TY - THES A1 - Junglas, Michael T1 - Dynamische Wechselwirkungen zwischen festkörperunterstützten kationischen Lipidbilayern und oligo-DNA T1 - Dynamic interactions between solid supported cationic lipid bilayers and oligo-DNA N2 - Das Aufbringen eines Lipidbilayers, den man als artifizielle Zellmembran ansehen kann, auf eine Festkörperoberfläche ist eine häufig genutzte Methode, um ihn mit physikalischen Messmethoden, wie zum Beispiel ATR-FTIR, FRAP, Neutronenstreuung oder wie in der vorliegenden Arbeit NMR, einfacher untersuchen zu können. Darüber hinaus ist die so präparierte Oberfläche, in Kombination mit vorhandener Halbleitertechnik, ein idealer Sensor, um das Verhalten von Biomolekülen in Wechselwirkung mit dem Lipidbilayer zu untersuchen. Das Fernziel dieser Entwicklung ist die Herstellung eines biokompatiblen Chips mit dem sich bisher sehr aufwendige Messungen stark vereinfachen und schneller durchführen lassen (Stichwort: lab on a chip). Für die zuverlässige Interpretation der durch einen solchen Sensor gewonnenen Informationen ist es allerdings unerlässlich vorher zum einen die Wechselwirkungen zwischen der Festkörperoberfläche und dem ihn bedeckenden Lipidbilayer und zum anderen die Wechselwirkung zwischen Biomolekülen und dem Lipidbilayer genauer zu untersuchen. Dazu wurden in der vorliegenden Arbeit Silicakugeln (Durchmesser im Submikrometerbereich) als Festkörpersubstrat verwendet und mit verschiedenen Lipidbilayern beschichtet. Um die Wechselwirkung dieses Systems mit Biomolekülen zu erforschen wurden DNA-Moleküle eingesetzt. Als Messmethode kam Festkörper-Deuterium-NMR zum Einsatz. Zunächst wurde der Einfluss der Festkörperoberfläche auf die Verteilung geladener Lipide in den beiden Hälften eines Bilayers, der aus geladenen und ungeladenen Lipiden zusammengesetzt war, ermittelt. Es zeigte sich, dass das negativ geladene Silica-Substrat eine Anreicherung der positiv geladenen Lipide in der dem Substrat zugewandten Seite des Bilayers bewirkte. Darüber hinaus reichert sich während des Aufbringes des Bilayers der Anteil der positiv geladenen Lipide in Abhängigkeit von der Inkubationszeit zu einer höheren Gesamtkonzentration als der Ausgangskonzentration an. Ein vor der Präparation eingestelltes Konzentrationsverhältnis aus verschiedenen Lipiden muss also nicht im festkörperunterstützten Bilayer vorliegen und die jeweiligen Lipidarten müssen nicht zwischen beiden Monolayern gleich verteilt sein. In weiteren Messungen wurden die Auswirkungen auf einen festkörperunterstützten Bilayer aus positiv geladenen Lipiden beim Ankoppeln von kurzen DNA-Strängen untersucht. Die DNA ist im Gegensatz zu den kationischen Lipiden unter Standardbedingungen negativ geladen. Es wurde nicht nur das Ankoppelverhalten einer DNA-Doppelhelix sondern auch das von einzelsträngig vorliegender DNA untersucht. Während die als Einzelstrang vorliegende DNA den molekularen Ordnungsparameter der Lipidfettsäureketten deutlich erhöhte, war die Erhöhung für die DNA-Doppelhelix geringer. Ein Vergleich der Eigendiffusionskoeffizienten der kationischen Lipide in Wechselwirkung mit den beiden DNA-Formen ergab keinen Änderung der Diffusion, wenn die DNA-Doppelhelix an den Bilayer koppelte. Die als Einzelstrang vorliegende DNA erniedrigt dagegen die Diffusion der Lipide. Die gemessenen Unterschiede der beiden DNA-Formen, sowohl bezüglich ihrer Auswirkung auf die molekulare Ordnung der Lipidketten, als auch auf die Eigendiffusion der Lipidmoleküle legen ein unterschiedliches Ankopplungsverhalten der beiden Formen nahe. Bei Experimenten, die versuchten das Ankoppeln der DNA für ein System aus zwei Lipidkomponenten genauer zu anaylsieren, zeigte sich der starke Einfluss des Substrats, der es unmöglich machte die Ergebnisse mit einem rein kationischen Lipidbilayer zu vergleichen. Die Ergebnisse der Messungen tragen zum besseren Verständnis der Wechselwirkungen zwischen Lipidbilayer und Festkörpersubstrat und zwischen Lipidbilayer und ankoppelnden Biomolekülen bei. N2 - The coating of a solid surface with a lipid bilayer, which can be regarded as an artificial cell membrane, is a widely used method to simplify the examination of the bilayer with physical measurement methods (e.g. ATR-FTIR, FRAP, neutron scattering or as in this thesis NMR). In addition, such a prepared surface in combination with present semiconductor technology, is an ideal sensor to examine the interaction of a lipid bilayer with biomolecules. The long-term objective of this development is the production of a biocompatible chip (also referred to as a lab on a chip) which simplifies and accelerates present day extensive measurements. For the reliable interpretation of the information gathered from such a chip, it is essential to closely examine on one hand the interaction between the solid surface and the coated lipid bilayer and on the other hand the interaction between the biomolecules and the lipid bilayer. To address this subject, silica beads with a diameter in the submicrometer range were used as a solid substrate and coated with various lipid bilayers. DNA molecules were used to examine the interaction of this system with biomolecules. Solid-state deuterium NMR was used as the measurement method. The effect of the solid surface on the distribution of charged lipids in the two monolayers of a lipid bilayer, which was composed of charged and neutral lipids, was examined first. It was shown that the negatively charged silica substrate caused an enrichment of positively charged lipids in the monolayer facing the substrate. In addition, the total concentration of positively charged lipids rose with respect to the initial concentration, depending on the incubation time. A concentration percentage adjusted prior to the preparation therefore does not necessarily exist in the solid supported bilayer and is not necessarily distributed equally between the two monolayers. Further experiments were made to study the influence of the coupling of short DNA strands to a solid supported bilayer composed of positively charged lipids. DNA has a negative charge in standard conditions, as opposed to the cationic lipids. The coupling behavior was not only studied for a DNA double helix but also for a single stranded DNA. The single stranded DNA gave a distinctive rise to the molecular order parameter of the lipids fatty acid chains. The increase for the DNA double helix was less distinct. Comparison of the self diffusion coefficients of the cationc lipids interacting with both forms of DNA showed no change for the diffusion when the DNA double helix coupled to the bilayer. In contrast the single stranded DNA decreased the diffusion of the lipids. The different effects of the two DNA forms both for their effect on the molecular order parameter of the lipid chains and for the self diffusion of the lipid molecules, suggests a different coupling behavior. Experiments to further analyze the coupling of DNA to a system containing two lipid components showed the strong influence of the substrate, which made it impossible to compare the results with respect to a pure cationic lipid bilayer. The results of the experiments contribute to a better comprehension of the interaction between lipid bilayers and solid substrates and between lipid bilayers and coupling biomolecules. KW - Lipidmembran KW - Festkörperoberfläche KW - DNS KW - Wechselwirkung KW - Kationische Lipidbilayer KW - Festkörpersupport KW - oligo-DNA KW - cationic lipid bilayer KW - solid support KW - oligo-DNA Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16053 ER - TY - THES A1 - Kronhardt, Angelika T1 - Channel Formation, Binding and Translocation Properties of Anthrax, CDT and Related Toxins of the AB7 type T1 - Kanalbilidung, Bindungs- und Translokationseigenschaften des Anthrax, CDT und verwandten Toxinen des AB7-Toxintyps N2 - The ability to produce toxins is spread among a huge variety of bacterial strains. A very prominent class of bacterial protein toxins is the family of binary AB toxins sharing a common mode of intoxication. A pore forming component B binds and translocates an enzymatic component A into the cytosol of target cells exhibiting a fatal mode of action. These components are supposed to be not toxic themselves but both required for cell toxicity. Anthrax toxin produced by the Gram-positive bacteria Bacillus anthracis is the best studied binary toxin especially since its use as a biological weapon in the context of the attacks of 9/11 in 2001. In contrast to other binary toxins, Anthrax toxin possesses two different enzymatic components, edema factor (EF), a calcium- and calmodulin-dependent adenylat-cyclase and lethal factor (LF), a zinc-dependent metalloprotease. Protective antigen (PA) is the pore-forming component responsible for binding and translocation. Clostridium botulinum possesses in addition to the well known botulinum toxin (Botox) a variety of other toxins, such as the binary C2 toxin. C2 toxin is composed of the binding and translocation moiety C2II and the enzymatic moiety C2I acting as an actin-ADP-ribosyltransferase. In this study, the mode of translocation and the binding kinetics to the enzymatic component were studied in a biophysical experimental setup. In chapter 2, the binding of the N-terminal fractions EFN and LFN to the PA channel are analyzed in artificial bilayer membranes revealing lower binding affinity compared to full-length EF and LF. Other biophysical properties like voltage-dependency and ionic-strength dependency are not influenced. The results suggest that additional forces are involved in the binding process, than those concerning the N-terminus exclusively, as it was supposed previously. As the treatment of an Anthrax infection with antibiotics is often medicated very late due to the lack of early symptoms, tools to prevent intoxication are required. 4-aminoquinolones like chloroquine are known to block the PA channel, thereby inhibiting intoxication but they also lead to severe side-effects. In chapter 3 new promising agents are described that bind to PA in artificial bilayer systems, elucidating common motives and features which are necessary for binding to PA in general. The possible interaction of Anthrax and C2 toxin is investigated by measuring the binding of one enzymatic component to the respective other toxin’s pore (chapter 4). Interestingly, in vitro experiments using the black lipid bilayer assay show that PA is able to bind to C2I resulting in half saturation constants in the nanomolar range. Furthermore, in vivo this combination of toxin components exhibits cell toxicity in human cell lines. This is first-time evidence that a heterologous toxin combination is functional in in vitro and in vivo systems. In contrast, C2II is able to bind to EF as well as to LF in vitro, whereas in in vivo studies almost no toxic effect is detected. In the case of PA, an N-terminal His6-tag attached to the enzymatic subunit increased the binding affinity (chapter 5). A His6-tag attached to not related proteins also led to high binding affinities, providing the possibility to establish PA as a general cargo protein. In chapter 6 a set of different molecules and proteins is summarized, which are either related or not related to binary toxins, PA is able to bind. In first line, the presence of positive charges is found to be responsible for binding to PA which is in accordance to the fact that PA is highly cation selective. Furthermore, we present evidence that different cationic electrolytes serve as a binding partner to the PA channel. In the last decade another toxin has aroused public attention as it was found to be responsible for a rising number of nosocomial infections: Clostridium difficile CDT toxin. The mode of action of the enzymatic subunit CDTa is similar to C2I of C2 toxin, acting as an ADP-ribosylating toxin. The channel forming and binding properties of CDT toxin are studied in artificial bilayer membranes (chapter 7). We found that two different types of channels are formed by the B component CDTb. The first channel is similar to that of iota toxin’s Ib of Clostridium perfringens with comparable single channel conductance, selectivity and binding properties to the enzymatic subunit CDTa. The formation of this type of channel is cholesterol-dependent, whereas in the absence of cholesterol another kind of channel is observed. This channel has a single channel conductance which is rather high compared to all other binary toxin channels known so far, it is anion selective and does not show any binding affinity to the enzymatic component CDTa. The results reveal completely new insights in channel formation properties and the flexibility of a pore-forming component. Additionally, these findings suggest further possibilities of toxicity of the pore forming component itself which is not known for any other binary toxin yet. Therefore, the pathogenic role of this feature has to be studied in detail. N2 - Die Fähigkeit, Toxine zu produzieren, ist unter verschiedensten Bakterienstämmen sehr verbreitet. Zu diesen Toxinen zählt auch die Familie der binären AB-Toxine, die hauptsächlich von Bakterien der Gattung Bacillus und Clostridium gebildet werden. Charakteristisch für diese bakteriellen Proteintoxine ist der Wirkungsmechanismus der Zellintoxikation. Eine porenformende Untereinheit B bindet eine enzymatische Untereinheit A und transportiert diese in das Zytosol von Zielzellen, die dort tödliche Wirkung entfalten. Es wird angenommen, dass die einzelnen Komponenten an sich nicht toxisch sind, sondern nur in Kombination Zellvergiftung auslösen. Anthrax-Toxin, das von dem Gram-positiven Bakterium Bacillus anthracis produziert wird, ist das bekannteste und am besten untersuchte binäre Toxin, besonders seit es im Jahr 2001 als Biowaffe eingesetzt wurde. Im Gegensatz zu anderen binären Toxinen besitzt das Anthrax-Toxin zwei enzymatische Komponenten: Edema Factor (EF), eine kalzium- und calmodulinabhängige Adenylatzyklase, und Lethal Factor (LF), eine zinkabhängige Metalloprotease. Protective Antigen (PA) ist die porenformende Komponente, die für die Binding und die Translokation der enzymatischen Untereinheiten verantwortlich ist. Clostridium botulinum produziert neben dem bekannten Botulinumtoxin (Botox) eine Reihe weiterer Toxine, unter anderem das binäre C2 Toxin. Dieses besteht aus der Binde- und Translokationskomponente C2II und der enzymatischen Komponente C2I, die als ADP-Ribosyltransferase fungiert. Im Rahmen der vorliegenden Arbeit werden der Translokationsmechanismus und die kinetischen Bindeeigenschaften dieser Toxine biophysikalisch untersucht. In Kapitel 2 wird die Bindung der N-terminalen Fragmente EFN und LFN an den PA-Kanal in künstlichen Lipidmembranen analysiert. Obwohl die Spannungs- und Ionenstärkeabhängigkeit unverändert sind, weisen die verkürzten Proteine deutlich geringe Bindeaffinitäten zu PA im Vergleich zu den vollständigen Proteinen auf. Die Ergebnisse zeigen, dass, anders als bisher angenommen, weitere Kräfte als die zwischen dem N-Terminus und dem PA-Kanal eine Rolle für die Bindung der enzymatischen Komponente spielen. Da bei einer Anthraxinfektion häufig keine frühen Symptome sichtbar sind, erfolgt die Behandlung mit Antibiotika in der Regel relativ spät. Daher werden neue Wirkstoffe benötigt, um einer Intoxikation vorzubeugen. Es ist bekannt, dass 4-Aminoquinolone, wie zum Beispiel Chloroquin, in der Lage sind, die PA-Pore zu blockieren und somit eine Zellvergiftung zu verhindern, allerdings haben diese Wirkstoffe starke Nebenwirkungen. In Kapitel 3 werden neue, vielversprechende Wirkstoffe beschrieben, die an PA binden können und Aufklärung darüber geben, welche Eigenschaften für die Bindung an PA im Allgemeinen verantwortlich sind. Des Weiteren wird untersucht, ob eine Kreuzreaktion zwischen den Komponenten des Anthrax- und C2-Toxins möglich ist (Kapitel 4). Dazu wird die Bindung einer enzymatischen Komponente an die Pore des entsprechenden anderen Toxins gemessen. Interessanterweise ergeben in vitro Experimente an künstlichen Lipidmembranen, dass PA an C2I bindet und in vivo Vergiftungen an humanen Zelllinien auslöst. Damit wird zum ersten Mal gezeigt, dass eine heterologe Toxinkombination sowohl in vitro als auch in vivo funktionell ist. C2II hingegen ist zwar in der Lage, EF und LF zu binden, die Transportrate in Zielzellen ist jedoch sehr gering. Im Fall von PA bewirkt ein N-terminaler His6-tag, der an die enzymtischen Einheiten gekoppelt ist, eine Erhöhung der Bindeaffinität, beschrieben in Kapitel 5. Dies ist sowohl für nah verwandte Proteine der Fall als auch für Proteine, die nicht im Zusammenhang mit binären Toxinen stehen. Somit eröffnet sich die Möglichkeit, PA als universelles Transportprotein zu nutzen. In Kapitel 6 werden verschiedene Moleküle und Proteine beschrieben, die in der Lage sind, an PA zu binden. Vor allem positive Ladungen scheinen für die Bindung an PA-Kanäle verantwortlich zu sein, was mit der Tatsache, dass PA stark kationenselektiv ist, im Einklang steht. Des Weiteren wird zum ersten Mal beschrieben, dass verschiedene Kationen selbst als Bindepartner fungieren können. Seit einigen Jahren ist ein weiteres Toxin in den Fokus der Öffentlichkeit gerückt, da es zunehmend für nosokomiale Infektionen verantwortlich gemacht wird: CDT-Toxin von Clostridium difficile. Wie das C2-Toxin besitzt CDT-Toxin ADP-Ribosyltransferaseaktivität, was zu irreversiblen Schäden des Aktin- Zytoskeletts und somit zum Zelltod führt. Die biophysikalischen Eigenschaften, betreffend Porenbildung und Bindeaffinität des CDT-Toxins werden in Kapitel 7 beschrieben. Wir zeigen, dass die B Komponente CDTb fähig ist, zwei unterschiedliche Kanäle zu bilden. Einer dieser Kanäle ist dem des Iota-Toxins von Clostridium perfringens ähnlich, die Einzelkanalleitfähigkeit, Selektivität und Bindeeigenschaften sind vergleichbar. Die Bildung dieses Kanals ist abhängig von Cholesterin, wohingegen in Abwesenheit von Cholesterin überwiegend ein anderer Kanal geformt wird. Dieser zeigt eine für einen binären Toxinkanal ungewöhnlich hohe Einzelkanalleitfähigkeit, der Kanal ist anionselektiv und weist keinerlei Bindeaffinität zu der enzymatischen Komponente CDTa auf. Die Ergebnisse offenbaren neue Einblicke in die Formierung von Toxinkanälen und deuten darauf hin, dass dieses Toxin durch die Flexibilität der Kanalbildung möglicherweise zusätzliche Fähigkeiten besitzt, Zellintoxikation auszulösen. Dennoch ist die physiologische und pathogene Rolle dieser Eigenschaft noch weitestgehend ungeklärt und bedarf intensiver Untersuchung. KW - Bacillus anthracis KW - Toxin KW - Lipidmembran KW - Pore KW - Translokation KW - Porenbildung KW - Anthrax toxin KW - Black lipid bilayer KW - pore formation and translocation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71559 ER - TY - THES A1 - Walter, Tim T1 - Bioorthogonal funktionalisierte Sphingolipide zur Evaluierung von Lipiddynamiken \(in\) \(vivo\) T1 - Bioorthogonal functionalized sphingolipids for evaluation of lipid dynamics \(in\) \(vivo\) N2 - In der Kontrolle von viralen oder bakteriellen Infektionen spielen Sphingolipide eine essentielle Rolle[335-336], weshalb sich inzwischen die Forschung vermehrt an Sphingolipiden und -analoga als Wirkstoffen gegen die verschiedensten Erreger beschäftigt.[9] Dabei finden in der Synthese und Identifikation potentieller Wirkstoffe auch clickchemiebasierte Ansätze Anwendung.[224] Allerdings ist die Wirkweise von sphingolipidbasierten Pharmaka auch in viraler und mikrobieller Pathogenese bisher ungeklärt. Mit der Entdeckung der CuAAC[112-113] sowie deren modernen Varianten und Alternativen, die gemeinsam unter dem Begriff Clickchemie zusammengefasst werden, ist es möglich, die strukturellen Änderungen von Biomolekülen klein zu halten und durch spätere Konjugation mit Farbstoffen Fluoreszenspektroskopie zu ermöglichen.[339-340] Während in den letzten Jahren die Clickchemie breite Anwendung zur Modifikation von Proteinen[130], Kohlenhydraten[341] und DNA[340] gefunden hat blieben Lipide lange unbeachtet[342], was vor allem auch für Sphingolipide gilt. In dieser Arbeit werden bioorthogonal funktionalisierte Sphingolipide und -analoga vorgestellt, um die Vielseitigkeit der Clickchemie auf das Feld der Sphingolipide zu übertragen. Die clickfähigen Lipidanaloga ermöglichen detaillierte Einblicke in die dynamische Organisation von Sphingolipiden bei Infektionsprozessen und ihr Einsatz als therapeutische Wirkstoffe oder zur Generierung von antibakteriellen Oberflächenbeschichtungen wurden untersucht. Die dargestellten azidmodifizierten Sphingolipide und –analoga konnten in Zusammenarbeit mit Kooperationspartnern, bezüglich ihrer Verwendung in Visualisierungsexperimenten und antibakteriellen Eigenschaften untersucht werden. Die Ceramidderivate konnten genutzt werden, um den Einfluss von Kettenlänge und Position des Azides der acylierten Säure auf die in vivo-Konjugation mit dem Fluoreszenzfarbstoff DBCO-Sulfo-Cy5 in Jurkatzellen genauer zu untersuchen.[211] Auch konnten azidfunktionalisierte Ceramide auf ihre Eignung zur Visualisierung von Ceramiddynamiken während T-Stimulation untersucht werden.[205] In diesem Zusammenhang sind visualisierbare Ceramide von besonderer Bedeutung, da die T-Zellstimulation die ASM-Aktivierung zur Folge hat, die wiederum Ceramide freisetzt. Mit dem azidmodifizierten Phytosphingosinderivat gelang es erstmals ein azidmodifiziertes Sphingolipid nach Inkubation von Arabidopsis thaliana Setzlingen mittels CuAAC mit einem Fluoreszenzfarbstoff zu konjugieren.[258] Des Weiteren konnten die azidfunktionalisierten N-Oleoylserinole in verschiedenen Zelltypten erfolgreich eingebaut und selektiv mit Fluoreszenzfarbstoff visualisiert werden. Kofärbungen mit GFP-PKCζ und Antikörpermarkierungen von Ceramid sowie PKCζ zeigten, dass es sich bei den Enantiomeren um ceramidimitierende Lipidanaloga handelt. Somit eignen sich diese N-Oleoylserinolanaloga, um die Interaktion von Ceramiden mit der Proteinkinase Cζ zu untersuchen. Da viele natürliche Sphingolipide antibakterielle Eigenschaften aufweisen, konnte in Kooperation mit Jérôme Becam der Einsatz azidmodifizierter Ceramide als Wirkstoff gegen Neisseria meningitidis, Neisseria gonorrhoeae sowie Escherichia coli und Staphylococcus aureus untersucht werden. ωN3-C6-Cer zeigt gute bakterizide Eigenschaften gegen Neisseria meningitidis und Neisseria gonorrhoeae, ohne dabei toxisch gegenüber den Wirtszellen zu sein. Die Ceramidanaloga αN3-C6-Cer, αN3-C16-Cer und ωN3-C16-Cer weisen keine antibakteriellen Eigenschaften auf, aber sie wurden effizient in die Membran der Neisseriae eingebaut und konnten ebenfalls erfolgreich bioorthogonal markiert werden. Des Weiteren zeigten hochauflösende dSTORM-Aufnahmen der Bakterien, im Gegensatz zu Humanzellen, eine homologe Verteilung der konjugierten Ceramide. Da Ceramide eine wichtige Rolle in der Infektionsbekämpfung spielen, sind die in dieser Arbeit synthetisierten azidmodifizierten Ceramide wertvolle Werkzeuge, um die Interaktion von Bakterien mit Humanzellen zu untersuchen. Außerdem konnte im Rahmen dieser Arbeit erfolgreich eine innovative Methode entwickelt werden, um alkinpräsentierende Linker auf die Oberfläche von Nunc Covalink 96 Microtiterplatten kovalent zu binden und die Alkine konnten anschließend mittels CuAAC mit den in dieser Arbeit synthetisierten azidfunktionalisierten Lipiden zu konjugiert werden. Ziel der Methode war es potentielle Moleküle für bakterizide Oberflächenmodifikationen zu identifizieren. Mittels solcher Oberflächenmodifikationen soll die Biofilmbildung in Endotrachealtuben verhindert, und damit die Entstehung von beatmungsassozierten Pneumonien unterbunden werden. Die lipidmodifizierten Microtiterplatten sollen zukünftig auch genutzt werden, um sphingolpidaffine Proteine aus Zelllysaten zu identifizieren. N2 - Sphingolipids play an essential role in the control of viral and bacterial infections[335-336], therefore sphingolipids and analogues shift into the focus of pharmaceutical research as active ingredients against various pathogens.[9] Also click chemistry is used for synthesis and screening of potential drugs.[224] The mode of action of sphingolipid based pharmaceuticals in viral and microbial pathogenesis is not yet fully understood. By using CuAAC[112-113] and their modern variants and alternatives – summarized in the term click chemistry – it is possible to minimise the structural alterations of biomolecules and still use them in fluorescence spectroscopy after labeling. [339-340] While modification of proteins[130], carbohydrates[341] and DNA[340] via click chemistry has been widely used in recent years, lipids have remained unaffected for a long time, especially sphingolipids.[342] In this Work biorthogonal functionalised sphingolipids and analogues are presented, that transfer the versatility of the click chemistry to the field of sphingolipids. Furthermore, the clickable lipid analogues allow a detailed view into the dynamic organisation of sphingolipids in infection processes and in addition their use as therapeutic agents or for the generation of antibacterial surface coatings were investigated. The synthesized azide modified sphingolipids and analogues were evaluated for the use in visualisation experiments and their antibacterial properties were evaluated within several cooperation projects. The ceramide derivatives were used to evaluate the influence of acylated chain length and azide position in regard to in vivo labeling with the fluorescence dye DBCO-Sulfo-Cy5 in jurkat cells.[211] Furthermore, ceramide dynamics during T-cell stimulation were investigated by labeling azide functionalised ceramides.[205] In this context visualisable ceramides are of particular interest due T-cell stimulation results in ASM-activation, which again releases ceramides. With the azide modified phytosphingosine derivative, an azide modified sphingolipid was labelled via CuAAC after incubation of arabidoopsis thailana seedlings for the first time[258] Furthermore, azide functionalised N-Oleoyl serinols were successfully incorporated within different cell types and selectively visualised by labelling. Colocalization studies with GFP-PKCζ and anti body labeling of ceramide as well as PKCζ proved to be ceramide mimicking lipid analogues Many natural sphingolipids show antibacterial behaviour, therefore the use of azide modified ceramides as active ingredients against Neisseria meningitidis, Neisseria gonorrhoeae sowie Escherichia coli und Staphylococcus aureus were investigated in cooperation with Jérôme Becam ωN3-C6-Cer shows good bactericidal properties against Neisseria meningitidis and Neisseria gonorrhoeae without being toxic against host cells. The ceramide analogues αN3-C6-Cer, αN3-C16-Cer and ωN3-C16-Cer show no antibacterial properties, but they were also efficiently incorporated into the membrane of Neisseriae and can be used biorthogonal labelling. Furthermore, in contrast to human cells high resolution dSTORM-images show an evenly distribution of labelled ceramides in bacteria cells. Since ceramides play an important role in the fight against infections the ceramides synthesised in this work are valuable tools to investigate the interaction of bacteria with human cells. Also an innovative method was established within this thesis to modify the surface of Nunc Covalink 96 Wellplates with alkyne presenting linkers followed by the conjugation of the azide modified lipids presented in this work via CuAAC. This method is intended to be used for screening of potential molecules for antibacterial surface modifications. In the future this kind of surface modifications are expected to prevent the biofilm formation in endotracheal tubes and prohibit the formation of ventilator-associated pneumonia. In Addition the lipid modified microtiter plates are also intended to be used to identify sphingolipid affine proteins from cell lysate. KW - Click-Chemie KW - Sphingolipide KW - Lipidmembran KW - Sphingolipid KW - bioorthogonal Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168091 ER -