TY - THES A1 - Rützel, Stefan T1 - Pulse-Sequence Approaches for Multidimensional Electronic Spectroscopy of Ultrafast Photochemistry T1 - Pulssequenzmethoden zur multidimensionalen elektronischen Spektroskopie ultraschneller Photochemie N2 - Observing chemical reactions in real time with femtosecond laser pulses has evolved into a very popular � field of research since it provides fascinating insights into the nature of photochemical transformations. Nevertheless, many photochemical reactions are still too complex for which reason the underlying mechanisms and all engaged species cannot be identi� fied thoroughly. In these cases, conventional time-resolved spectroscopy techniques reach their technical limits and advanced approaches are required to follow the conversion of reactants to their products including all reaction intermediates. The aim of this work was therefore the development of novel methods for ultrafast spectroscopy of photoreactive systems. Though the concept of coherent multidimensional spectroscopy has so far exclusively been used to explore photophysical phenomena, it also offers great potential for the study of photochemical processes due to its capability of extracting spectroscopic information along several frequency dimensions. This allows resolving the photochemical connectivity between various interconvertible molecular species with ultrafast temporal resolution on the basis of their absorption and emission properties as the spectral correlations are explicitly visualized in the detected spectra. The ring-open merocyanine form of the photochromic compound 6-nitro BIPS was studied in Chap. 4 of this work. Merocyanines and their associated ring-closed spiropyrans are promising candidates for future applications as, for instance, molecular electronics or optical data storage due to their unique property of being switchable between two stable con� gurations via light illumination. Transient absorption with sub-50 fs temporal resolution and broadband probing was employed to characterize the photodynamics of this system with variable excitation wavelengths. Using global data analysis, it could be inferred that two different merocyanine isomers with differing excited-state lifetimes exist in solution. These isomers differ in the cis/trans con� guration in the last bond of the methine bridge. The minority of isomers exist in the all-trans con� guration (TTT) while the isomer with a cis con� guration of the third dihedral angle (TTC) is dominant. A characteristic band, detected after long pump-probe delays, was attributed to the unidirectional cis->trans photoisomerization reaction of the TTC to the TTT form. The quantum yield of the reaction was estimated to be (18� +-4) %. In addition, pronounced coherent vibrational wave-packet oscillations were observed and it was concluded that these signatures are related to the product formation. Coherent two-dimensional electronic spectroscopy was successfully implemented using a partially collinear pump-probe beam geometry in combination with a femtosecond pulse shaper. The use of a whitelight probe continuum enabled us to probe contributions far-off the diagonal over the complete visible range. By properly adjusting the relative phase between the � first two laser pulses with the pulse shaper, the principle of phase-cycling was explained and it was demonstrated that the measurement can be carried out in the so-called "rotating frame" in which the observed frequencies detected during the coherence time are shifted to lower values. It was shown that these concepts allow the extraction of the desired background-free photon echo while the amount of necessary data points is highly reduced. In order to put our proposal of multidimensional spectroscopy of photoreactive systems into practice, third-order two- and three-dimensional spectroscopy was then employed for an in-depth analysis of a photoreactive process, in which the photoisomerization of 6-nitro BIPS served as a model system. The measured two-dimensional spectra revealed the cis->trans photoisomerization after long population times. By collecting a large data set of two-dimensional spectra for short population times and by applying a Fourier transform along the population time axis, the third-order three-dimensional spectrum was obtained. The novelty of this approach compared to coherent two-dimensional spectroscopy is the introduction of a third axis associated with the vibrational frequencies of the molecular system. In this way, the formation of the reaction product was evidenced and it was shown that the product is formed in its fi� rst excited singlet state within 200 fs after excitation. This method hence visualizes the photochemical connections between different reactive molecular species in an intuitive manner and further exposes the normal modes connecting reactant and product. Such conclusions cannot be drawn with conventional third-order techniques such as transient absorption since they are not capable of capturing the full third-order response, but only a subset of it. The reaction mechanism and the role of the observed vibrational modes were uncovered by comparing the experimental data with the results of high-level quantum-chemical calculations performed by our collaborators in the group of Prof. B. Engels from the theoretical chemistry department at the University of Würzburg. Specifi� c calculated molecular normal modes could be assigned to the experimentally observed vibrational frequencies and potential energy surfaces of the electronic ground state and of the � first excited state were computed. The technique implemented in this chapter is general and is applicable for the time-resolved analysis of a wide range of chemical reaction networks. In the fi� rst part of Chap. 5, coherent two-dimensional spectroscopy was employed to track the reaction paths of the related 6,8-dinitro BIPS after S1 excitation. Several differences to the photochemical properties of 6-nitro BIPS were found. From the 2D spectra, the cis-trans isomerization between the two merocyanine isomers could be excluded as a major reaction path for this compound. To explore the dynamics after reexcitation to higher-lying electronic states, pump-repump-probe spectroscopy was implemented and the formation of a new species, a radical cation, was observed. To identify the precursor isomer, triggered-exchange two-dimensional spectroscopy, a � fifth-order technique previously only available in the infrared regime for vibrational transitions, was implemented for the fi� rst time for electronic excitations in the visible. This approach combines the properties of the pump-repump-probe technique with the potential of coherent two-dimensional spectroscopy. It correlates the absorption frequency of a reactive molecular species with the emission signatures of the product formed from this species after an additional absorption of a photon. Using this method, it was unambiguously proven that only the TTC isomer reacts to the radical cation thus forming the precursor species of the reaction. Electronic triggered-exchange two-dimensional spectroscopy is hence another improved technology for time-resolved spectroscopy with applications in the study of multistep photoreactions and higher-lying electronic states. While in the two preceding chapters third- and � fifth-order experiments were discussed that neglect the vectorial character of light-matter interactions, Chap. 6 focused on a novel theoretical formalism enabling the description of light fi� elds optimized for polarization-sensitive higher-order nonlinearities. This formalism is based on the von Neumann time-frequency representation of shaped femtosecond laser pulses which permits the defi� nition of multipulse sequences on a discrete time-frequency lattice. Hence, not only the temporal spacing between subpulses is adjustable, but also the center frequencies may be adapted such that they � fit the experimental requirements. This method was generalized to the description of pulse sequences with time-varying polarization states. It was shown that by using this description, the polarization ellipticity, orientation angle, relative phase and intensity, and the time-frequency location of each subpulse is explicitly controllable. The accuracy of the transformations from Fourier space to von Neumann domain and vice versa was demonstrated. Moreover, a strict accordance between the von Neumann polarization parameters with the conventional parameters in time domain was found for well separated subpulses. A potential future application of this approach is polarization-sensitive multidimensional spectroscopy in which hidden cross peaks may be isolated by de� fining the pulses in the von Neumann picture with suitable polarization sequences. This method could also be used in quantum control experiments in which the polarization of the light fi� eld is used as a major control knob. This thesis summarizes our efforts to open the � field of femtochemistry to the concept of coherent multidimensional electronic spectroscopy. Making use of femtosecond pulse shaping, sub-50 fs temporal resolution, broadband spectral probing, higher-order nonlinearities, and new types of laser pulse descriptions, the presented methods might stimulate further future advancements in this research area. N2 - Mit Hilfe von Femtosekundenlaserpulsen lassen sich chemische Reaktionen in Echtzeit beobachten, was sich zu einem äußerst populären Forschungsgebiet entwickelt hat, welches faszinierende neue Einblicke in die Natur von photochemischen Transformationen ermöglicht. Nichtdestotrotz sind nach wie vor viele photochemische Reaktionen zu komplex, um die zugrunde liegenden Mechanismen entschlüsseln und alle beteiligten Spezies einwandfrei identifizieren zu können. In diesen Fällen stoßen die konventionellen zeitaufgelösten Techniken an ihre Grenzen, sodass verbesserte Ansätze notwendig sind um der Konversion der Edukte zu den Produkten mit allen reaktiven Zwischenprodukten in Gänze folgen zu können. Das Ziel der vorliegenden Arbeit war deshalb die Entwicklung neuartiger Methoden in der Ultrakurzzeitspektroskopie photoreaktiver Systeme. Obwohl das Konzept der kohärenten multidimensionalen Spektroskopie bisher ausschließlich zur Erforschung photophysikalischer Phänomene eigesetzt wurde, birgt es angesichts seiner Fähigkeit, spektroskopische Informationen entlang mehrerer Frequenzachsen zu extrahieren, auch großes Potenzial für die Untersuchung photochemischer Prozesse. Diese Eigenschaft ermöglicht die Auflösung des photochemischen Austauschs zwischen untereinander verknüpften molekularen Spezies durch ihre Emissions- und Absorptionseigenschaften, da die spektralen Korrelationen in den gemessenen Spektren unmittelbar visualisiert werden. In Kap. 4 dieser Arbeit wurde die ringgeöffnete Merocyaninform der photochromen Verbindung 6-nitro BIPS untersucht. Aufgrund ihrer besonderen Eigenschaft, durch Lichteinstrahlung zwischen zwei stabilen Konfigurationen umschalten zu können, sind Merocyanine und ihre assoziierten ringgeschlossenen Spiropyrane vielversprechende Kandidaten für zukünftige Anwendungen auf dem Gebiet der molekularen Elektronik und der optischen Datenspeicherung. Die Photodynamiken dieses Systems wurden mit Hilfe der transienten Absorptionstechnik mit einer zeitlichen Auflösung von unter 50 fs und spektral breitbandiger Abfrage charakterisiert. Die globale Datenanalyse ergab hierbei, dass in Lösung zwei unterschiedliche Merocyaninisomere mit unterschiedlichen Lebensdauern der angeregten Zustände vorliegen. Diese Isomere unterscheiden sich in der cis/trans-Anordnung der letzten Bindung der Methinbrücke. Hierbei stellt das Isomer mit trans-trans-trans Konfiguration (TTT) die Minderheit dar, während die Mehrzahl der Moleküle eine cis-Stellung im dritten Diederwinkel aufweist (TTC). Eine charakteristische spektrale Bande, welche nach langen Pump-Probe-Verzögerungszeiten detektiert wurde, konnte der einfachgerichteten cis->trans Photoisomerisierungsreaktion der TTC Form zum TTT zugeordnet werden. Die Quantenausbeute dieser Reaktion wurde auf (18+-4) % bestimmt. Darüber hinaus wurden stark ausgeprägte Oszillationen eines kohärenten Vibrationswellenpakets beobachtet wobei geschlussfolgert wurde, dass diese Signaturen mit der Entstehung des Reaktionsprodukts zusammenhängen. Die Technik der kohärenten zweidimensionalen elektronischen Spektroskopie wurde auf Basis einer partiell kollinearen Pump-Probe Strahlgeometrie und in Kombination mit einem Femtosekundenpulsformer erfolgreich implementiert. Dabei ermöglichte die Verwendung eines Weißlichtkontinuums als Abfragepuls auch die Erfassung von Beiträgen, welche weit entfernt von der Diagonalen lokalisiert sind und sich über den gesamten sichtbaren Spektralbereich erstrecken. Durch eine geeignete Anpassung der relativen Phase zwischen den ersten beiden Laserpulsen mit Hilfe des Pulsformers konnte das Prinzip des „phase cyclings" umgesetzt werden. Darüber hinaus wurde demonstriert, dass die Messung im sogenannten „rotating frame" durchgeführt werden kann wobei die Oszillationsfrequenzen, welche während der Kohärenzzeit detektiert werden, zu niedrigeren Werten verschoben werden. Es wurde gezeigt, dass mit diesen Konzepten das erwünschte hintergrundfreie Photonenecho extrahiert und darüber hinaus das Signal mit einer deutlich niedrigeren Anzahl an notwendigen Datenpunkten erfasst werden kann. Um unsere Idee der multidimensionalen Spektroskopie an photoreaktiven Systemen in die Praxis umzusetzen, wurde anschließend die zwei- und dreidimensionale Spektroskopie dritter Ordnung zur eingehenden Untersuchung eines photoreaktiven Prozesses angewandt, wobei die Photoisomerisierungsreaktion von 6-nitro BIPS als Modellreaktion herangezogen wurde. Die gemessenen zweidimensionalen Spektren offenbarten unmittelbar die cis->trans Photoisomerisierung nach längeren Populationszeiten. Das dreidimensionale Spektrum dritter Ordnung konnte generiert werden, indem ein großer Datensatz an zweidimensionalen Spektren für kleine Populationszeiten aufgenommen und anschließend die Fouriertransformation entlang der Populationszeitachse bestimmt wurde. Die Neuartigkeit dieses Verfahrens besteht darin, dass eine dritte Achse eingeführt wird, welche mit der Schwingungsfrequenz des molekularen Systems assoziiert ist. Dadurch konnte die Entstehung des Reaktionsprodukts eindeutig belegt werden. Außerdem konnte so gezeigt werden, dass es innerhalb von 200 fs im ersten angeregten Singulettzustand erzeugt wird. Somit vermag diese Methode einerseits die photochemischen Beziehungen zwischen unterschiedlichen reaktiven Spezies auf intuitive Art und Weise zu visualisieren und andererseits ermöglicht sie die Enthüllung derjenigen Normalschwingungen, welche Edukt und Produkt miteinander verbinden. Derartige Schlussfolgerungen können nicht mit konventionellen Techniken dritter Ordnung, wie beispielsweise der transienten Absorption, gezogen werden, da sie nicht in der Lage sind die vollständige Antwortfunktion dritter Ordnung, sondern lediglich ein Teil davon, zu erfassen. Durch Abgleich der experimentellen Daten mit den Resultaten von umfassenden quantenchemischen Berechnungen unserer Kollaborationspartner der Gruppe von Prof. B. Engels aus dem Fachbereich der theoretischen Chemie der Universität Würzburg, konnten der Reaktionsmechanismus sowie die Rolle der beobachteten Vibrationsmoden entschlüsselt werden. Dabei konnten spezifische berechnete Normalschwingungen den experimentell beobachteten Frequenzen zugeordnet und die Potentialhyperflächen des elektronischen Grundzustands und des ersten angeregten Zustands bestimmt werden. Die Technik, welche in diesem Kapitel eingesetzt wurde, ist universell und zur zeitaufgelösten Untersuchung einer großen Zahl an chemischen Reaktionsnetzwerken anwendbar. Im ersten Teil von Kap. 5 wurden die Reaktionspfade der sehr ähnlichen Verbindung 6,8-dinitro BIPS nach S1-Anregung mittels kohärenter zweidimensionaler Spektroskopie untersucht. Dabei zeigten sich zahlreiche Unterschiede zu den photochemischen Eigenschaften von 6-nitro BIPS. Auf Basis der 2D Spektren konnte für diese Verbindung die cis-trans Isomerisierung zwischen den beiden Merocyaninisomeren als bedeutender Reaktionspfad ausgeschlossen werden. Zur Erforschung der Dynamik nach der Wiederanregung in höher angeregte elektronische Zustände, wurde die Anrege-Wiederanrege-Abfrage Spektroskopie implementiert, wobei die Bildung einer neuen Spezies – des Radikalkations – beobachtet wurde. Zur Identifikation des Vorläuferisomers wurde die Technik der zweidimensionalen Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D", TE2D) erstmals mit elektronischen Anregungen im Sichtbaren realisiert. Bisher stand diese Technik ausschließlich im infraroten Spektralbereich für Vibrationsübergänge zur Verfügung. Diese Methode vereinigt die Eigenschaften der Anrege-Wiederanrege-Abfrage Technik mit dem Leistungsvermögen der kohärenten zweidimensionalen Spektroskopie. Sie stellt die Korrelation zwischen der Absorptionsfrequenz einer reaktiven molekularen Spezies mit der Emissionssignatur eines Produkts dar, welches von der ersten Spezies durch die zusätzliche Absorption eines weiteren Photons erzeugt wurde. Durch die Zuhilfenahme dieser Methode konnte eindeutig gezeigt werden, dass nur das TTC Isomer zum Radikalkation reagiert, weshalb es somit als Vorläuferisomer der Reaktion aufgefasst werde kann. Die elektronische TE2D Spektroskopie stellt somit eine weitere verbesserte Technologie in der zeitaufgelösten Spektroskopie mit möglichen Anwendungen bei der Untersuchung von mehrstufigen Photoreaktionen und höher angeregten elektronischen Zuständen dar. Während in den beiden vorhergehenden Kapiteln Experimente dritter und fünfter Ordnung unter Vernachlässigung des vektoriellen Charakters von Licht-Materie-Wechselwirkungen diskutiert wurden, befasste sich Kap. 6 mit einem neuartigen theoretischen Formalismus, welcher die Beschreibung von Lichtfeldern ermöglicht, welche für polarisationssensitive Nichtlinearitäten höherer Ordnung optimiert sind. Dieser Formalismus basiert auf der von Neumann Zeit-Frequenz Darstellung von geformten Laserpulsen, welche es gestattet, Mehrfachpulssequenzen auf einem diskreten Zeit-Frequenz Gitter zu definieren. Somit kann nicht nur der zeitliche Abstand zwischen den Teilpulsen eingestellt, sondern auch die Zentralfrequenz derart angepasst werden, dass sie den experimentellen Ansprüchen gerecht wird. Diese Methode wurde für die Beschreibung von Pulsformen mit einem zeitabhängigen Polarisationsprofil verallgemeinert. Es wurde gezeigt, dass mit Hilfe dieser Darstellung die Elliptizität, der Orientierungswinkel, die relative Phase und Intensität der Polarisationsellipse, sowie die Zeit-Frequenz Position jedes einzelnen Teilpulses explizit kontrolliert werden können. Die Genauigkeit der Transformationen vom Fourier- in den von Neumann Raum und wieder zurück wurde demonstriert. Überdies wurde festgestellt, dass im Falle von deutlich getrennten Teilpulsen die von Neumann Parameter exakt mit den konventionellen Polarisationsparametern im Zeitraum übereinstimmen. Eine der möglichen zukünftigen Anwendungen dieser Methode ist die polarisationssensitive multidimensionale Spektroskopie, mit deren Hilfe verborgene Cross Peaks durch die Definition der Pulssequenz in der von Neumann Darstellung unter Verwendung geeigneter Polarisationsabfolgen isoliert werden können. Dieser Formalismus könnte außerdem bei Quantenkontrollexperimenten Anwendung finden, bei denen die Polarisation des Lichtfelds der entscheidende Kontrollparameter darstellt. Diese Dissertation fasst unsere Bemühungen zusammen, das Feld der Femtochemie auch für das Konzept der multidimensionalen Spektroskopie zu eröffnen. Durch die Verwendung der Femtosekundenpulsformung, einer zeitlichen Auflösung von unter 50 fs, spektral breitbandiger Abfrage, Nichtlinearitäten höherer Ordnung sowie das Ausnutzen neuartiger Beschreibungen von Laserpulsen könnten die präsentierten Methoden Anreize für weitere zukünftige Entwicklungen auf diesem Forschungsgebiet schaffen. KW - Ultrakurzzeitspektroskopie KW - femtosecond spectroscopy KW - multidimensional spectroscopy KW - ultrafast photochemistry KW - quantum control KW - Femtosekundenspektroskopie KW - Multidimensionale Spektroskopie KW - Ultraschnelle Photochemie KW - Quantenkontrolle Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-98993 ER - TY - THES A1 - Kaiser, Conrad T1 - Donor-Bridge-Acceptor Systems with Varying Bridge Units for the Investigation of Intramolecular and Intermolecular Electron Transfer Processes T1 - Donor-Brücke-Akzeptor Systeme mit variierenden Brückeneinheiten zur Untersuchung von intramolekularen und intermolekularen Elektronentransferprozessen N2 - Within this study, the influence of the energetics of the bridge unit on electron transfer (ET) in an electrode-bridge-donor system was investigated in a monolayer environment. This was realized by specifically designing molecules containing ferrocene carboxylic ester donors and hydroquinone derivatives as bridge units and by using a gold electrode as acceptor. The energetics of the hydroquinone derivatives was adjusted by synthetically varying its substituents with the intention of changing the ET speed and mechanisms. Thereby the choice of the substituents was based on the literature known half-wave potentials of similar solvated hydroquinone derivatives and successively confirming them by conducting cyclic voltammetry on the actual bridge units synthesized. Then, a synthetic pathway, which accommodated the limited stability of the integrated terminal ferrocene carbon acid ester, was developed and successfully employed. This was followed by developing a procedure for preparing very dense and highly ordered monolayers from the target molecules on self-made gold microelectrodes. For the electrochemical investigations, several electrolyte solutions were tested until one, which ensured low susceptibility of the characterization setup towards slight changes of the electrode arrangement and measurement parameters while ensuring sufficient stability of the monolayers, was found. Furthermore, a new, commercially available potentiostat was established for the impedance measurements, which reduced the stress on the monolayers during the electrochemical characterizations in comparison to the equipment used in many former studies. Regarding the determination of the ET rates, the data analysis protocol for the impedance measurements developed by Creager et al. was slightly adapted to allow analysis of the investigated monolayers despite their non-ideal behavior. In addition, the influence of changes to the electrical parameters of the impedance scans was investigated to minimize the error in the acquired data. The electrochemical analysis of the monolayers by conducting cyclic voltammetry on MA, MB and MC prepared from A, B and C confirmed the accomplishment of near ideal surface coverage and exceptionally high order. The surface coverages of MB and MC were, probably due to the space filled by the substituents on their bridge units, slightly lower than those of MA. Furthermore, the shape of the redox waves of the ferrocene carboxylic acid redox center in the voltammogram of MA showed a broadening and a shift towards higher potentials, which was assigned to electrostatic interference of oxidized terminal redox centers due to the especially dense packing. However, in the voltammogram of MB, no sharp redox waves of the bridge units, as predicted by the analysis of preliminary monolayers of the same type with low surface coverage, were present. This was attributed to the different and varying microenvironment of the bridge units deeply embedded within high-density monolayers. In detail, the different degree of shielding of each individual bridge unit from counter ions and solvent molecules probably resulted in the half wave potential being shifted to varying higher potentials, thus preventing the formation of sharp redox waves. In addition, electrostatic effects of oxidized bridge units could have enhanced this effect. This leads to the conclusion that the half-wave potentials of fully solvated bridge units determined by the cyclic voltammetry are not suited to predict the energetics of the oxidized bridge states embedded within the prepared high density monolayers. Finally, the monolayers were successfully analyzed by impedance spectroscopy, which showed that the ET rate of MA is slightly higher than that of MB, and both are higher than that of MC. All of the values were, according to literature, in the expected region considering the length and degree of conjugation of the backbone. However, this picture is relativized when considering the targeted energetic alignment of the bridge units. According to the predicted very small energy gap between the oxidized states of the donor and the bridge unit in MB, a domination of the hopping mechanism should have led to a several orders of magnitude higher ET rate than in MA and MC. That this was not the case was attributed to the underestimation of the energy of the oxidized bridge states by utilizing cyclic voltammetry of the fully solvated bridge units (see above). According to the small differences of the ET rates the superexchange process was assumed to be the dominating mechanism not only in MA and MC but also in MB. However, even when shifted, the predicted energetic order of the oxidized bridge states should have led to a moderately decreasing ET rate from MB over MA to MC. The reason for the actual ET rate in MA being slightly higher than in MB might be found in the electrostatic interference of the terminal redox centers in MA (see above). In conclusion, the targeted model systems were prepared and the ET rates were successfully determined. However, the problems concerning the relative energetic positioning of the involved states within the dense monolayers prevented the specific alteration of the speed and mechanism of the ET. The reason for this can be probably found in the high density and order of the monolayers prepared within this work, which hamper the intrusion of the components of the electrolyte solutions. This various degree of stabilization for the individual bridge units by counter ions and solvent molecules leads to the energy of the oxidized bridge states being splitted and shifted towards higher potentials with respect to fully solvated bridge units. This effect might be further enhanced by electrostatics of neighboring already oxidized bridge states. All this makes the predetermination of the energetics of the embedded bridge units extremely difficult. On one hand, this behavior can be considered an obstacle and could probably be circumvented by designing molecules with bulky anchor groups and rigid molecular backbones, which would ensure perpendicular arrangement to the surface and full exposure of the bridge and terminal redox centers to the solvent molecules and counter ions. On the other hand, monolayers which completely embed integral redox centers might open up the opportunity to study the effects of microenvironments similar to those in solid state materials. Regarding mixed valence compounds, the present study focuses on bistriarylamine radical cation F∙+, which contains the [3.3]paracyclophane bridge unit. The results were compared to the, except for the bridge units, identical literature known compounds G∙+ and N∙+ with [2.2]paracyclophane and p-xylene bridges respectively. This led to the conclusion that slightly different bridge units can induce substantial changes to the internal reorganization energy. This is especially noteworthy since it is usually believed that structural adaption limited to the redox centers taking part in the charge transfer dominates the internal reorganization energy. Furthermore, the application of the two-state Mulliken-Hush approach shows that compounds F∙+ and G∙+ have near identical couplings and similar thermal barriers. Confirmation of the latter finding as well as near identical thermal electron transfer rates for both compounds were provided via a cooperation project by Grampp et al. in which these values were directly extracted from temperature dependent electron paramagnetic resonance measurements. These results are quite unexpected since the “through-space” distances of the stacked pi-systems in the paracyclophane bridges differ significantly. They are well within the sum of the van der Waals radii in G∙+ and barely within them in compound F∙+. In addition, these findings weaken the common assumption of the ethylene bridges in G∙+ substantially adding to the electronic coupling, since then, in F∙+, due to its propylene linkers, the coupling should be substantially reduced. Finally, relying on the fact that the electronic couplings are only three times higher and the thermal electron transfer rates are only one order of magnitude higher for N∙+ than for compounds F∙+ and G∙+ shows that intermolecular electron transfer in solid state materials can remain efficient, if the interacting pi-systems stay within the sum of van der Waals radii of their carbons. Concerning the donor-acceptor dyads, the current investigation centers on triarylamine-cyclophane-naphtalene diimide (TAA-CP-NDI) compounds which display almost complete photoinduced charge separation. Furthermore, their singlet charge separated states show lifetimes of hundreds of nanoseconds, which is rarely found in such simple dyads. In the present case they can be attributed to the particular amount of electronic coupling V (on the order of 100 cm^–1), which is brought about by incorporation of the smallest model systems for pi-stacks, the CPs, together with the nodes on the NDI lowest unoccupied molecular orbital, which electronically decouples the central NDI from its nitrogen substituents. In agreement with studies of [2.2]- and [3.3]paracyclophane bridged mixed valence compounds (see above), the cycolphane bridged dyads show very similar electronic coupling when dealing with ground state processes like charge recombination. However, when investigating excited state processes, like charge separation in the TAA-CP-NDI dyads, one has to bear in mind that the CP orbitals are involved in the formation of intermediate states that likely possess charge transfer character. In this case, the [2.2]paracyclophane bridge obviously induces a stronger coupling than the [3.3]paracyclophane. Another interesting property of the dyads studied here is the substantial population of the triplet charge separated (CS) state of ca. one third regarding both CS states, which is brought about by singlet-triplet interconversion from the singlet CS state. Thus, the triplet CS state with a lifetime of several microseconds acts as a kind of buffer for the CS state before recombining to the ground state and, thus, leads to distinctly prolonged overall lifetimes of the charge separated states. Thus it can be concluded that the intersystem crossing and charge recombination (CR) processes of the CS states are governed by a delicate balance of a large electronic coupling V and a large exchange interaction 2J (both with regard to systems containing a through-space pathway). The latter appears to be induced by second order interaction with a local triplet state lying close in energy to the CS state. This balance results in slow CR- and singlet-triplet- interconversion rates, which differ only by one order of magnitude. Compared to the many NDI containing dyads studied so far, these features of the dyads studied here are, to the best of our knowledge, unique. Especially the combination of high quantum yield of charge separation, long lifetimes and high energy of the charge separated state make the investigated systems interesting for practical applications. Furthermore, the presented unraveling of the underlying mechanisms is of substantial value for the future design of dyads for practical applications regarding the implementation and adjustment of these favorable properties. N2 - Im ersten Teil dieser Arbeit wurde der Einfluss der Veränderung der Energetik von Brückeneinheiten auf Elektronentransferprozesse in Donor-Brücke-Akzeptor Modellsystemen in einer Monolagenumgebung untersucht. Dies wurde mittels speziell dafür entworfener Moleküle mit Ferrocencarbonsäureester Donoren und Hydrochinonderivaten als Brückeneinheiten und durch Verwendung einer Goldelektrode als Akzeptor verwirklicht. Die Energetik der Hydrochinonderivate wurde durch synthetische Variation der Substituenten mit der Absicht angepasst, die Geschwindigkeiten und die Mechanismen der Elektronentransferprozesse zu verändern. Dabei basierte die Wahl der Substituenten auf literaturbekannten Halbstufenpotentialen von ähnlichen solvatisierten Hydrochinonderivaten und anschließender Bestimmung der Halbstufen-potentiale der im Rahmen dieser Arbeit synthetisierten solvatisierten Vorläufer der Brückeneinheiten. Dann wurde unter Berücksichtigung der eingeschränkten Stabilität des Ferrocencarbonsäureesters ein Syntheseplan entwickelt und erfolgreich angewendet. Anschließend wurde eine Vorgehensweise zur Herstellung von sehr dichten und hoch geordneten Monolagen aus den Zielmolekülen auf selbst hergestellten Mikroelektroden aus Gold erarbeitet. Ferner wurden verschiedene Elektrolyte getestet, um eine niedrige Empfindlichkeit des Messaufbaus in Bezug auf kleine Änderungen der Elektrodenanordnung und der Messparameter zu gewährleisten und gleichzeitig eine ausreichende Stabilität der Monolagen sicherzustellen. Des Weiteren wurde ein neuer, kommerziell erhältlicher Potentiostat für die Untersuchungen etabliert, der die Belastung für die Monolagen im Vergleich zu den Messapparaturen in vielen bisherigen Studien reduzierte. Bezüglich der Bestimmung der Elektronentransferraten wurde das von Creager et al. entwickelte Protokoll geringfügig erweitert, um die Monolagen trotz ihres nicht-idealen Verhaltens untersuchen zu können. Zusätzlich wurde der Einfluss der elektrischen Parameter der Impedanzmessungen untersucht, um den Fehler in den erfassten Daten zu minimieren. Die elektrochemische Analyse der Monolagen mittels Cyclovoltammetrie bestätigte das Erreichen einer fast idealen Oberflächendeckung und einer außergewöhnlich hohen Ordnung. Die Oberflächendeckung von MB und MC war, wahrscheinlich aufgrund der raumfüllenden Substituenten der Brückeneinheiten, geringfügig niedriger als die von MA. Ferner zeigen die Redoxwellen im Cyclovoltammogramm von MA eine Verbreiterung und eine Verschiebung zu höheren Potentialen, was auf die elektrostatischen Wechselwirkungen der terminalen Redoxzentren als Folge der besonders dichten Packung zurückgeführt wurde. Bei der cyclovoltammetrischen Untersuchung von MB zeigten sich im Gegensatz zu Vorversuchen an Monolagen desselben Typs mit niedriger Oberflächenbelegung jedoch keine der aufgrund der vorhergesagten Energetik erwarteten, scharfen Redoxwellen der Brückeneinheiten. Dies lässt sich wahrscheinlich auf die unterschiedlichen Umgebungen der tief in die sehr dichten Monolagen eingebetteten Brückeneinheiten zurückführen. Im Detail verursachte vermutlich die unterschiedliche Abschirmung gegenüber den einzelnen Gegenionen und Solvensmolekülen eine Verschiebung der oxidierten Brückenzustände zu verschiedenen höheren Potentialen. Das führt zu der Schlussfolgerung, dass die mittels Cyclovoltammetrie bestimmten Halbstufenpotentiale von solvatisierten Brückeneinheiten nicht geeignet sind, um die Energetik der oxidierten Brückenzustände im Innern von sehr dichten Monolagen vorherzusagen. Bei der Analyse der Monolagen mittels Impedanzspektroskopie zeigte sich, dass die Elektronentransferraten von MA geringfügig höher als die von MB und beide höher als die von MC sind. Im Einklang mit der Literatur befanden sich alle Werte unter Berücksichtigung der Länge und des Konjugationsgrads des Molekülrückrads in der erwarteten Region. Jedoch relativiert sich dieses Bild bei Berücksichtigung der beabsichtigten energetischen Anpassung der Brückeneinheiten. Aufgrund der vermeintlich nur geringfügig höheren Energie der Zustände der oxidierten Brücke und des oxidierten Donors in MB hätte ein Dominieren des „hopping“ Mechanismus zu einer um einige Größenordnungen höheren Elektronentransferrate als in MA und MC führen sollen. Dass dies nicht der Fall war, kann wahrscheinlich auf die Unterschätzung der oxidierten Brückenzustände durch die Bestimmung mittels Cyclovoltammetrie an den solvatisierten Brückeneinheiten zurückgeführt werden (siehe oben). Insgesamt kann aufgrund der eher geringen Unterschiede der Elektronentransferraten für MA, MB und MC von einem dominierenden „superexchange“ Mechanismus ausgegangen werden. Allerdings hätte, sogar bei einer Verschiebung der Potentiale, die vorhergesagte energetische Anordnung der oxidierten Brückenzustände zu einer sich geringfügig verringernden Elektronentransferrate von MB über MA zu MC führen müssen. Der Grund dafür, dass die tatsächliche Elektronentransferrate in MA geringfügig höher als in MB ist, liegt möglicherweise an der dichteren Packung und damit stärkeren elektrostatischen Interferenz der terminalen Redoxzentren in MA (siehe oben). Schließlich wurden also die anvisierten Modellsysteme hergestellt und deren Elektronentransferraten erfolgreich bestimmt. Die Probleme mit der relativen energetischen Anordnung der Zustände der Molekülteile in den dichten Monolagen verhinderten allerdings die gezielte Veränderung der Geschwindigkeit und des Mechanismus des Elektronentransfers. Dies ist wahrscheinlich im Wesentlichen auf die hohe Dichte und Ordnung der im Rahmen dieser Arbeit präparierten Monolagen zurückzuführen, die ein Eindringen der Elektrolytbestandteile in die Monolagen hemmen. Dies führt zu unterschiedlichen Abständen der einzelnen Brückeneinheiten zu den Elektrolytbestandteilen und damit, aufgrund unterschiedlicher Abschwächung der Stabilisierung, zu einer Aufspaltung und Verschiebung des oxidierten Brückenzustandes zu höheren Potentialen. Des Weiteren könnte dieser Effekt durch elektrostatische Kräfte von benachbarten, bereits oxidierten Brückeneinheiten verstärkt werden. All dies macht die Vorhersage der Energetik von eingebetteten Brückeneinheiten extrem schwer. Auf der einen Seite kann dieses Verhalten als Hindernis angesehen werden, dass jedoch durch die Entwicklung von Molekülen mit sperrigen Ankergruppen und starren Molekülrückrädern, die eine Anordnung senkrecht zur Oberfläche und damit eine Exposition gegenüber den Elektrolytbestandteilen ermöglichen, vermieden werden könnte. Auf der anderen Seite könnten gerade solch dichte Monolagen eine Möglichkeit zur Erforschung von Einflüssen einer Umgebung ähnlich derer in Festkörpermaterialien bieten. Im zweiten Teil dieser Arbeit wurde der Einfluss verschieden großer Paracyclophane als Brückeneinheiten auf Elektronentransferprozesse in Donor-Brücke-Akzeptor Modellsystemen in Lösung untersucht. In Bezug auf die gemischt valenten Verbindungen, konzentrierte sich die Studie auf Bistriarylaminradicalkation F∙+, welches über eine [3.3]Paracyclophan Brückeneinheit verfügt. Die Ergebnisse wurden mit den bis auf die Brückeneinheiten identischen literaturbekannten Verbindungen G∙+ und N∙+ mit [2.2]Paracyclophan bzw. p-Xylen Brücken verglichen. Dies führte zu der Schlussfolgerung, dass bereits sehr kleine Veränderungen der Brückeneinheiten bedeutende Änderungen der internen Reorganisationsenergie bewirken können. Das ist besonders bemerkenswert, da allgemein angenommen wird, dass fast ausschließlich die strukturelle Anpassung der Redoxzentren die Größe der internen Reoranisationsenergie bestimmt. Ferner zeigte die Anwendung des Mulliken-Hush-Ansatzes für zwei Zustände, dass Verbindung F∙+ eine nahezu gleich große Kopplung und eine ähnliche thermische Barriere wie G∙+ aufweist. Dies wurde im Rahmen eines Kooperationsprojekts von Grampp et al. bestätigt, bei dem entsprechende Werte sowie fast identische thermische Elektrontransferraten direkt aus temperaturabhängigen Elektronenspinresonanzmessungen extrahiert wurden. Das ist bemerkenswert, da sich die Entfernungen der gestapelten pi-Systeme in den Paracyclophanbrückeneinheiten stark unterscheiden. Sie sind deutlich innerhalb der Van der Waals Radien der integralen Kohlenstoffe in G∙+ und nur gerade noch innerhalb in Verbindung F∙+. Ferner schwächen diese Erkenntnisse die allgemeine Annahme, dass die Ethylenbrücken in G∙+ stark zur elektronischen Kopplung beitragen, da unter dieser Annahme in F∙+, wegen der Propylenbrücken, die Kopplung deutlich geringer ausfallen müsste. Dass die Kopplung nur dreimal höher und die thermischen Elektrontransferraten nur eine Größenordnung höher für N∙+ sind als für F∙+ und G∙+, zeigt schließlich, dass intermolekularer Elektronentransfer in Festkörpermaterialien sehr effizient sein kann. Dies gilt insbesondere, wenn sich van der Waals Radien der Kohlenstoffe der interagierenden gestapelten pi-Systeme überlappen. Hinsichtlich der Donor-Akzeptor Dyaden, liegt der Fokus auf Triarylamin-Cyclophan-Naphthalin Diimide (TAA-CP-NDI) Verbindungen, die nahezu vollständige photoinduzierte Ladungstrennung zeigen. Des Weiteren zeigen deren ladungsgetrennte Zustände Lebenszeiten von Hunderten von Nanosekunden, was selten für solch einfache Dyaden ist. Im aktuellen Fall kann dies auf die Höhe der elektronischen Kopplung V (ca. 100 cm^–1) zurückgeführt werden. Diese kann vor allem auf die Integration der kleinsten Modellsysteme für pi-stacks, die CPs und die Knoten im niedrigsten unbesetzten Molekülorbital des NDI, die das Zentrum des NDI von seinen Stickstoffsubstituenten entkoppelt zurückgeführt werden. In Übereinstimmung mit den Studien über [2.2]- und [3.3]Paracyclophanbrücken beinhaltende, gemischt valente Verbindungen (siehe oben), weisen die hier untersuchten paracyclophanverbrückten Dyaden eine sehr ähnliche Kopplung auf, wenn es sich um Grundzustandsprozesse wie Ladungsrekombination handelt. Wenn allerdings Prozesse im angeregten Zustand, wie die Ladungstrennung in den TAA-CP-NDI Dyaden, betrachtet werden, muss berücksichtigt werden, dass die CP Orbitale an der Entstehung von Zwischenzuständen beteiligt sind, die wahrscheinlich Ladungstransfercharakter besitzen. In diesem Fall, ermöglicht das [2.2]Paracyclophan offensichtlich eine stärkere Kopplung als das [3.3]Paracyclophan. Eine weitere interessante Eigenschaft der hier untersuchten Dyaden ist die hohe Population des ladungsgetrennten Triplettzustands von etwa einem Drittel bezogen auf beide ladungsgetrennten Zustände, die durch die Singulett-Triplett-Umwandlung vom landungsgetrennten Singulettzustand erfolgt. Folglich agiert der Triplettzustand mit einer Lebenszeit von einigen Mikrosekunden als eine Art Puffer für den ladungsgetrennten Zustand, bevor eine Rekombination in den Grundzustand stattfindet und daher zu einer stark verlängerten Lebenszeit der gesamten ladungsgetrennten Zustände führt. Daher kann geschlussfolgert werden, dass das intersystem crossing und die Ladungsrekombinationsprozesse der ladungsgetrennten Zustände durch ein empfindliches Gleichgewicht von großer elektronischer Kopplung und großer Austauschwechselwirkung 2J (beides in Bezug auf Systeme mit einem Wechselwirkungspfad durch den Raum) bestimmt werden. Die letztere wird vermutlich durch eine Wechselwirkung zweiter Ordnung mit dem lokalen Triplettzustand, der energetisch nah am ladungsgetrennten Zustand liegt, bedingt. Diese Balance resultiert in langsamen Ladungsrekombinations- und Singulett-Triplett-Umwandlungsraten, die sich nur um eine Größenordnung unterscheiden. Verglichen mit den vielen bisher untersuchten Dyaden, die NDI beinhalten, sind diese Eigenschaften der hier untersuchten Dyaden, soweit mir bekannt, einzigartig. Vor allem die Kombination aus hoher Quantenausbeute des ladungsgetrennten Zustands, die langen Lebenszeiten und die ausreichende Energie des ladungsgetrennten Zustands machen das untersuchte System interessant für praktische Anwendungen. Des Weiteren ist die Aufschlüsselung der zugrunde liegenden Mechanismen von bedeutendem Wert für das zukünftige Design von Dyaden für praktische Anwendungen betreffs der Integration und Anpassung dieser vorteilhaften Eigenschaften. KW - Elektronentransfer KW - Femtosekundenspektroskopie KW - Laserspektroskopie KW - Impedanzspektroskopie KW - Monoschicht KW - transient spectroscopy KW - electrochemistry KW - napthalene diimide KW - triarylamine KW - ferrocene Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97614 ER -