TY - JOUR A1 - Arhondakis, Stilianos A1 - Frousios, Kimon A1 - Iliopoulos, Costas S. A1 - Pissis, Solon P. A1 - Tischler, German A1 - Kossida, Sophia T1 - Transcriptome map of mouse isochores JF - BMC Genomics N2 - Background: The availability of fully sequenced genomes and the implementation of transcriptome technologies have increased the studies investigating the expression profiles for a variety of tissues, conditions, and species. In this study, using RNA-seq data for three distinct tissues (brain, liver, and muscle), we investigate how base composition affects mammalian gene expression, an issue of prime practical and evolutionary interest. Results: We present the transcriptome map of the mouse isochores (DNA segments with a fairly homogeneous base composition) for the three different tissues and the effects of isochores' base composition on their expression activity. Our analyses also cover the relations between the genes' expression activity and their localization in the isochore families. Conclusions: This study is the first where next-generation sequencing data are used to associate the effects of both genomic and genic compositional properties to their corresponding expression activity. Our findings confirm previous results, and further support the existence of a relationship between isochores and gene expression. This relationship corroborates that isochores are primarily a product of evolutionary adaptation rather than a simple by-product of neutral evolutionary processes. KW - Biased gene conversion KW - Human genome KW - GC-Content KW - Mammalian genomes KW - Base composition KW - Expresses genes KW - Higher rates KW - RNA-SEQ KW - Evolution KW - Rodents Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142773 VL - 12 IS - 511 ER - TY - JOUR A1 - Schwender, Joerg A1 - Koenig, Christina A1 - Klapperstueck, Matthias A1 - Heinzel, Nicolas A1 - Munz, Eberhard A1 - Hebbelmann, Inga A1 - Hay, Jordan O. A1 - Denolf, Peter A1 - De Bodt, Stefanie A1 - Redestig, Henning A1 - Caestecker, Evelyne A1 - Jakob, Peter M. A1 - Borisjuk, Ljudmilla A1 - Rolletschek, Hardy T1 - Transcript abundance on its own cannot be used to infer fluxes in central metabolism JF - Frontiers in Plant Science N2 - An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism, some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. This limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments. KW - oilseeds KW - lipid biosynthesis KW - heterotrophic arabidopsis cells KW - central carbon metabolism KW - gene-expression data KW - targeted metabolite profiling KW - central metabolism KW - flux balance analysis KW - C-13-metabolic flux analysis KW - Brassica napus KW - RNA-SEQ KW - developing oilseeds KW - saccharomyces cerevisiae KW - maize kernels KW - embryo KW - seed Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114586 SN - 1664-462X N1 - Funding information: Bayer Crop Science NV; Deutsche Forschungsgemeinschaft [BO-1917/4-1]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DEACO298CH10886] VL - 5 ER - TY - JOUR A1 - Kern, Selina A1 - Agarwal, Shruti A1 - Huber, Kilian A1 - Gehring, Andre P. A1 - Strödke, Benjamin A1 - Wirth, Christine C. A1 - Brügl, Thomas A1 - Abodo, Liane Onambele A1 - Dandekar, Thomas A1 - Doerig, Christian A1 - Fischer, Rainer A1 - Tobin, Andrew B. A1 - Alam, Mahmood M. A1 - Bracher, Franz A1 - Pradel, Gabriele T1 - Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission JF - PLOS ONE N2 - Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs. KW - parasite KW - expression KW - mosquito KW - splicing factors KW - lactate dehydrogenase KW - xanthurenic acid KW - in-vitro KW - RNA-SEQ KW - identification KW - culture Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115405 SN - 1932-6203 VL - 9 IS - 9 ER -