TY - JOUR A1 - Hoesl, Christine A1 - Fröhlich, Thomas A1 - Posch, Christian A1 - Kneitz, Hermann A1 - Goebeler, Matthias A1 - Schneider, Marlon R. A1 - Dahlhoff, Maik T1 - The transmembrane protein LRIG1 triggers melanocytic tumor development following chemically induced skin carcinogenesis JF - Molecular Oncology N2 - The incidence of melanoma and nonmelanoma skin cancer has increased tremendously in recent years. Although novel treatment options have significantly improved patient outcomes, the prognosis for most patients with an advanced disease remains dismal. It is, thus, imperative to understand the molecular mechanisms involved in skin carcinogenesis in order to develop new targeted treatment strategies. Receptor tyrosine kinases (RTK) like the ERBB receptor family, including EGFR/ERBB1, ERBB2/NEU, ERBB3, and ERBB4, are important regulators of skin homeostasis and their dysregulation often results in cancer, which makes them attractive therapeutic targets. Members of the leucine‐rich repeats and immunoglobulin‐like domains protein family (LRIG1‐3) are ERBB regulators and thus potential therapeutic targets to manipulate ERBB receptors. Here, we analyzed the function of LRIG1 during chemically induced skin carcinogenesis in transgenic mice expressing LRIG1 in the skin under the control of the keratin 5 promoter (LRIG1‐TG mice). We observed a significant induction of melanocytic tumor formation in LRIG1‐TG mice and no difference in papilloma incidence between LRIG1‐TG and control mice. Our findings also revealed that LRIG1 affects ERBB signaling via decreased phosphorylation of EGFR and increased activation of the oncoprotein ERBB2 during skin carcinogenesis. The epidermal proliferation rate was significantly decreased during epidermal tumorigenesis under LRIG1 overexpression, and the apoptosis marker cleaved caspase 3 was significantly activated in the epidermis of transgenic LRIG1 mice. Additionally, we detected LRIG1 expression in human cutaneous squamous cell carcinoma and melanoma samples. Therefore, we depleted LRIG1 in human melanoma cells (A375) by CRISPR/Cas9 technology and found that this caused EGFR and ERBB3 downregulation in A375 LRIG1 knockout cells 6 h following stimulation with EGF. In conclusion, our study demonstrated that LRIG1‐TG mice develop melanocytic skin tumors during chemical skin carcinogenesis and a deletion of LRIG1 in human melanoma cells reduces EGFR and ERBB3 expression after EGF stimulation. KW - ERBB receptors KW - LRIG1 KW - melanoma KW - mouse model KW - skin carcinogenesis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238925 VL - 15 IS - 8 SP - 2140 EP - 2155 ER - TY - JOUR A1 - Leonhardt, Ines A1 - Spielberg, Steffi A1 - Weber, Michael A1 - Albrecht-Eckardt, Daniela A1 - Bläss, Markus A1 - Claus, Ralf A1 - Barz, Dagmar A1 - Scherlach, Kirstin A1 - Hertweck, Christian A1 - Löffler, Jürgen A1 - Hünniger, Kerstin A1 - Kurzai, Oliver T1 - The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity JF - mBio N2 - Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-\(\alpha\)] and macrophage inflammatory protein 1 alpha [MIP-1 \(\alpha\)]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. KW - human dendritic cells KW - Pseudomonas aeruginosa KW - induced apoptosis KW - cytokine production KW - biofilm formation KW - Candida albicans KW - mouse model KW - systemic candidiasis KW - oxidative stress KW - carcinoma cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143756 VL - 6 IS - 2 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Fieselmann, Astrid A1 - Fischer, Eva A1 - Popp, Jasmin A1 - Hensel, Michael A1 - Noster, Janina T1 - Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection JF - Frontiers in Cellular and Infection Microbiology N2 - The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology. KW - enterica serovar Typhimurium KW - bacterial invasion KW - mouse model KW - defenses KW - regulation KW - "-omics" KW - virulence KW - Salmonella-containing vacuole (SCV) KW - metabolism KW - nitric oxide Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149029 VL - 4 IS - 191 ER - TY - JOUR A1 - Kim, Jae Ho A1 - Franck, Julien A1 - Kang, Taewook A1 - Heinsen, Helmut A1 - Ravid, Rivka A1 - Ferrer, Isidro A1 - Cheon, Mi Hee A1 - Lee, Joo-Yong A1 - Yoo, Jong Shin A1 - Steinbusch, Harry W. A1 - Salzet, Michel A1 - Fournier, Isabelle A1 - Park, Young Mok T1 - Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer's disease JF - Scientific Reports N2 - Alzheimer's disease (AD) is the most common form of dementia; however, mechanisms and biomarkers remain unclear. Here, we examined hippocampal CA4 and dentate gyrus subfields, which are less studied in the context of AD pathology, in post-mortem AD and control tissue to identify possible biomarkers. We performed mass spectrometry-based proteomic analysis combined with label-free quantification for identification of differentially expressed proteins. We identified 4,328 proteins, of which 113 showed more than 2-fold higher or lower expression in AD hippocampi than in control tissues. Five proteins were identified as putative AD biomarkers (MDH2, PCLO, TRRAP, YWHAZ, and MUC19 isoform 5) and were cross-validated by immunoblotting, selected reaction monitoring, and MALDI imaging. We also used a bioinformatics approach to examine upstream signalling interactions of the 113 regulated proteins. Five upstream signalling (IGF1, BDNF, ZAP70, MYC, and cyclosporin A) factors showed novel interactions in AD hippocampi. Taken together, these results demonstrate a novel platform that may provide new strategies for the early detection of AD and thus its diagnosis. KW - imaging mass spectrometry KW - neuron navigator 3 KW - dentate gyrus KW - growth factor KW - mouse model KW - neurotrophic factor KW - entorhinal cortex KW - factor expression KW - oxidative stress KW - memory deficits Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151727 VL - 5 IS - 11138 ER - TY - JOUR A1 - Hartmann, Oliver A1 - Reissland, Michaela A1 - Maier, Carina R. A1 - Fischer, Thomas A1 - Prieto-Garcia, Cristian A1 - Baluapuri, Apoorva A1 - Schwarz, Jessica A1 - Schmitz, Werner A1 - Garrido-Rodriguez, Martin A1 - Pahor, Nikolett A1 - Davies, Clare C. A1 - Bassermann, Florian A1 - Orian, Amir A1 - Wolf, Elmar A1 - Schulze, Almut A1 - Calzado, Marco A. A1 - Rosenfeldt, Mathias T. A1 - Diefenbacher, Markus E. T1 - Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease JF - Frontiers in Cell and Developmental Biology N2 - Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53fl/fl:lsl-KRasG12D/wt. Developing tumors were indistinguishable from Trp53fl/fl:lsl-KRasG12D/wt-derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research. KW - non-small cell lung cancer KW - CRISPR-Cas9 KW - mouse model KW - lung cancer KW - MYC KW - JUN Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230949 SN - 2296-634X VL - 9 ER - TY - JOUR A1 - Kraft, Peter A1 - Schuhmann, Michael K. A1 - Garz, Cornelia A1 - Jandke, Solveig A1 - Urlaub, Daniela A1 - Mencl, Stine A1 - Zernecke, Alma A1 - Heinze, Hans-Jochen A1 - Carare, Roxana O. A1 - Kleinschnitz, Christoph A1 - Schreiber, Stefanie T1 - Hypercholesterolemia induced cerebral small vessel disease JF - PLoS ONE N2 - Background While hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr\(^{−/-}\) mouse model. Methods We used Ldlr\(^{−/-}\) mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr\(^{−/-}\) mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds. Results We found a significant increase in the number of erythrocyte stases in 6 months old Ldlr\(^{−/-}\) mice compared to all other groups (P < 0.05). Ldlr\(^{−/-}\) animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr\(^{−/-}\) mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr\(^{−/-}\) mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions. Conclusions In Ldlr\(^{−/-}\) mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr\(^{−/-}\) mice appear to be an adequate animal model for research into CSVD. KW - hypercholesterolemia KW - cerebral small vessel disease KW - mouse model KW - histology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170493 VL - 12 IS - 8 ER - TY - JOUR A1 - Tsoneva, Desislava A1 - Minev, Boris A1 - Frentzen, Alexa A1 - Zhang, Qian A1 - Wege, Anja K. A1 - Szalay, Aladar A. T1 - Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis JF - Molecular Therapy Oncolytics N2 - Oncolytic vaccinia virus (VACV) therapy is an alternative cancer treatment modality that mediates targeted tumor destruction through a tumor-selective replication and an induction of anti-tumor immunity. We developed a humanized tumor mouse model with subcutaneous human tumors to analyze the interactions of VACV with the developing tumors and human immune system. A successful systemic reconstitution with human immune cells including functional T cells as well as development of tumors infiltrated with human T and natural killer (NK) cells was observed. We also demonstrated successful in vivo colonization of such tumors with systemically administered VACVs. Further, a new recombinant GLV-1h376 VACV encoding for a secreted human CTLA4-blocking single-chain antibody (CTLA4 scAb) was tested. Surprisingly, although proving CTLA4 scAb’s in vitro binding ability and functionality in cell culture, beside the significant increase of CD56\(^{bright}\) NK cell subset, GLV-1h376 was not able to increase cytotoxic T or overall NK cell levels at the tumor site. Importantly, the virus-encoded β-glucuronidase as a measure of viral titer and CTLA4 scAb amount was demonstrated. Therefore, studies in our “patient-like” humanized tumor mouse model allow the exploration of newly designed therapy strategies considering the complex relationships between the developing tumor, the oncolytic virus, and the human immune system. KW - humanized tumor KW - mouse model KW - subcutaneous human tumors KW - Oncolytic vaccinia virus Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170786 VL - 5 ER - TY - JOUR A1 - Rivero, Olga A1 - Alhama-Riba, Judit A1 - Ku, Hsing-Ping A1 - Fischer, Matthias A1 - Ortega, Gabriela A1 - Álmos, Péter A1 - Diouf, David A1 - van den Hove, Daniel A1 - Lesch, Klaus-Peter T1 - Haploinsufficiency of the Attention-Deficit/Hyperactivity Disorder Risk Gene St3gal3 in Mice Causes Alterations in Cognition and Expression of Genes Involved in Myelination and Sialylation JF - Frontiers in Genetics N2 - Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity. KW - sialyltransferase KW - sialic acid KW - psychiatric disorders KW - attention-deficit/hyperactivity disorder (ADHD) KW - prefrontal cortex KW - hippocampus KW - mouse model Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246855 SN - 1664-8021 VL - 12 ER - TY - JOUR A1 - Schaefer, Natascha A1 - Zheng, Fang A1 - van Brederode, Johannes A1 - Berger, Alexandra A1 - Leacock, Sophie A1 - Hirata, Hiromi A1 - Paige, Christopher J. A1 - Harvey, Robert J. A1 - Alzheimer, Christian A1 - Villmann, Carmen T1 - Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease JF - Frontiers in Molecular Neuroscience N2 - Mutations in GlyR α1 or β subunit genes in humans and rodents lead to severe startle disease characterized by rigidity, massive stiffness and excessive startle responses upon unexpected tactile or acoustic stimuli. The recently characterized startle disease mouse mutant shaky carries a missense mutation (Q177K) in the β8-β9 loop within the large extracellular N-terminal domain of the GlyR α1 subunit. This results in a disrupted hydrogen bond network around K177 and faster GlyR decay times. Symptoms in mice start at postnatal day 14 and increase until premature death of homozygous shaky mice around 4–6 weeks after birth. Here we investigate the in vivo functional effects of the Q177K mutation using behavioral analysis coupled to protein biochemistry and functional assays. Western blot analysis revealed GlyR α1 subunit expression in wild-type and shaky animals around postnatal day 7, a week before symptoms in mutant mice become obvious. Before 2 weeks of age, homozygous shaky mice appeared healthy and showed no changes in body weight. However, analysis of gait and hind-limb clasping revealed that motor coordination was already impaired. Motor coordination and the activity pattern at P28 improved significantly upon diazepam treatment, a pharmacotherapy used in human startle disease. To investigate whether functional deficits in glycinergic neurotransmission are present prior to phenotypic onset, we performed whole-cell recordings from hypoglossal motoneurons (HMs) in brain stem slices from wild-type and shaky mice at different postnatal stages. Shaky homozygotes showed a decline in mIPSC amplitude and frequency at P9-P13, progressing to significant reductions in mIPSC amplitude and decay time at P18-24 compared to wild-type littermates. Extrasynaptic GlyRs recorded by bath-application of glycine also revealed reduced current amplitudes in shaky mice compared to wild-type neurons, suggesting that presynaptic GlyR function is also impaired. Thus, a distinct, but behaviorally ineffective impairment of glycinergic synapses precedes the symptoms onset in shaky mice. These findings extend our current knowledge on startle disease in the shaky mouse model in that they demonstrate how the progression of GlyR dysfunction causes, with a delay of about 1 week, the appearance of disease symptoms. KW - glycine receptor KW - startle disease KW - β8-β9 loop KW - mouse model KW - fast decay Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196056 SN - 1662-5099 VL - 11 IS - 167 ER - TY - JOUR A1 - Weider, Matthias A1 - Wegener, Amélie A1 - Schmitt, Christian A1 - Küspert, Melanie A1 - Hillgärtner, Simone A1 - Bösl, Michael R. A1 - Hermans-Borgmeyer, Irm A1 - Nait-Oumesmar, Brahim A1 - Wegner, Michael T1 - Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells JF - PLoS Genetics N2 - Oligodendrocytes are the myelinating glia of the central nervous system and ensure rapid saltatory conduction. Shortage or loss of these cells leads to severe malfunctions as observed in human leukodystrophies and multiple sclerosis, and their replenishment by reprogramming or cell conversion strategies is an important research aim. Using a transgenic approach we increased levels of the transcription factor Sox10 throughout the mouse embryo and thereby prompted Fabp7-positive glial cells in dorsal root ganglia of the peripheral nervous system to convert into cells with oligodendrocyte characteristics including myelin gene expression. These rarely studied and poorly characterized satellite glia did not go through a classic oligodendrocyte precursor cell stage. Instead, Sox10 directly induced key elements of the regulatory network of differentiating oligodendrocytes, including Olig2, Olig1, Nkx2.2 and Myrf. An upstream enhancer mediated the direct induction of the Olig2 gene. Unlike Sox10, Olig2 was not capable of generating oligodendrocyte-like cells in dorsal root ganglia. Our findings provide proof-of-concept that Sox10 can convert conducive cells into oligodendrocyte-like cells in vivo and delineates options for future therapeutic strategies. KW - peripheral nervous system KW - Hirschsprung disease KW - spinal-cord KW - boundary cap KW - differentiation KW - stem cells KW - factor Sox10 KW - mouse model KW - expression KW - Olig2 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144123 VL - 11 IS - 2 ER -