TY - THES A1 - Fink, Mario T1 - Unconventional and topological superconductivity in correlated non-centrosymmetric systems with spin-orbit coupling T1 - Unkonventionelle und topologische Supraleitung in (nicht)zentrosymmetrischen korrelierten System mit Spin-Bahn-Kopplung N2 - Despite its history of more than one hundred years, the phenomenon of superconductivity has not lost any of its allure. During that time the concept and perception of the superconducting state - both from an experimental and theoretical point of view - has evolved in way that has triggered increasing interest. What was initially believed to simply be the disappearance of electrical resistivity, turned out to be a universal and inevitable result of quantum statistics, characterized by many more aspects apart from its zero resistivity. The insights of BCS-theory eventually helped to uncover its deep connection to particle physics and consequently led to the formulation of the Anderson-Higgs-mechanism. The very core of this theory is the concept of gauge symmetry (breaking). Within the framework of condensed-matter theory, gauge invariance is only one of several symmetry groups which are crucial for the description and classification of superconducting states. \\ In this thesis, we employ time-reversal, inversion, point group and spin symmetries to investigate and derive possible Hamiltonians featuring spin-orbit interaction in two and three spatial dimensions. In particular, this thesis aims at a generalization of existing numerical concepts to open up the path to spin-orbit coupled (non)centrosymmetric superconductors in multi-orbital models. This is done in a two-fold way: On the one hand, we formulate - based on the Kohn-Luttinger effect - the perturbative renormalization group in the weak-coupling limit. On the other hand, we define the spinful flow equations of the effective action in the framework of functional renormalization, which is valid for finite interaction strength as well. Both perturbative and functional renormalization groups produce a low-energy effective (spinful) theory that eventually gives rise to a particular superconducting state, which is investigated on the level of the irreducible two-particle vertex. The symbiotic relationship between both perturbative and functional renormalization can be traced back to the fact that, while the perturbative renormalization at infinitesimal coupling is only capable of dealing with the Cooper instability, the functional renormalization can investigate a plethora of instabilities both in the particle-particle and particle-hole channels. \\ Time-reversal and inversion are the two key symmetries, which are being used to discriminate between two scenarios. If both time-reversal and inversion symmetry are present, the Fermi surface will be two-fold degenerate and characterized by a pseudospin degree of freedom. In contrast, if inversion symmetry is broken, the Fermi surface will be spin-split and labeled by helicity. In both cases, we construct the symmetry allowed states in the particle-particle as well as the particle-hole channel. The methods presented are formally unified and implemented in a modern object-oriented reusable and extendable C++ code. This methodological implementation is employed to one member of both families of pseudospin and helicity characterized systems. For the pseudospin case, we choose the intriguing matter of strontium ruthenate, which has been heavily investigated for already twenty-four years, but still keeps puzzling researchers. Finally, as the helicity based application, we consider the oxide heterostructure LaAlO$_{3}$/SrTiO$_{3}$, which became famous for its highly mobile two- dimensional electron gas and is suspected to host topological superconductivity. N2 - Trotz seiner über hundertjährigen Geschichte seit seiner Entdeckung hat das Phänomen der Supraleitung nichts von seiner ursprünglichen Faszination eingebüßt. Vielmehr hat sich in der Zwischenzeit der Begriff und das Verständnis des supraleitenden Zustandes in einer Weise weiterentwickelt, die das Interesse daran eher hat zunehmen lassen. Was anfänglich ausschließlich für ein Verschwinden des elektrischen Widerstands gehalten wurde, ist tatsächlich ein universelles und unvermeidliches Resultat der Quantenstatistik und besitzt viel mehr bemerkenswerte Eigenschaften als nur den widerstandslosen elektrischen Transport. Die Erkenntnisse der BCS-Theorie haben schließlich dazu geführt die tiefe Verbindung zur Teilchenphysik zu offenbaren und trugen entscheidend zur Formulierung des Anderson-Higgs-Mechanismus bei. Der wichtigste Baustein dieser Theorie ist das Konzept der (Brechung der) Eichsymmetrie. Im Rahmen der Festkörperphysik ist die Eichsymmetrie nur eine von mehreren Symmetrien, die eine essentielle Rolle für die Beschreibung und Einordnung von Phänomenen der Supraleitung spielen. \\ In dieser Arbeit wenden wir Zeitumkehr-, (räumliche) Inversions-, Punktgruppen- und Spin-Symmetrien an, um mögliche Hamilton-Operatoren in zwei und drei räumlichen Dimensionen, welche Spin-Bahn-Kopplung enthalten, herzuleiten und zu untersuchen. Diese Arbeit zielt auf eine Verallgemeinerung von existierenden numerischen Konzepten ab und erschließt den Weg die supraleitenden Eigenschaften von Modellen mit starker Spin-Bahn-Kopplung und mit oder ohne Inversionszentrum zu untersuchen. Dies geschieht mit Hilfe zweier methodischer Ansätze. Erstens formulieren wir aufbauend auf dem Kohn-Luttinger Effekt die störungstheoretische Renormierungsgruppe im Limes schwacher Kopplung. Zweitens verwenden wir die spinaufgelösten Flussgleichungen der effektiven Wirkung im Rahmen der funktionalen Renormierungsgruppe, die auch für endliche Wechselwirkungsstärke gültig sind. Die symbiotische Ergänzung der perturbativen und funktionalen Renormierungsgruppen ist darauf zurückzuführen, dass es mit der perturbativen Methode zwar möglich ist die Cooper Instabilität bei infinitesimaler Wechselwirkung numerisch exakt zu berechnen, aber nur die funktionale Renormierungsgruppe auch Teilchen-Loch Kondensate zugänglich macht. \\ Zeitumkehr- und Inversionssymmetrie sind die beiden Schlüsselsymmetrien, die verwendet werden, um zwei Szenarien zu unterscheiden. Falls sowohl Zeitumkehr- als auch Inversionssymmetrie gültig sind, sind die Fermiflächen zweifach entartet und durch einen Pseudospin-Freiheitsgrad charakterisiert. Im Gegensatz dazu führt der Verlust der Inversionssymmetrie zur Spinaufspaltung der Fermiflächen, die dann durch die sogenannte Helizität gekennzeichnet sind. In beiden Fällen leiten wir alle symmetrie-erlaubten Zustände her, welche die entsprechenden Teilchen-Teilchen und Teilchen-Loch Kondensate beschreiben. Die vorstellten und verallgemeinerten Methoden sind im Rahmen dieser Arbeit formal miteinander verbunden und in einem modernen objektorientierten C++ Quellcode implementiert worden. \\ Als erste vorläufige Anwendungen für diese methodische Implementierung betrachten wir zwei Systeme, die jeweils einer der beiden Familien zugeordnet werden können. Zum einen berechnen wir in der Pseudospin-Formulierung der perturbativen und funktionalen Renormierungsgruppen die Instabilitäten eines Dreiorbital-Modells für Strontiumruthenat, das seit seiner erstmaligen Synthese trotz intensiver Forschung immer noch Rätsel aufgibt. Zum anderen betrachten wir das zweidimensionale Elektronengas, das sich an der Schnittstelle zwischen LaAlO$_{3}$ und SrTiO$_{3}$ bildet und welches durch seine hohe Ladungsträgermobilität bekannt geworden ist. KW - Quanten-Vielteilchensysteme KW - Korrelierte Fermionen KW - Spin-Bahn-Kopplung KW - Perturbative/Funktionale Renormierungsgruppe KW - Unkonventionelle/Topologische Supraleitung KW - Quantum many-body systems KW - Correlated Fermions KW - Spin-Orbit interaction KW - Unconventional/Topological superconductivity KW - Perturbative/Functional Renormalization Group Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175034 ER - TY - THES A1 - Schwemmer, Tilman T1 - Relativistic corrections of Fermi surface instabilities T1 - Relativistische Korrekturen zu Fermiflächeninstabilitäten N2 - Relativistic effects crucially influence the fundamental properties of many quantum materials. In the accelerated reference frame of an electron, the electric field of the nuclei is transformed into a magnetic field that couples to the electron spin. The resulting interaction between an electron spin and its orbital angular momentum, known as spin-orbit coupling (SOC), is hence fundamental to the physics of many condensed matter phenomena. It is particularly important quantitatively in low-dimensional quantum systems, where its coexistence with inversion symmetry breaking can lead to a splitting of spin degeneracy and spin momentum locking. Using the paradigm of Landau Fermi liquid theory, the physics of SOC can be adequately incorporated in an effective single particle picture. In a weak coupling approach, electronic correlation effects beyond single particle propagator renormalization can trigger Fermi surface instabilities such as itinerant magnetism, electron nematic phases, superconductivity, or other symmetry broken states of matter. In this thesis, we use a weak coupling-based approach to study the effect of SOC on Fermi surface instabilities and, in particular, superconductivity. This encompasses a weak coupling renormalization group formulation of unconventional superconductivity as well as the random phase approximation. We propose a unified formulation for both of these two-particle Green’s function approaches based on the notion of a generalized susceptibility. In the half-Heusler semimetal and superconductor LuPtBi, both SOC and electronic correlation effects are prominent, and thus indispensable for any concise theoretical description. The metallic and weakly dispersive surface states of this material feature spin momentum locked Fermi surfaces, which we propose as a possible domain for the onset of unconventional surface superconductivity. Using our framework for the analysis of Fermi surface instability and combining it with ab-initio density functional theory calculations, we analyse the surface band structure of LuPtBi, and particularly its propensity towards Cooper pair formation. We study how the presence of strong SOC modifies the classification of two-electron wave functions as well as the screening of electron-electron interactions. Assuming an electronic mechanism, we identify a chiral superconducting condensate featuring Majorana edge modes to be energetically favoured over a wide range of model parameters. N2 - Relativistische Effekte bestimmen die Eigenschaften vieler Quantenmaterialien entscheidend. Im beschleunigten Bezugssystem eines Elektrons transformiert sich das elektrische Feld des Kerns in ein Magnetfeld, welches an den Spin des Elektrons koppelt. Die resultierende Wechselwirkung zwischen dem Spin eines Elektrons und seinem Bahndrehimpuls, bekannt als Spin-Bahn-Kopplung (engl. spin-orbit coupling SOC), ist für viele Phänomene der kondensierten Materie von grundlegender Bedeutung. In niedrigdimensionalen Quantensystemen, wo die Koexistenz von SOC und Inversionssymmetriebrechung zu einer Aufspaltung der Spinentartung und Kopplung des Spins an den Impulsfreiheitsgrad führen kann, besonders wichtig. Mit dem Paradigma von Landaus Fermi-Flüssigkeits-Theorie lässt sich die Physik des SOC in einem effektiven Ein-Teilchenbild gut modellieren. Ausgehend von einem schwach gekoppelten Bild können elektronische Korrelationseffekte, die über diese einfache Theorie hinausgehen, eine Instabilität der Fermi-Fläche auslösen, die zu Magnetismus, elektronisch-nematischen Phasen, Supraleitung oder anderen symmetriegebrochenen Materialzuständen führt. In dieser Dissertation verwenden wir einen auf schwacher Kopplung basierenden Ansatz, um die Wirkung von SOC auf Instabilitäten der Fermi-Fläche und insbesondere auf Supraleitung zu untersuchen. Wir betrachten eine störungstheoretische Renormierungsgruppenformulierung für unkonventionellen Supraleitung die Random-Phase-Approximation (RPA). Auf Grundlage der verallgemeinerten Suszeptibilität entwickeln wir eine einheitliche Formulierung für diese beiden Ansätze. Im Halb-Heusler-Halbmetall und Supraleiter LuPtBi sind sowohl SOC- als auch elektronische Korrelationseffekte für jede theoretische Beschreibung von großer Bedeutung. Der metallische und schwach dispersive Oberflächenzustand dieses Materials weist Fermi-Flächen mit gekoppeltem Spin und Impuls auf, die wir als mögliche Domäne für den Beginn unkonventioneller Oberflächensupraleitung vorschlagen. Wir kombinieren ab-initio Dichtefunktionaltheorieberechnungen für die Oberflächenbandstruktur von LuPtBi mit der Renormierungsgruppe und der RPA für eine Analyse der Fermi-Oberflächeninstabilitäten and der Kristalloberfläche. Wir untersuchen, wie die Existenz von starkem SOC die Klassifizierung von Zwei-Elektronen-Wellenfunktionen sowie die Abschirmung von Elektron-Elektronen-Wechselwirkungen modifiziert. Unter der Annahme eines elektronischen Mechanismus identifizieren wir ein chirales supraleitendes Kondensat mit Majorana-Randmoden, das über einen weiten Bereich von Modellparametern energetisch begünstigt ist. KW - Supraleitung KW - Random-phase-Approximation KW - Renormierungsgruppe KW - Fermionensystem KW - Spin-Bahn-Wechselwirkung KW - Correlated Fermions KW - Perturbative KW - Functional Renormalization Group KW - Quantum many-body systems KW - Spin-Orbit interaction KW - Unconventional/Topological superconductivity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319648 ER -