, two representative MD-snapshots of the binding were further examined in terms of their applicability in structure-based VS studies. Using hot-spot analyses and taking account of the above suggestions for the design of new KasA inhibitors, different pharmacophore models were created and applied to the virtual database mentioned at the beginning of this summary. The searches yielded between 149 and 420 different hit compounds, which indicates that addressing BK1 and BK2 by drug-like molecules is, in principle, possible. A fingerprint-based cluster analysis revealed a high structural diversity among the hits which, in general, also differ significantly from the scaffolds found in the two previous VS studies, pointing out the potential value of the two binding-pocket conformations for identifying putative KasA inhibitors with novel scaffolds. KW - Tuberkelbakterium KW - Arzneimitteldesign KW - Molekulardynamik KW - KasA KW - virtuelles Screening KW - Molekulardynamiksimulationen KW - MD-Simulationen KW - KasA KW - virtual screening KW - molecular dynamics simulations KW - MD simulations Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74635 ER - TY - THES A1 - Cappel, Daniel T1 - Computersimulationen zur Untersuchung von Wassermolekülen in Protein-Ligand Komplexen am Beispiel einer Modellbindetasche T1 - Analysis of water molecules in protein-ligand complexes with the help of computer simulations using the example of a model binding site N2 - Wassermoleküle spielen oft eine entscheidende Rolle bei der Bindung von Liganden an Proteine. Zum einen ist dies in ihrer Eigenschaft als Wasserstoffbrückendonor und -akzeptor begründet, die es ermöglicht Wechselwirkung zwischen Ligand und Rezeptor zu vermitteln. Zum anderen stellen die Desolvatisierungsenthalpie und -entropie einer Bindetasche während der Ligandbindung einen entscheidenden Anteil der Bindungsaffinität dar. Obwohl man sich dieser Einflüsse seit langem bewusst ist, sind aktuelle Methoden des computerbasierten Wirkstoffdesigns nur in sehr begrenztem Umfang in der Lage, die entsprechenden Effekte zu erfassen und vorherzusagen. Da experimentelle Daten über die Effekte von Wassermolekülen in Protein-Ligand Komplexen von Natur aus schwierig zu erhalten sind, untersucht die vorliegende Arbeit eine Modellbindetasche einer Cytochrom c Peroxidase Mutante (CCP W191G) mit Hilfe von Molecular Modeling Techniken. Diese polare und solvatisierte Kavität ist strukturell sehr gut charakterisiert und bindet kleine, kationische Heterozyklen zusammen mit unterschiedlichen Mengen an Wassermolekülen. Für die Untersuchungen wurden strukturell ähnliche Liganden mit einem unterschiedlichen Wechselwirkungsmuster ausgewählt. Davon ausgehend wurde die Möglichkeit zweier Docking-Programme, den Grad der Wasserverdrängung durch den Liganden zusammen mit dem Bindungsmodus vorherzusagen, untersucht. Die dynamischen Eigenschaften der Bindetaschenwassermoleküle wurden mittels Molekulardynamiksimulationen studiert. Schließlich wurden diese rein strukturellen Betrachtungen durch eine energetische/thermodynamische Analyse komplettiert. Die Anwendung dieser unterschiedlichen Verfahren liefert einige neue Erkenntnisse über die untersuchte Modellbindetasche. Trotz der relativen Einfachheit der kleinen Kavität der CCP W191G Mutante war die vollständige Charakterisierung und eine korrekte (retrospektive) Vorhersage des Wasser-Wechselwirkungsmuster der Ligand-Komplexe nicht trivial. Zusammenfassend kann man festhalten, dass insgesamt eine gute Übereinstimmung zwischen den durch Computersimulationen erhaltenen Ergebnissen und den kristallographischen Daten erzielt wurde. Unerwartete Befunde, die auf den ersten Blick mit den kristallographischen Beobachtungen nicht übereinstimmen, können ebenso durch Limitationen in den Kristallstrukturen bedingt sein. Darüber hinaus gaben die Ergebnisse auch eine Hilfestellung, welches Verfahren zur Beantwortung einer Fragestellung im Rahmen von Wassermolekülen im Wirkstoffdesign geeignet sind. Schließlich wurden ebenso die Begrenzungen der jeweiligen Methoden aufgezeigt. N2 - Water molecules play an important role for the binding of small molecule ligands to proteins. One of the reasons for this is their ability to act as a hydrogen bond donor and acceptor at the same time. Additionally, the enthalpy and entropy of desolvation of the pocket is one large contribution to the overall binding affinity. Although this is long known, prediction of these effects by current methods of computer-aided drug design is rather limited. Since experimental information about water effects in protein-ligand complexes are inherently difficult to obtain, in the present work a well-suited model binding site of a mutant of the cytochrome c peroxidase (CCP W191G) is studied using molecular modeling techniques. This polar and solvated cavity is structurally very well characterized and several small, cationic heterocycles bind together with a different amount of water molecules. For this study structurally similar ligands which have a different interaction pattern where chosen. First, the ability of two docking programs to predict cavity desolvation upon ligand binding was investigated. The dynamic properties of the binding site water molecules where studied by means of molecular dynamic simulations. Ultimately, the pure structural considerations addressed in this work were complemented by an energetic/thermodynamic analysis. The application of the different methods offered some new insights into the studied model binding site. Despite the relative simplicity of the small cavity of the CCP W191G mutant, a complete characterization and a correct (retrospective) prediction of the water interaction network in ligand complexes of this model binding site is not trivial. In summary, an overall good agreement between computational results and crystallographic data is obtained. Unexpected findings, which at first sight disagree with crystallographic observations, may also be due to limitations of the crystal structures. In addition, the results help to decide which method is appropriate to address a certain question in the context of water molecules in drug design. Also, the limitations of the respective methods are exposed. KW - Cytochromperoxidase KW - Molekulardynamik KW - Docking protein KW - Statistische Thermodynamik KW - Ligand KW - Modellbindetasche KW - Freie Energierechnungen KW - Wassereinflüsse KW - Protein-Ligand Bindung KW - model binding site KW - free energy calculations KW - influences of water KW - protein ligand interactions Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55003 ER - TY - THES A1 - Becker, Johannes T1 - Development and implementation of new simulation possibilities in the CAST program package T1 - Entwicklung und Implementierung neuer Simulationsmöglichkeiten in das CAST Programmpaket N2 - The aim of the present work is the development and implementation of new simulation possibilities for the CAST program package. Development included, among other things, the partial parallelization of the already existing force fields, extension of the treatment of electrostatic interactions and implementation of molecular dynamics and free energy algorithms. The most time consuming part of force field calculations is the evaluation of the nonbonded interactions. The calculation of these interactions has been parallelized and it could be shown to yield a significant speed up for multi-core calculations compared to the serial execution on only one CPU. For both, simple energy/gradient as well as molecular dynamics simulations the computational time could be significantly reduced. To further increase the performance of calculations employing a cutoff radius, a linkedcell algorithm was implemented which is able to build up the non-bonded interaction list up to 7 times faster than the original algorithm. To provide access to dynamic properties based on the natural time evolution of a system, a molecular dynamics code has been implemented. The MD implementation features two integration schemes for the equations of motion which are able to generate stable trajectories. The basic MD algorithm as described in Section 1.2 leads to the sampling in the microcanonical (NVE) ensemble. The practical use of NVE simulations is limited though because it does not correspond to any experimentally realistic situation. More realistic simulation conditions are found in the isothermal (NVT) and isothermalisobaric (NPT) ensembles. To generate those ensembles, temperature and pressure control has been implemented. The temperature can be controlled in two ways: by direct velocity scaling and by a Nose-Hoover thermostat which produces a real canonical ensemble. The pressure coupling is realized by implementation of a Berendsen barostat. The pressure coupling can be used for isotropic or anisotropic box dimensions with the restriction that the angles of the box need to be 90� . A crucial simulation parameter in MD simulations is the length of the timestep. The timestep is usually in the rang of 1fs. Increasing the timestep beyond 1fs can lead to unstable trajectories since the fastest motion in the system, usually the H-X stretch vibration can not be sampled anymore. A way to allow for bigger timesteps is the use of a constraint algorithm which constrains the H-X bonds to the equilibrium distance. For this the RATTLE algorithm has been implemented in the CAST program. The velocity Verlet algorithm in combination with the RATTLE algorithm has been shown to yield stable trajectories for an arbitrary length of simulation time. In a first application the MD implementation is used in conjunction with the MOPAC interface for the investigation of PBI sidechains and their rigidity. The theoretical investigations show a nice agreement with experimentally obtained results. Based on the MD techniques two algorithms for the determination of free energy differences have been implemented. The umbrella sampling algorithm can be used to determine the free energy change along a reaction coordinate based on distances or dihedral angles. The implementation was tested on the stretching of a deca-L-alanine and the rotation barrier of butane in vacuum. The results are in nearly perfect agreement with literature values. For the FEP implementation calculations were performed for a zero-sum transformation of ethane in explicit solvent, the charging of a sodium ion in explicit solvent and the transformations of a tripeptide in explicit solvent. All results are in agreement with benchmark calculations of the NAMD program as well as literature values. The FEP formalism was then applied to determine the relative binding free energies between two inhibitors in an inhibitor-protein complex. Next to force fields, ab-initio methods can be used for simulations and global optimizations. Since the performance of such methods is usually significantly poorer than force field applications, the use for global optimizations is limited. Nevertheless significant progress has been made by porting these codes to GPUs. In order to make use of these developments a MPI interface has been implemented into CAST for communication with the DFT code TeraChem. The CAST/TeraChem combination has been tested on the $H_2 O_{10}$ cluster as well as the polypeptide met-Enkephalin. The pure ab-initio calculations showed a superior behavior compared to the standard procedure where the force field results are usually refined using quantum chemical methods. N2 - Das Ziel der hier vorliegenden Arbeit ist die Entwicklung und Implementierung neu- er Simulationsalgorithmen in das CAST Programmpaket. Neben der teilweisen Para- llelisierung der bereits impelentierten Kraftfelder wurde das Programm um einen Mole- kulardynamikcode erweitert. Aufbauend auf diesem Code wurden Algorithmen zur Be- rechnung der freien Energie entlang einer Reaktionskooridnate, sowie eine Erweiter-ung der Behandlung elektrostatischer Wechselwirkungen auf Basis einer Ewald Summation implementiert. Der zeitaufwändigste Teil einer Kraftfeldrechnung stellt die Evaluierung der nichtbin- denden Wechselwirkungen dar. Die Berechnung dieser Wechselwirkungen wurde für die Nutzung von Mehrkernprozessoren optimiert und parallelisiert. Die Parallelisie- rung zeigte eine signifikante Reduktion der benötigten Rechenzeit auf mehreren Re- chenkernen im Vergleich zur seriellen Berechnung auf nur einem Rechenkern für einfa- che Energie- bzw. Gradientenrechnungen sowie für Molekulardynamikrechnungen. Um Rechnungen, die einen cutoff Radius benutzen, weiter zu beschleunigen, wurde der Auf- bau der Verlet-Liste modifiziert. Statt des Standardalgorithmus, der eine Doppelschleife über alle Atome verwendet, wurde ein linked-cell Algorithmus implementiert. Der Auf- bau der Verlet-Liste konnte damit um den Faktor 7 beschleunigt werden. Der Molekulardynamikcode enthält mehrere Algorithmen zur Berechnung von Syste- men in verschiedenen Ensembles. Zur numerischen Integration der Bewegungsgleichun- gen wurden der Velocity-Verlet sowie eine modifizierte Version von Beemans Algorith- mus implementiert. Da der minimale Code, wie er in Kapitel 1.2 beschrieben wird, ein mikrokanonisches Ensemble produziert, und dieses keiner realistischen experimentel- len Situation entspricht, wurden Methoden zur Berechnung und Aufrechterhaltung von Temperatur und Druck implementiert. Die Temperatur kann mittels zweier verschiede- ner Möglichkeiten kontrolliert werden. Die erste Möglichkeit ist die direkte Skalierung der Geschwindigkeiten der Partikel, die zweite Möglichkeit besteht in der Nutzung ei- nes Nòse-Hoover Thermostaten, der ein echtes kanonisches Ensemble generiert. Für die Kontrolle des Drucks wurde ein Berendsen Barostat implementiert. Da die Kontrolle des Drucks die Nutzung von periodischen Randbedingungen voraussetzt, ist die Form der Simulationszelle wichtig. CAST unterstützt aktuell isotrope und anisotrope Simulationszellen, mit der Einschränkung, dass alle Winkel 90◦betragen. Ein kritischer Punkt bei einer MD Simulation ist die Länge des Zeitschritts, der in der Regel bei 1fs liegt. Sollen größere Zeitschritte verwendet werden, müssen die schnell- sten Bewegungnen im System eingeschränkt werden. Dies sind im Normalfall die H-X Streckschwingungen. Zur Einschränkung dieser wurde der RATTLE Algorithmus imple- mentiert der die H-X Bindung mit Hilfe von Lagrange-Multiplikatoren auf den Gleich- gewichtsabstand fixiert. Als erste Anwendung des MD Codes wurde in Kombination mit dem MOPAC Programm die Rigidität und Flexibilität von PBI Seitenketten erfolgreich untersucht. Basierend auf dem MD Code wurden zwei Möglichkeiten zur Bestimmung der freien Energie eingebaut, Umbrella Sampling und Free Energy Perturbation. Umbrella Samp- ling erlaubt die Bestimmung der freien Energie entlang einer Reaktionskoordinate, hier Abstände oder Diederwinkel. Der Algorithmus wurde erfolgreich an zwei Literatur- beispielen, der Streckung von Deca-L-Alanin sowie der Rotation von Butan um den zentralen Diederwinkel getetstet. Die FEP Implementierung wurde an drei Beispielen getestet, einer Nullsummen-Transformation von Ethan in Ethan in explizitem Solvent, dem Lösen eines Natriumions in Wasser und der Transformation von Tyrosin in Alanin in einem Tripeptid. Die Ergebnisse dieser Testrechnungen stimmen hervorragend mit Vergleichsrechnungen mit NAMD sowie Literaturwerten überein. Die FEP Methode wurde schließlich benutzt um die relative freie Bindungsenergie zweier Inhibitoren in einem Inhibitor-Protein-Komplex zu bestimmen. Neben Kraftfeldern können auch ab-initio Methoden für Simulationen benutzt werden. Da die Rechenzeit dieser Methoden um ein vielfaches höher ausfällt als die für Kraftfel- der, ist die Benutzung für die globale Optimierung jedoch limitiert. In den letzten Jah- ren wurde im Bereich der Leistungsfähigkeit dieser Methoden jedoch große Fortschritte erzielt, indem diese Methoden auf Grafikkarten portiert wurden. Um diese Entwick- lung nutzbar zu machen wurde eine MPI-Schnittstelle in CAST implementiert, die mit dem DFT Programm TeraChem kommuniziert. Die Kombination aus beiden Program- men, sowie die Funktionsfähigkeit der Schnittstelle, wurde an H2O10 Clustern sowie dem Polypeptid Met-Enkephalin getestet. Die reinen ab-initio Rechnungen zeigten ein besseres Verhalten gegenüber dem Normalen Protokoll, welches Kraftfeldrechungen mit nachfolgender Optimierung mit qunatenchemischen Methoden vorsieht. KW - Molekulardynamik KW - Molecular dynamics KW - Molecular mechanics KW - Molecular Simulation KW - Free Energy Perturbation (1987 : Princeton, NJ) Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132032 ER - TY - THES A1 - Falge, Mirjam T1 - Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern T1 - Dynamics of Coupled Electron-Nuclei-Systems in Laser Fields N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molekülen und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. Während bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-Näherung in der Quantenchemie häufig angenommen wird, voneinander trennen lassen. N2 - This work aims at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. KW - Nichtadiabatischer Prozess KW - Laserstrahlung KW - Quantenmechanik KW - Molekulardynamik KW - Quantendynamik KW - nicht-adiabatische Effekte KW - Hohe Harmonische KW - Photoelektronenspektroskopie KW - quantum dynamics KW - nonadiabatic effects KW - high harmonic generation KW - photoelectron spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72889 ER - TY - THES A1 - Gräfe, Stefanie T1 - Laser-control of molecular dynamics T1 - Lasergesteuerte Kontrolle molekularer Dynamik N2 - In this work a new algorithm to determine quantum control fields from the instantaneous response of systems has been developed. The derived fields allow to establish a direct connection between the applied perturbation and the molecular dynamics. The principle is most easily illustrated in regarding a classical forced oscillator. A particle moving inside the respective potential is accelerated if an external field is applied acting in the same direction as its momentum (heating). In contrary, a deceleration is achieved by a field acting in the opposite direction as the momentum (cooling). Furthermore, when the particle reaches a classical turning point and then changes its direction, the sign of the field has to be changed to further drive the system in the desired way. The frequency of the field therefore is in resonance with the oscillator. This intuitively clear picture of a driven classical oscillator can be used for directing (or controlling) quantum mechanical wave packet motion. The efficiency of the instantaneous dynamics algorithm was demonstrated in treating various model problems, the population transfer in double well potentials, excitation and dissociation of selective modes, and the population transfer between electronic states. Although it was not tried to optimize the fields to gain higher yields, the control was found to be very efficient. Driving population transfer in a double well potential could be shown to take place with nearly 100% efficiency. It was shown that selective dissociation within the electronic ground state of HOD can be performed by either maximizing a selected coordinate's differential momentum change or the energy absorption. Concerning the population transfer into excited electronic states, a direct comparison with common control algorithms as optimal control theory and genetic algorithms was accomplished using a one-dimensional representation of methyl iodide. The fields derived from the various control theories were effective in transferring population into the chosen target state but the underlying physical background of the derived optimal fields was not obvious to explain. The instantaneous dynamics algorithm allowed to establish a direct relation between the derived fields and the underlying molecular dynamics. Bound-to-bound transitions could be handled more effectively. This was demonstrated on the sodium dimer in a representation of 3 electronic states being initially in its vibronic ground state. The objective was to transfer population into a predefined excited state. Choosing the first or the second state as a target, the control fields exhibited quite different features. The pulse-structure is related to the excited state wave packet, moving in, and out of the Franck-Condon region. Changing the control objective, the derived control field performed pure electronic transitions on a fast time-scale via a two-step transition. Futhermore, orientational effects have been investigated. The overall-efficiency of the population transfer for differently oriented molecules was about 70 % or more if applying a control field derived for a 45° orientation. Spectroscopic methods to gain information about the outcome of the control process have been investigated. It was shown that pump/probe femtosecond ionization spectroscopy is suited to monitor time-dependent molecular probability distributions. In particular, time-dependent photoelectron spectra are able to monitor the population in the various electronic states. In the last chapter a different possibility of controlling molecules was regarded by investigating molecular iodine with a setup similar to the STIRAP (“Stimulated Raman Adiabatic passage”) scenario. The possibility to extend this technique to a fs-time scale was examined in theory as well as in experiments, the latter being performed by Dr. Torsten Siebert in the Kiefer group, University of Würzburg. It was shown that off-resonant excitation with implementation of the pulses with a higher intensity of the Stokes pulse as compared to the pump pulse - describing a so-called f-STIRAP like configuration - was shown to effectively transfer population into excited ground-state vibrational levels. This was theoretically underlined by comparing the numerically exact coupling case with the adiabatic picture. The process was described to run in the vicinity of adibaticity. A new model explaining the process by the system's vector rotating around the dressed state vector will be adopted in future calculations. Altogether, a new promising algorithm to control dynamical processes based on the instantaneous response has been developed. Because the derived control fields have been shown to be very efficient in selectively influencing molecules, it is to be expected that farther reaching applications can be realized in future investigations. N2 - In dieser Arbeit wurde ein neuer Algorithmus zur Bestimmung von Kontrollfeldern aus der instantanen Respons von Systemen auf die Wirkung von Laserfeldern entwickelt. Die damit berechneten Felder ermöglichen es, eine Verbindung zwischen der Störung durch das Laserfeld und der molekularen Dynamik herzustellen. Das Prinzip lässt sich an einem klassischen Oszillator veranschaulichen: Ein sich innerhalb dieses Oszillatorpotenzials bewegendes Teilchen wird durch ein externes Feld beschleunigt, wenn dieses und der Impuls des Teilchens in die gleiche Richtung weisen. Ein Abbremsen des Teilchens wird durch ein Feld erzielt, welches dem Impuls des Teilchens entgegen gerichtet ist. Wenn das Teilchen in dem Oszillator einen Umkehrpunkt erreicht und dort seine Richtung ändert, wird das Vorzeichen des Feldes an die neue Richtung angepasst: Die Frequenz des Feldes befindet sich in Resonanz mit der Oszillatorfreuqenz. Dieses klassische Bild der erzwungenen Schwingung eines Oszillators kann für die Kontrolle quantenmechanischer Wellenpaketbewegungen angewendet werden. Die Effizienz des Algorithmus' wurde an verschiedenen Problemen, wie dem Populationstransfer (PT) in Doppelminimum-Potenzialen, Anregung und Dissoziation selektiver Moden und den PT in unterschiedliche el. Zuständen aufgezeigt. Obwohl keine Optimierung der Felder bezüglich höherer Ausbeuten durchgeführt wurde, konnte eine hohe Effizienz der Prozesse nachgewiesen werden. Ein PT in Doppelminimum-Potentialen wurde nahezu vollständig erreicht. Selektive Dissoziation innerhalb des el. Grundzustandes des HOD-Moleküls wurde unter Verwendung zweier unterschiedlicher Methoden, der Maximierung der zeitlichen Änderung des Impulses oder der Energieabsorption einer Koordinate, erzielt. Bezüglich des PT in el. angeregte Zustände wurden bekannte Kontrollalgorithmen wie die Theorie der optimalen Kontrolle und genetischer Algorithmen mit dem in dieser Arbeit entwickelten Prinzip der instantanen Respons anhand einer 1D Darstellung des Methyliodids verglichen. Die aus den verschiedenen Theorien konstruierten Felder erzielten einen effektiven PT in den zuvor definierten Zielzustand, jedoch ist der dem zu Grunde liegende, physikalische Hintergrund nicht einfach zu beschreiben. Mit Hilfe des Instantanen-Respons-Algorithmus' konnte eine direkte Relation zwischen den Feldern und der molekularen Dynamik hergestellt werden. Anhand des Na2 in einer Darstellung von 3 elektronischen Zuständen sollte nur ein Zustand selektiv angeregt werden. Je nach Wahl des Zielzustandes zeigten sich deutliche Unterschiede. Selektive Anregung des 1. Zustandes erzeugte ein Feld bestehend aus einer Pulsfolge, die durch ein Wellenpaket im angeregten Zustand, welches sich in und aus dem Franck-Condon Fenster heraus bewegt, erklärt werden konnte. Anregung des 2. Zustandes führte zu einem Feld, welches nicht auf Vibration, sondern rein elektronischer Anregung in einem 2-Stufen-Prozess beruht. Bei der Betrachtung von Orientierungseffekten konnte gezeigt werden, dass PT für alle Orientierungen mit einem Feld, welches aus einer mittleren Orientierung bestimmt wurde, effizient ist. Untersuchungen spektroskopischer Methoden, um Informationen über die Effizienz von Kontrollprozessen zu liefern, zeigten, dass Pump-Probe Ionisationsspektroskopie im Femtosekundenbereich (fs) dazu sehr gut dazu geeignet ist. Im Speziellen konnte mit zeitabh. Photoelektronenspektren die Populationen in den elektronischen Zuständen nach Anlegen des jeweiligen Feldes „beobachtet“ werden. Im letzten Kapitel wurde eine andere Methode der Kontrolle von Molekülen in Anlehnung an einen STIRAP ("Stimulated Raman Adiabatic Passage“) Prozess am Beispiel molekularen Iods vorgestellt. Dabei wurde die Möglichkeit, diese Technik auf die fs-Zeitskala auszudehnen,in Theorie und Experiment untersucht, wobei die Messungen von Dr. Torsten Siebert (Universität Würzburg, Arbeitskreis Prof. Kiefer) durchgeführt worden sind. Nicht-resonante Anregung, mit einer Abfolge der Pulse, in der der Stokes-Puls mit der höheren Intensität im Vergleich zum Pump-Puls in einer f-STIRAP-artigen Anordnung dem Pump-Puls vorausgeht, führte zu einem effizienten PT in einen schwingungsangeregten Zustand im el. Grundzustand. Dies konnte durch einen Vergleich des numerisch exakten Falls mit einer adiabatischen Behandlung theoretisch untermauert werden. Die zu Grunde liegenden Prozesse sind näherungsweise durch adiabatisches Verhalten charakterisiert. Dazu wird gerade ein neues Modell entwickelt, welches den Prozess mit einem um einen dressed-state rotierenden Vektor im Hilbertraum erklärt. Zusammenfassend wurde in dieser Arbeit ein Algorithmus zur Kontrolle von Moleküldynamik entwickelt, der auf der instantanen Antwort eines Systems bei Wechselwirkung mit einem elektrischen Feld beruht. Die daraus berechneten Kontrollfelder sind sehr effizient bezüglich einer selektiven Kontrolle von Molekülen und versprechen noch viele zukünftige Anwendungsmöglichkeiten. KW - Laserstrahlung KW - Molekulardynamik KW - Mehrphotonenprozess KW - Quantenmechanik KW - Quantendynamik KW - Kontrolltheorie KW - STIRAP KW - geformte Laserfelder KW - Multi-Photonen Prozesse KW - quantum dynamics KW - control theory KW - STIRAP KW - pulse shaping KW - multi-photon processes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13388 ER - TY - THES A1 - Nocker, Monika T1 - Molekulardynamische Untersuchungen zur Charakterisierung von Flexibilität, Bindemechanismen und Bindungsaffinitäten von Aldose Reduktase und Nukleären Rezeptoren T1 - Molecular Dynamics Simulations to investigate flexibility, binding mechanism and binding affinity of Aldose Reductase and Nuclear Receptors N2 - Aldose Reduktase ALR2 katalysiert den ersten Schritt des Sorbitol-Stoffwechselweges. In diesem wird mit Hilfe des Kofaktors NADPH Glukose zu Sorbitol reduziert. Bei erhöhtem Blutzuckerspiegel, wie dies bei Diabetes-Patienten der Fall ist, ist dieser metabolische Weg von Bedeutung. Bis zu einem Drittel der Blutglukose wird zu Sorbitol reduziert. Die Folge der Sorbitolakkumulation in den Zellen und der Verminderung der NADPH-Konzentration sind „osmotischer“ sowie „oxidativer“ Stress. Diese stehen in Zusammenhang mit den vielfach diskutierten Spätschäden des Diabetes, wie diabetischer Katarakt, Neuro- und Nephropathie. Das Enzym ist experimentell sehr gut untersucht und eignet sich daher als Modellsystem zur Untersuchung der intrinsischen Proteinflexibilität und thermodynamischer Daten mit Hilfe von Computermethoden. Unter diesen Voraussetzungen steht der Gewinn eines besseren Verständnisses von molekularer Erkennung und Proteinbeweglichkeit der ALR2 unter Verwendung von Molekulardynamik-Simulationen MD als primäres Ziel im Zentrum dieser Arbeit. Dabei wurden MD-Studien zu zwei kristallographisch erhaltenen Protein-Ligand-Komplexen durchgeführt. Die Liganden unterscheiden sich nur geringfügig in der Länge einer Seitenkette, ihre Bindung führt allerdings zu gänzlich unterschiedlichen Bindemodi. Einer davon ist bislang einzigartig für die ALR2. Mit Hilfe von MD-Simulationen wurde versucht, eine Erklärung für diese neue Konformation der Bindetasche im Vergleich zu jener eines strukturell sehr ähnlichen Liganden zu finden. Außerdem waren über diese Studien Aussagen über besonders flexible Bereiche der ALR2-Bindetasche möglich, die mit bereits existierenden Erkenntnissen über die Bindetaschenflexibilität verglichen werden konnten. Darüber hinaus gelang es, durch die Methode der gesteuerten Molekulardynamik SMD einen Übergang zwischen einer röntgenkristallografisch ermittelten kofaktorgebundenen Holo-Konformation und kofaktorfreien Apo-Konformation zu simulieren. Computergestützte Methoden ermöglichen es also, weitläufige Bewegungen von einer Proteinkonformation in die andere nachzuvollziehen bzw. die experimentell erhaltenen Strukturen zu bestätigen. Eine mechanistische Deutung des Kofaktorassoziations- und Kofaktordissoziationsprozesses wurde ebenfalls versucht. Dafür war es notwendig, strukturelle Veränderungen im Protein zeitlich zu verfolgen und entscheidende Vorgänge zu identifizieren. Die Methode der SMD wurde in dieser Arbeit auch auf ein weiteres, pharmakologisch interessantes System übertragen. Dabei wurde versucht auch an zwei Vertretern der Klasse der Nukleären Rezeptoren NRs, dem Androgenrezeptor AR und dem Estrogenrezeptor ER, eine solche weitreichende Bewegung nachzuvollziehen. Auch bei diesen Rezeptoren sind zwei in der Position einer alpha-Helix unterschiedliche Formen bekannt. Auch hier wurden mit Hilfe der genannten Methode, relevante Ereignisse hinsichtlich der Helixmobilität identifiziert. Abschließend wurde auf den thermodynamischen Aspekt der Protein-Ligand-Komplexe eingegangen. Durch Berechnungen anhand der Methode der thermodynamischen Integration TI wurden relative Bindungsaffinitäten am Modellsystem ALR2 gewonnen. Durch den Vergleich mit experimentell vorhandenen Daten konnte die Methode validiert werden. Das Verfahren der TI sollte in Zukunft eine Voraussage von Affinitäten beliebiger, sich geringfügig unterscheidender Inhibitoren, die aber denselben Bindemodus aufweisen, ermöglichen und damit den Prozess des Wirkstoffdesigns erleichtern. Zusammenfassend ergab sich eine gute Übereinstimmung der experimentell ermittelten Strukturen bzw. Daten mit den durch Computersimulationen erhaltenen. N2 - Aldose Reductase ALR2 catalyzes the first step of the sorbitol pathway leading to a reduction of glucose into sorbitol. NADPH acts as cofactor. People suffering from diabetes mellitus blood show a raised glucose level and up to one third of the available glucose is processed in this way. As a consequence sorbitol accumulates in cells with insulin-independent glucose uptake and the NADPH concentration decreases. This leads to “osmotic” as well as “oxidative” stress, which are correlated to the late-onset diabetic complications like diabetic cataract, neuro- and nephropathy. The enzyme is experimentally very well examined. Therefore, it can be taken as model system for the investigation of the intrinsic protein flexibility and formerly gained thermodynamic data by application of computer methods. It is in that context that Aldose Reductase is regarded as an important target for this work with the aim of getting a broader insight into molecular recognition and protein mobility by use of molecular dynamics simulations MD. MD simulations were carried out for two crystallographically obtained protein-ligand-complexes. Both ligands lead to different binding modes although they differ only by the length of one sidechain. The binding mode for one of these inhibitors is unique for ALR2. MD simulations should shed light upon this novel binding site conformation and investigate enzyme’s inherent flexibility in comparison with former studies. Beyond that it was possible to reconstruct the transition between the cofactor bound "holo" comformation to a cofactor unbound "apo" one by the application of Steered Molecular Dynamics SMD. Therefore computer simulations offer the possibility to simulate large movements from one protein conformation to the other one and affirm the experimentally obtainable stuctures. A mechanistical explanation of the cofactor association and dissociation process was also tried. For this purpose an observation of the structural rearrengements in time was necessary to elucidate crucial events. The method of SMD was additionally used to investigate the large movements in two members of the class of the pharmacollogically very interesting Nuclear Receptors NR, the Androgen Receptor AR and the Estrogen Receptor ER. For both this receptors two different conformations are known, differing from each other by the position of an alpha-helix. Here relevant events in helix mobility were identified. To conclude the thermodynamic aspect of protein-ligand-complexes was examined. By the method of thermodynamic integration TI relative binding affinities of ALR2 inhibitors were gained. Comparison with experimental data allowed a validation. In the future the prediction of binding affinities of slightly different inhibitors showing an identical binding mode should be possible by the use of TI to ease the process of drug design. In summary, an good agreement between experimental structures respectively data and computational results is obtained. KW - Molekulardynamik KW - Aldehydreductase KW - Kernrezeptor KW - Aldose Reduktase KW - Nukleäre Rezeptoren KW - Flexibilität KW - Bindemechanismus KW - Bindungsaffinität KW - Statistische Thermodynamik KW - Ligand KW - Aldose Reductase KW - Nuclear Receptor KW - flexibility KW - binding mechanism KW - binding affinity Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72110 ER - TY - THES A1 - Lindner, Joachim Oliver T1 - Multistate Metadynamics with Electronic Collective Variables T1 - Mehrzustandsmetadynamik mit Elektronischen Kollektiven Variablen N2 - The aim of this thesis was to develop new automatic enhanced sampling methods by extending the idea of Parrinello’s metadynamics to multistate problems and by introducing new quantum-mechanical electronic collective variables. These methods open up a rich perspective for applications to the photophysical processes in complex molecular systems, which play a major role in many natural processes such as vision and photosynthesis, but also in the development of new materials for organic electronics, whose function depends on specific electronic properties such as biradicalicity. N2 - Das Ziel dieser Arbeit war die Entwicklung neuer automatisierter Methoden für beschleunigtes Sampling molekularer Strukturen durch eine Erweiterung von Parrinellos Metadynamik auf Mehrzustandsprobleme und die Verwendung neuer quantenmechanischer elektronischer kollektiver Variablen. Die entwickelten Methoden bieten einen breiten Anwendungsspielraum im Bereich der photophysikalischen Prozesse komplexer molekularer Systeme, welchen in vielen natürlichen Vorgängen wie beispielsweise dem Sehen und der Photosynthese, aber auch in der Entwicklung neuer Materialien für die organische Elektronik eine Schlüsselrolle zukommt. Die Eigenschaften solcher funktioneller Materialien werden durch spezifische elektronische Eigenschaften wie dem Biradikalcharakter bestimmt. KW - Theoretische Chemie KW - Fotochemie KW - Fotophysik KW - Biradikal KW - Molekulardynamik KW - Conical Intersections KW - Konische Durchschneidung KW - Metadynamics KW - Metadynamik Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191638 ER -