TY - JOUR A1 - Gohlke, Jochen A1 - Deeken, Rosalia T1 - Plant responses to Agrobacterium tumefaciens and crown gall development JF - Frontiers in Plant Science N2 - Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide ("omic") approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant. KW - phytohormones KW - plant defenses KW - morphological adaptions KW - metabolomic changes KW - epigenetics Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119768 SN - 1664-462X VL - 5 IS - 155 ER - TY - JOUR A1 - Cox-Limpens, Kimberly E. M. A1 - Vles, Johan S. H. A1 - van den Hove, Daniel L. A. A1 - Zimmermann, Luc Ji A1 - Gavilanes, Antonio W. D. T1 - Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia JF - BMC Neuroscience N2 - Background: Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results: We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions: This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection. KW - Perinatal Asphyxia KW - oxidative stress KW - microarray KW - cerebral artery occlusion KW - ischemic brain injury KW - genomic response KW - protein aggregation KW - immediate early genes KW - neuroprotection KW - tolerance KW - rat KW - expression KW - transient global ischemia KW - ubiquitination KW - epigenetics KW - fetal preconditioning KW - neonatal brain Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116185 VL - 15 ER -