TY - THES A1 - Flock, Marco T1 - Velocity Map Imaging-Untersuchung nichtstrahlender Prozesse in polyzyklischen Aromaten und deren van-der-Waals-Clustern T1 - A Velocity Map Imaging study on nonradiative processes in polycyclic aromatics and their van der Waals clusters N2 - Das erste Ziel der vorliegenden Dissertation bestand darin, ein bereits bestehendes TOF-MS-Setup dahingehend zu erweitern, um damit Velocity Map Imaging-Experimente durchführen zu können. Dies erforderte zunächst die Konzipierung und Programmierung einiger für die Datenaufnahme, -verarbeitung und -analyse benötigter LabView-Anwendungen. Anschließend konnten erste Kalibrierexperimente an Methyliodid, in denen wichtige experimentelle Parameter identifiziert und optimiert wurden, durchgeführt werden. Außerdem gelang es dadurch, die Messgenauigkeit des Setups auf 0.7 % und dessen Auflösungsvermögen auf 4.4 % zu bestimmen, was im Bereich für VMI-Apparaturen typischer Werte liegt. Zur weiteren Überprüfung der Funktionstüchtigkeit des Setups wurde in ersten zeitaufgelösten Experimenten im Folgenden die Desaktivierung des S1-Zustands von Pyridin untersucht. Neben der Reproduktion einiger bereits literaturbekannter Resultate konnten dabei zusätzlich die im Multiphotonen-Ionisationsschritt populierten Rydberg-Zustände identifiziert werden. Anschließend wurde mit Experimenten an bisher weniger gut untersuchten organischen Aromaten und Heteroaromaten fortgefahren. Das Ziel dieser Studien lag in der Aufklärung der photoinduzierten Dynamiken der Verbindungen, wobei das zur Verfügung stehende ps-Lasersystem die Möglichkeit bot, die Desaktivierung elektronisch angeregter Zustände gezielt in Abhängigkeit von deren Schwingungsenergie zu untersuchen. Der darin bestehende Vorteil zeigte sich vor allem in Studien an Tolan und Phenanthridin, deren erste angeregte, optisch aktive Zustände am Origin Lebensdauern im ns-Bereich aufweisen, die sich mit zunehmender vibronischer Anregung jedoch auf bis zu 10 ps verringern. Als Grund dafür konnten nichtstrahlende Desaktivierungsprozesse, für deren Eintreten eine energetische Barriere überwunden werden muss, identifiziert werden. Während in Tolan nach Photoanregung ein Übergang in einen (πσ∗)-Zustand, der zur Ausbildung einer trans-bent-Struktur führt, erfolgt, ist im Falle von Phenanthridin vermutlich ein El-Sayed-erlaubter ISC-Übergang in einen 3(nπ∗)-Zustand für die drastische Verkürzung der S1-Lebensdauer verantwortlich. Ein solcher konnte weder im zu Phenanthridin isomerischen Benzo[h]quinolin, noch in dessen PAH-Muttermolekül Phenanthren beobachtet werden, was auf die höhere energetische Lage bzw. die Abwesenheit des mittels ISC populierten 3(nπ∗)-Zustands in diesen Molekülen zurückgeführt werden kann. In weiteren im Rahmen der vorliegenden Arbeit durchgeführten Experimente wurden zudem die aromatischen Moleküle Acenaphthylen und 4-(Dimethylamino)benzethin (DMABE) untersucht. Zeitaufgelöste Studien zeigten dabei, dass die Desaktivierung der S2-Zustände beider Moleküle auf der sub-ps-Zeitskala stattfindet und mit dem vorhandenen Lasersystem daher nicht aufgelöst werden kann. In Acenaphthylen erfolgt die S2-Relaxation größtenteils über einen sequentiellen IC-Mechanismus, innerhalb dem der S1-Zustand des Moleküls intermediär besetzt wird. Dessen Lebensdauer konnte am Origin auf 380 ps bestimmt werden, fällt mit steigender Schwingungsanregung jedoch auf bis zu 55 ps ab. Für die Desaktivierung des S2-Zustands von DMABE konnte hingegen ein paralleles Relaxationsmodell, in dem neben dem S1-Zustand ein weiterer elektronisch angeregter Zustand populiert wird, nachgewiesen werden. Bei diesem könnte es sich möglicherweise um einen (πσ∗)-Zustand, dessen Besetzung die Ausbildung einer trans-bent-Geometrie innerhalb der Acetylen-Einheit des Moleküls zur Folge hat, handeln. Einen weiteren großen Teil der vorliegenden Dissertation nahmen Experimente an van-der-Waals-gebundenen Clustersystemen ein. Im Fokus der Studien standen dabei Moleküle mit ausgedehnten aromatischen π-Systemen, da solche eine hohe Relevanz für verschiedene materialwissenschaftliche Forschungsgebiete besitzen. Ein Beispiel hierfür ist Tetracen, welches als Modellsystem für die Untersuchung von Singlet Fission-Prozessen angesehen wird. In Kombination mit nichtadiabatischen Surface-Hopping-Simulationen zeigten Experimente an Tetracen-Dimeren, dass nach deren S2-Anregung zunächst ein schneller S1←S2-Übergang (τ < 1 ps), gefolgt von der Ausbildung einer Excimerstruktur, stattfindet. Letztere erfolgt mit einer Zeitkonstante von 62 ps und führt zu einem Anstieg des transienten Ionensignals, wohingegen die Desaktivierung des Excimer-Zustands von einem abklingenden Signalbeitrag mit τ = 123 ps repräsentiert wird. Wenngleich über die weitere Relaxation der Excimerspezies zum gegenwärtigen Zeitpunkt keine Aussage getroffen werden kann, besteht damit die Möglichkeit, dass Excimer-Zustände als Zwischenstufe im SF-Mechanismus isolierter Tetracen-Dimere auftreten. In zeitaufgelösten Experimenten an Phenanthren-Dimeren konnte ebenfalls ein Anstieg des transienten Signals mit einer vergleichbaren Zeitkonstante von τ = 86 ps, der jedoch auf einem konstanten Signaloffset endet, gefunden werden. Dies deutet darauf hin, dass auch Phenanthren-Dimere in der Lage sind, Excimerstrukturen, die im Gegensatz zu denen des Tetracens jedoch deutlich langlebiger sind, auszubilden. Studien an den Dimerspezies der Azaphenanthrene Benzo[h]quinolin und Phenanthridin offenbarten hingegen etwas schnellere Relaxationen mit Zeitkonstanten von 15 bzw. 40 ps. Zudem zeigten beide Spezies eine stark ausgeprägte Fragmentation, sodass für deren Untersuchung auf die VMI-Detektionsmethode zurückgegriffen werden musste. Dadurch wurde deutlich, dass sich Photoionen-Imaging-Experimente hervorragend für Studien an schwach gebundenen Clustersystemen eignen, da diese die Separation verschiedener Signalbeiträge innerhalb eines betrachteten Massenkanals ermöglichen. N2 - In the first part of this thesis an already existing TOF-MS setup was modified in order to enable Velocity Map Imaging experiments. Therefore, LabView programs for the aquisition, processing and evaluation of the experimental data had to be written. Afterwards, calibration experiments on methyl iodide were carried out to characterize and to optimize important experimental parameters. The experiments yielded values of 4.4 % and 0.7 % for the spectral resolution and the accuracy of the setup, respectively, in good agreement with reported values for typical VMI setups. In the next step, time-resolved experiments on the S1 state deactivation in pyridine were performed in order to further verify the functionality of the setup. In these experiments, several results from literature could be reproduced and additional information on the Rydberg states being populated during the multiphoton ionization of the molecules were obtained. Thus, the experiments proved the suitability of the setup and experiments on less well studied systems were carried out in the following. The goal of these studies was to elucidate the light-induced relaxation mechanisms of selected organic aromatics and heteroaromatics. Due to the spectral bandwidth of the available ps laser setup, dynamics of electronically excited states could be studied as a function of their vibronic energy. This advantage became obvious especially in studies on tolane and phenanthridine: In both molecules, the lifetime of the first excited bright state is in the ns range at its origin, but drops to around 10 ps at higher excitation energies. The reason therefore are nonradiative relaxation processes which can only take place when an energetic barrier is surmounted. In case of tolane, a transition to a (πσ∗) state, leading to the formation of a trans-bent structure, was found to occur at higher excitations. In contrast, an El-Sayed allowed ISC process to a (nπ∗) triplet state seems to be responsible for the drop of the S1 state lifetime in phenanthridine. Interestingly, neither in the isomeric azaphenanthrene benzo[h]quinoline, nor in the PAH parent molecule phenanthrene itself, such a behavior was observed. This is attributed to the higher energy of the first excited (nπ∗) triplet state in benzo[h]quinoline and its absence in phenanthrene, respectively. Further experiments presented in this thesis aimed to elucidate the excited-state dynamics of acenaphthylene and 4-(dimethylamino)benzethyne (DMABE). Time-resolved studies on both molecules revealed S2 state deactivations on the sub-picosecond timescale which thus can not be resolved with the available ps laser setup. In acenaphthylene, a subsequent IC relaxation back to the electronic ground state was found to occur upon S2 excitation and the lifetime of the intermediately populated S1 state was determined to 380 ps at its origin and to 55 ps at higher excitation energies. The S2 state of DMABE relaxes to the S1 state as well, but in addition, the population of another electronic state, which might possibly be a trans-bent (πσ∗) state, was observed. Another large part of the experimental work within this thesis was covered from studies on van der Waals clusters of different aromatic and heteroaromatic compounds. The investigations focused on molecules with extended π -systems, since those possess photophysical properties with high relevance for various applications in material science. As an example, tetracene dimers can be seen as a prototype for the singlet fission process and thus were studied in the scope of this work. In time-resolved experiments, a sequential relaxation with time constants of 62 and 123 ps was observed upon excitation of their S2 state. Based on non-adiabatic surface hopping simulations the time constants could be assigned to the formation and the following decay of an excimer species. Thus, the excimer state could act as an intermediate in the SF mechanism of isolated tetracene dimers, although no information on its further deactivation are available so far. Interestingly, the formation of the excimer state leads to a rise in the transient ion signal, whereas its deactivation correlates with a decaying contribution. A similar behavior was found in experiments on phenanthrene dimers, which relax to a long-lived electronic state with a rising time constant of 86 ps. This indicates that excimer structures are formed upon photoexcitation in phenanthrene dimers as well. However, since their deactivation was not observed on the timescale of the experiment, the phenanthrene excimers seem to possess a much longer lifetime than their tetracene analogues. Studies on the dimeric species of the phenanthrene aza-derivatives benzo[h]quinoline and phenanthridine revealed slightly faster deactivation processes with time constants of 15 and 40 ps, respectively. Furthermore, the multimers of both compounds showed strong fragmentations and thus had to be studied via VMI detection. Thereby it became obvious that photoion imaging experiments are an excellent tool for investigations on weakly bound van der Waals clusters, since they allow to distinguish between different signal contributions in a given mass channel. KW - Strahlungslose Desaktivierung KW - Photoelektronenspektroskopie KW - Molekularstrahl KW - REMPI KW - Pump-Probe-Technik KW - Velocity Map Imaging KW - Zeitaufgelöste Spektroskopie KW - Polycyclische Aromaten KW - Photophysik KW - Physikalische Chemie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240786 ER - TY - THES A1 - Höpfner, Philipp Alexander T1 - Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations T1 - Zweidimensionale Elektronensysteme auf Oberflächen — Spin-Bahn Wechselwirkung und elektronische Korrelationen N2 - This thesis addresses three different realizations of a truly two-dimensional electron system (2DES), established at the surface of elemental semiconductors, i.e., Pt/Si(111), Au/Ge(111), and Sn/Si(111). Characteristic features of atomic structures at surfaces have been studied using scanning tunneling microscopy and low energy electron diffraction with special emphasis on Pt deposition onto Si(111). Topographic inspection reveals that Pt atoms agglomerate as trimers, which represent the structural building block of phase-slip domains. Surprisingly, each trimer is rotated by 30° with respect to the substrate, which results in an unexpected symmetry breaking. In turn, this represents a unique example of a chiral structure at a semiconductor surface, and marks Pt/Si(111) as a promising candidate for catalytic processes at the atomic scale. Spin-orbit interactions (SOIs) play a significant role at surfaces involving heavy adatoms. As a result, a lift of the spin degeneracy in the electronic states, termed as Rashba effect, may be observed. A candidate system to exhibit such physics is Au/Ge(111). Its large hexagonal Fermi sheet is suggested to be spin-split by calculations within the density functional theory. Experimental clarification is obtained by exploiting the unique capabilities of three-dimensional spin detection in spin- and angle-resolved photoelectron spectroscopy. Besides verification of the spin splitting, the in-plane components of the spin are shown to possess helical character, while also a prominent rotation out of this plane is observed along straight sections of the Fermi surface. Surprisingly and for the first time in a 2DES, additional in-plane rotations of the spin are revealed close to high symmetry directions. This complex spin pattern must originate from crystalline anisotropies, and it is best described by augmenting the original Rashba model with higher order Dresselhaus-like SOI terms. The alternative use of group-IV adatoms at a significantly reduced coverage drastically changes the basic properties of a 2DES. Electron localization is strongly enhanced, and the ground state characteristics will be dominated by correlation effects then. Sn/Si(111) is scrutinized with this regard. It serves as an ideal realization of a triangular lattice, that inherently suffers from spin frustration. Consequently, long-range magnetic order is prohibited, and the ground state is assumed to be either a spiral antiferromagnetic (AFM) insulator or a spin liquid. Here, the single-particle spectral function is utilized as a fundamental quantity to address the complex interplay of geometric frustration and electronic correlations. In particular, this is achieved by combining the complementary strengths of ab initio local density approximation (LDA) calculations, state-of-the-art angle-resolved photoelectron spectroscopy, and the sophisticated many-body LDA+DCA. In this way, the evolution of a shadow band and a band backfolding incompatible with a spiral AFM order are unveiled. Moreover, beyond nearest-neighbor hopping processes are crucial here, and the spectral features must be attributed to a collinear AFM ground state, contrary to common expectation for a frustrated spin lattice. N2 - In der vorliegenden Arbeit werden drei unterschiedliche Beispiele für ein zweidimensionales Elektronensystem (2DES) auf der Oberfläche von Elementhalbleitern behandelt: Pt/Si(111), Au/Ge(111) und Sn/Si(111). Atomare Strukturen und deren spezielle Merkmale wurden mit Rastertunnelmikroskopie (STM) und Elektronenbeugung (LEED) untersucht, wobei ein Schwerpunkt die Abscheidung von Pt auf Si(111) war. Hervorzuheben ist hier die Anordnung von Pt Atomen als Trimere, die das Grundgerüst phasenverschobener Domänen bilden. Interessanterweise sind die Trimere um 30° gegenüber dem Substrat verdreht, was einen unerwarteten Symmetriebruch bedeutet. Daher stellt Pt/Si(111) ein einzigartiges Beispiel einer chiralen Struktur auf Halbleitern dar und könnte außerdem für katalytische Prozesse im atomaren Bereich interessant sein. Die Spin-Bahn Wechselwirkung ist auf Oberflächen, die schwere Elemente enthalten, von großer Bedeutung. Hier kann die Spin-Entartung in den elektronischen Zuständen aufgehoben sein, was als Rashba-Effekt bekannt ist. Rechnungen mittels Dichtefunktionaltheorie (DFT) zeigen, dass eine solche Aufspaltung in der hexagonalen Fermi-Fläche von Au/Ge(111) existiert. Experimentell wurde dies mit dreidimensionaler spin- und winkelaufgelöster Photoelektronenspektroskopie bestätigt. Dabei folgt die planare Spin-Komponente einem kreisförmigen Umlaufsinn, während zudem eine starke Aufrichtung des Spins aus der Ebene hinaus entlang gerader Abschnitte der Fermi-Fläche auftritt. Hierbei wurden zum ersten Mal in einem 2DES zusätzliche Rotationen des planaren Spinanteils in der Oberflächenebene nahe von Hochsymmetrierichtungen nachgewiesen. Dieses komplexe Spin-Muster resultiert aus den kristallinen Anisotropien und kann exzellent modelliert werden, indem das Rashba-Modell um Dresselhaus-artige Spin-Bahn Terme höherer Ordnung erweitert wird. Die alternative Verwendung von Gruppe-IV Adatomen bei einer geringeren Bedeckung ändert die Eigenschaften eines 2DES deutlich. Kennzeichnend sind eine verstärkte Ladungsträger-Lokalisierung und ein von Korrelationen bestimmter Grundzustand. Dabei stellt Sn/Si(111) ein Modell-System dar, das zudem ein spin-frustriertes Dreiecksgitter bildet. In einem solchen fehlt üblicherweise die langreichweitige magnetische Ordnung und der Grundzustand ist entweder ein isolierender spiralförmiger Antiferromagnet (AF) oder eine Spin-Flüssigkeit. Zur Analyse des Wechselspiels von geometrischer Frustration und elektronischen Korrelationen dient die Ein-Teilchen Spektralfunktion als Basisgröße. Dazu wurden die sich ergänzenden Stärken von Bandstruktur-Rechnungen in der lokalen Dichtenäherung (LDA), winkelaufgelöster Photoelektronenspektroskopie und Viel-Teilchen Modellen (hier LDA+DCA) kombiniert. Dabei wurde die Existenz eines Schattenbandes und einer Bandrückfaltung nachgewiesen, wobei letztere einen spiralförmigen AF als Grundzustand ausschließt. Vielmehr sind Hüpfprozesse über den nächsten Nachbarn im Gitter hinaus relevant und die spektralen Merkmale sind, trotz der Spin-Frustration, durch einen langreichweitigen kollinearen AF als Grundzustand erklärbar. KW - Halbleiteroberfläche KW - Elektronengas KW - Dimension 2 KW - scanning tunneling microscopy KW - photoelectron spectroscopy KW - triangular lattice KW - Rashba effect KW - spin-orbit coupling KW - metal-to-insulator transition KW - Rastertunnelmikroskop KW - Photoelektronenspektroskopie KW - Dreiecksgitter KW - Rashba-Effekt KW - Spin-Bahn-Wechselwirkung KW - Metall-Isolator-Phasenumwandlung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78876 ER - TY - THES A1 - Müller, Andreas T1 - Towards functional oxide heterostructures T1 - Funktionelle oxidische Heterostrukturen N2 - Oxide heterostructures attract a lot of attention as they display a vast range of physical phenomena like conductivity, magnetism, or even superconductivity. In most cases, these effects are caused by electron correlations and are therefore interesting for studying fundamental physics, but also in view of future applications. This thesis deals with the growth and characterization of several prototypical oxide heterostructures. Fe3O4 is highly ranked as a possible spin electrode in the field of spintronics. A suitable semiconductor for spin injection in combination with Fe3O4 is ZnO due to its oxide character and a sufficiently long spin coherence length. Fe3O4 has been grown successfully on ZnO using pulsed laser deposition and molecular beam epitaxy by choosing the oxygen partial pressure adequately. Here, a pressure variation during growth reduces an FeO-like interface layer. Fe3O4 films grow in an island-like growth mode and are structurally nearly fully relaxed, exhibiting the same lattice constants as the bulk materials. Despite the presence of a slight oxygen off-stoichiometry, indications of the Verwey transition hint at high-quality film properties. The overall magnetization of the films is reduced compared to bulk Fe3O4 and a slow magnetization behavior is observed, most probably due to defects like anti-phase boundaries originating from the initial island growth. LaAlO3/SrTiO3 heterostructures exhibit a conducting interface above a critical film thickness, which is most likely explained by an electronic reconstruction. In the corresponding model, the potential built-up owing to the polar LaAlO3 overlayer is compensated by a charge transfer from the film surface to the interface. The properties of these heterostructures strongly depend on the growth parameters. It is shown for the first time, that it is mainly the total pressure which determines the macroscopic sample properties, while it is the oxygen partial pressure which controls the amount of charge carriers near the interface. Oxygen-vacancy-mediated conductivity is found for too low oxygen pressures. A too high total pressure, however, destroys interface conductivity, most probably due to a change of the growth kinetics. Post-oxidation leads to a metastable state removing the arbitrariness in controlling the electronic interface properties by the oxygen pressure during growth. LaVO3/SrTiO3 heterostructures exhibit similar behavior compared to LaAlO3/SrTiO3 when it comes to a thickness-dependent metal-insulator transition. But in contrast to LaAlO3, LaVO3 is a Mott insulator exhibiting strong electron correlations. Films have been grown by pulsed laser deposition. Layer-by-layer growth and a phase-pure pervoskite lattice structure is observed, indicating good structural quality of the film and the interface. An electron-rich layer is found near the interface on the LaVO3 side for conducting LaVO3/SrTiO3. This could be explained by an electronic reconstruction within the film. The electrostatic doping results in a band-filling-controlled metal-insulator transition without suffering from chemical impurities, which is unavoidable in conventional doping experiments. N2 - Oxidische Heterostrukturen besitzen verschiedenste physikalische Eigenschaften wie Leitfähigkeit, Magnetisums oder sogar Supraleitung. Diese Effekte, die meist von elektronischen Korrelationen verursacht werden, zu verstehen und ihren fundamentalen Ursprung zu erklären, machen diese Materialsysteme ebenso interessant wie ihr zukünftiges Anwendungspotential. Diese Arbeit beschäftigt sich mit verschiedenen prototypischen Schichtsystemen. Fe3O4 könnte zukünftig als Spinelektrode im Bereich der Spintronik dienen. ZnO ist ein Halbleiter, der durch seinen oxidischen Charakter und einer hinreichenden Spinkohärenzlänge gut zur Spininjektion geeignet ist. Das Wachstum von Fe3O4 auf ZnO wurde erfolgreich mittels gepulster Laserdeposition und Molekularstrahlepitaxie durchgeführt. Dabei ist der Sauerstoffpartialdruck entscheidend und eine Variation des Drucks während des Wachstums wirkt der Bildung einer FeO-artigen Grenzschicht entgegen. Die Filme wachsen inselartig und ihre Gitterstruktur ist fast vollständig relaxiert. Trotz einer Sauerstofffehlstöchiometrie wird die hohe Qualität der Filme durch einen Verwey-Phasenübergang bestätigt. Im Vergleich zu Einkristallen ist die Magnetisierung der Filme reduziert. Durch das Inselwachstum verursachte Antiphasengrenzen könnten zu dieser Reduzierung führen. Die leitfähige Grenzschicht, die in LaAlO3/SrTiO3 Heterostrukturen ab einer bestimmten LaAlO3 Filmdicke auftritt, kann höchstwahrscheinlich durch eine elektronische Rekonstruktion erklärt werden. Im entsprechenden Modell wird der Aufbau eines elektrischen Potentials auf Grund der Polarität des LaAlO3 Films durch eine Ladungsumordnung kompensiert. Die Eigenschaften dieser Heterostruktur sind jedoch von den Wachstumsparametern abhängig. Diese Studie zeigt erstmals, dass die makroskopischen Eigenschaften maßgeblich vom Gesamtdruck, die Anzahl der Ladungsträger dagegen stark vom Sauerstoffpartialdruck während des Wachstums abhängen. Leitfähigkeit auf Grund von Sauerstofffehlstellen wurde für sehr kleine Sauerstoffpartialdrücke beobachtet. Ein zu hoher Gesamtdruck hingegen verhindert die Leitfähigkeit der Grenzschicht. Dies ist vermutlich durch eine Änderung der Wachstumskinematik erklärbar. Ein Nachoxidieren der Proben führt überdies zu einem metastabilen Zustand, der die Vergleichbarkeit von Proben verschiedener Arbeitsgruppen gewährleistet. LaVO3/SrTiO3 zeigt ähnliches Verhalten wie LaAlO3/SrTiO3 und Leitfähigkeit tritt ab einer gewissen LaVO3 Schichtdicke auf. Im Gegensatz zu LaAlO3 ist LaVO3 ein Mottisolator, dass heißt, Korrelationseffekte spielen eine Rolle. LaVO3/SrTiO3 wurde mittels gepulster Laserdeposition hergestellt, Phasenreinheit und die strukturellen Eigenschaften mit verschiedenen Methoden überprüft. Zusätzliche Elektronen wurden für leitfähige Proben auf der LaVO3-Seite der Grenzfläche nachgewiesen. Eine Erklärung hierfür wäre eine elektronische Rekonstruktion im Film selbst. Dieses elektrostatische Dotieren führt zu einem bandfüllungsinduzierten Mott-Phasenübergang, der nicht durch chemische Verunreinigungen, die in konventionellen Dotierexperimenten unvermeidbar sind, beeinflusst ist. KW - Oxide KW - Epitaxieschicht KW - Heterostruktur KW - Physikalische Eigenschaft KW - Heterostrukturen KW - Oxid KW - Wachstum KW - MBE KW - PLD KW - Fe3O4 KW - LaAlO3 KW - LaVO3 KW - heterostructures KW - oxide KW - growth KW - MBE KW - PLD KW - Fe3O4 KW - LaAlO3 KW - LaVO3 KW - Röntgen-Photoelektronenspektroskopie KW - Photoelektronenspektroskopie KW - Kristallwachstum KW - Impulslaserbeschichten KW - Molekularstrahlepitaxie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72478 ER - TY - THES A1 - Schmid, Benjamin T1 - Surface preparation and Mn states of (Ga,Mn)As investigated by means of soft- and hard x-ray photoemission spectroscopy T1 - Oberflächenpräparation und Untersuchung der Mn Zustände in (Ga,Mn)As mit Hilfe von Photoemissionsspektroskopie im weichen und harten Röntgenbereich N2 - The present thesis deals with surface treatment, material improvement, and the electronic structure of the diluted magnetic semiconductor (Ga,Mn)As. The two key issues are the preparation of clean surfaces and the observation of potential valence hybridizations in (Ga,Mn)As by means of photoemission spectroscopy. Several cleaning methods are applied individually to (Ga,Mn)As and their e ects are compared in detail by various methods. Based on the results of each method, a sophisticated recipe has been elaborated, which provides clean, stoichiometric, and reconstructed surfaces, even if the sample was exposed to air prior to preparation. Moreover, the recipe works equally well for intentionally oxidized surfaces. The individual advantages of ex-situ wet- chemical etching and in situ ion-milling and tempering can be combined in an unique way. In regard to the post-growth annealing in order to optimize the electronic and magnetic properties of (Ga,Mn)As, the effect of surface segregation of interstitial Mn was quantifed. It turns out that the Mn concentration at the surface increases by a factor 4.3 after annealing at 190 C for 150 h. The removal of the segregated and oxidized species by wet-chemical etching allows a tentative estimate of the content of interstitial Mn. 19-23% of the overall Mn content in as-grown samples resides on interstitial positions. The complementary results of core level photoemission spectroscopy and resonant photoemission spectroscopy give hints to the fact that a sizeable valence hybridization of Mn is present in (Ga,Mn)As. This outlines that the simple Mn 3d5-con guration is too naive to refect the true electronic structure of substitutional Mn in (Ga,Mn)As. Great similarities in the core level spectra are found to MnAs. The bonding is thus dominantly of covalent, not ionic, character. Transport measurements, in particular for very low temperatures (<10 K), are in agreement with previous results. This shows that at low temperature, the conduction is mainly governed by variable-range hopping which is in line with the presence of an impurity band formed by substitutional Mn. In the light of the presented results, it is therefore concluded that a double-exchange interaction is the dominant mechanism leading to ferromagnetic coupling in (Ga,Mn)As. The valence hybridization and the presents of an impurity band, both of which are inherent properties of substitutional Mn, are indications for a double-exchange scenario, being at variance to a RKKY-based explanation. Contributions from a RKKY-like mechanism cannot definitely be excluded, however, they are not dominant. N2 - Die vorliegende Arbeit befasst sich mit der Oberflächenbehandlung, der Materialoptimierung und der elektronischen Struktur des verdünnten magnetischen Halbleiters (Ga,Mn)As. Die beiden Hauptaspekte sind dabei die Präparation sauberer Oberflächen und die Identifikation einer möglichen Valenzhybridisierung in (Ga,Mn)As mithilfe von Photoemissionspektroskopie. Mehrere Reinigungsmethoden wurden einzeln auf (Ga,Mn)As Oberflächen angewandt und deren Wirkung anhand mehrerer Untersuchungsmethoden verglichen. Basierend auf den Einzelergebnissen wurde eine spezielle Reinigungsprozedur ausgearbeitet, welche stöchiometrische, reine und wohldefinierte Oberflächen liefert, selbst wenn die Proben Umgebungsluft ausgesetzt wurde. Die beschriebene Vorgehensweise funktioniert des Weiteren auch bei absichtlich oxidierten Proben. Hierbei werden die individuellen Vorteile von ex situ nass-chemischen Ätzen, in situ Ionenstrahlätzen und Erhitzen auf besondere Art und Weise kombiniert. Im Hinblick auf das Ausheilen nach dem Wachstum konnte die Oberflächensegregation von interstitiellem Mangan quantifiziert werden, wobei sich zeigte, dass die Mangankonzentration an der Oberfläche um einen Faktor 4.3 nach 150 Stunden Ausheilen an Luft zunahm. Ein Vergleich zwischen ausgeheilten und anschließend geätzen Proben lässt eine vorsichtige Abschätzung des Anteils an interstitiellem Mangan in nicht ausheilten Proben zu. Hierbei zeigt sich, dass sich 19-23% das Gesamtgehalts an Mangan auf interstitiellen Gitterplätzen befindet. Komplementäre Untersuchungen mit Photoemissionsmethoden an Rumpfniveaus und mithilfe resonanter Photoemission geben Hinweis darauf, dass für Mangan in (Ga,Mn)As eine Valenzhybridisierung vorliegt. Dies führt zu dem Schluss, dass die simple Annahme eines zweifach positiv geladenen Mn-Atoms in 3d5-Kon guration zu pauschal ist, um die tatsächliche elektronische Struktur von substitutionellem Mn in (Ga,Mn)As widerzuspiegeln. Die Spektren zeigen eine große Ähnlichkeit zu Manganarsenid, was beweißt, dass die Bindung vorherrschend kovalenter und nicht ionischer Natur ist. Darüber hinaus sind ebenfalls durchgeführte Transportmessungen im Einklang mit bereits veröffentlichten Ergebnissen aus der Literatur. Dabei zeigt sich, dass der Ladungstransport, vor allem bei tiefen Temperaturen unterhalb von 10 K, durch variable range hopping statt findet. Dieses Verhalten steht im Einklang mit dem Vorhandensein eines Störstellenbandes, welches von substitutionellem Mn gebildet wird. Angesichts der hier gezeigten Daten kann gefolgert werden, dass ein Doppelaustausch der ausschlaggebende Mechanismus für das Auftreten ferromagnetischer Kopplung in (Ga,Mn)As ist. Sowohl die Valenzhybridisierung substitutionellem Mn als auch die Ausbildung eines Störstellenbandes durch selbiges, deuten auf einen Doppelaustausch in, was im Gegensatz zu einer RKKY-basierten Erklärung steht. Hierbei kann ein gewisse Bedeutung des RKKY-Modells nicht vollständig ausgeschlossen werden, jedoch ist diese definitiv nicht dominant. KW - Photoelektronenspektroskopie KW - Galliumarsenid KW - Manganarsenide KW - Magnetischer Halbleiter KW - Ferromagnetische Halbleiter KW - (Ga KW - Mn)As KW - Oberflächenpräparation KW - Photoemission spectroscopy KW - ferromagnetic semiconductors KW - (Ga KW - Mn)As KW - surface preparation Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-50057 ER - TY - THES A1 - Lutz, Peter T1 - Surface and Interface Electronic Structure in Ferroelectric BaTiO\(_3\) T1 - Die elektronische Struktur an der Grenz- und Oberfläche des Ferroelektrikums BaTiO\(_3\) N2 - Transition metal oxides (TMO) represent a highly interesting material class as they exhibit a variety of different emergent phenomena including multiferroicity and superconductivity. These effects result from a significant interplay of charge, spin and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies (OV) at the surface of certain d0 TMO release free charge carriers and prompt the formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a prototypical and promising d0 TMO. It displays ferroelectricity at room temperature and features several structural phase transitions, from cubic over tetragonal (at room temperature) and orthorhombic to rhombohedral. The spontaneous electric polarization in BaTiO3 can be used to manipulate the physical properties of adjacent materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied in great detail, the microscopic electronic structure at the surface and interface of BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and the structural phase transitions in BaTiO3. This thesis investigates the electronic structure of different BaTiO3 systems by means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of BaTiO3 single crystals is systematically characterized and compared to theoretical band structure calculations. A finite p-d hybridization of titanium and oxygen states was inferred at the high binding energy side of the valence band. In BaTiO3 thin films, the occurrence of spectral weight near the Fermi level could be linked to a certain amount of OV at the surface which effectively dopes the host system. By a systematic study of the metallic surface states as a function of temperature and partial oxygen pressure, a model was established which reflects the depletion and accumulation of charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile behavior of these surface states. The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface of BaTiO3-based heterostructures. Therefore, the interface electronic structure of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by also including a thickness dependent characterization. The ARPES results, indeed, confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify the energy position and the Fermi vector of the spin-split states. This observation is associated with the appearance of an interface state which was observed for very low film thickness. Both spectral findings suggest a significant coupling between the Bi films and BaTiO3. N2 - Übergangsmetalloxide stellen eine hochinteressante Materialklasse dar, da sie eine Vielzahl neuartiger Phänomene, wie z.B. multiferroische Eigenschaften und Supraleitung, aufweisen. Diese Effekte sind die Folge eines komplexen Zusammen- spiels zwischen den Freiheitsgraden von Ladung, Spin und der orbitalen Komponente innerhalb eines korrelierten d-Elektronensystems. Sauerstoffstörstellen an der Ober- fläche von einigen dieser Systeme führen zu der Ausbildung freier Ladungsträger und der damit verbundenen Erzeugung eines 2-dimensionalen Elektronengases (2DEG). Das in dieser Arbeit untersuchte Bariumtitanat (BaTiO3) ist ein typisches und sehr vielversprechendes d0-Übergangsmetalloxid. Zum einen ist es ferroelektrisch bei Raumtemperatur und zum anderen weist es mehrere strukturelle Phasenübergänge auf, von kubisch über tetragonal (bei Raumtemperatur) und orthorhombisch zu rhom- boedrisch. Die spontane elektrische Polarisation in BaTiO3 kann dazu verwendet werden um physikalische Eigenschaften angrenzender Materialsysteme, z.B. von Dünnfilmen, zu beeinflussen. Obwohl vor allem die makroskopischen ferroelektrischen Eigenschaften von BaTiO3 bereits detailliert untersucht wurden, ist die mikrosko- pische elektronische Struktur in BaTiO3 und in BaTiO3-Grenzflächen noch nicht voll- ständig verstanden. Der Grund hierfür ist ein komplexes Wechselspiel zwischen elek- tronischen Korrelationseffekten, Sauerstoffstörstellen, Ferroelektrizität und struk- turellen Aspekten. Diese Dissertation befasst sich mit der elektronischen Struktur von verschiede- nen BaTiO3-Systemen, unter Verwendung der winkelaufgelösten Photoelektronen- spektroskopie (PES). Zum einen wurde das Valenzband von BaTiO3-Einkristallen systematisch untersucht und mit theoretischen Rechnungen verglichen. Dabei konnte eine endliche p-d-Hybridisierung von Titan- mit Sauerstoff-Zuständen im Valenzband festgestellt werden. Weiterhin wurde in BaTiO3-Dünnfilmen das Auftreten von spek- tralem Gewicht nahe des Ferminiveaus beobachtet. Diese metallischen Zustände sind auf eine erhöhte Dichte von Sauerstoffstörstellen an der Oberfläche zurückzuführen, wodurch das System effektiv dotiert wird. Die systematische Untersuchung der elek- tronischen Struktur in Abhängigkeit von Temperatur und Sauerstoff-Partialdruck wurde erfolgreich durch ein Modell beschrieben, das eine Instabilität der metallischen Zustände bei T ≈ 285K aufzeigt. Die ferroelektrische Eigenschaft von BaTiO3 kann in Heterostrukturen dazu verwendet werden, um die elektronische Struktur an der Grenzfläche zu kontrol- lieren. Zu diesem Zweck wurde in dieser Arbeit die mikroskopische elektronische Struktur an der Grenzfläche von Bi/BaTiO3 bedeckungsabhängig charakterisiert und im Hinblick auf die spin-polarisierten Zustände in Bi untersucht. So konnten Rashba-spinaufgespaltene elektronische Zustände in der Volumenbandlücke des fer- roelektrischen Substrates nachgewiesen werden. Eine Variation der Filmdicke in Bi/BaTiO3 führte zu einer energetischen Verschiebung und zu einer Änderung des Fermivektors der spinaufgespaltenen Zustände. Diese Beobachtung hängt stark mit dem Ausbilden eines Grenzflächenzustandes zusammen, der für sehr niedrige Be- deckungen beobachtet wurde. Beide Effekte weisen zudem auf eine Wechselwirkung zwischen den Bi-Filmen und BaTiO3 KW - Bariumtitanat KW - Photoelektronenspektroskopie KW - Ferroelektrikum KW - Spintronik KW - Niederdimensionales Elektronengas KW - barium titanate KW - photoelectron spectroscopy KW - ferroelectricity KW - spintronic KW - two-dimensional electron gas Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159057 ER - TY - THES A1 - Fiedler, Sebastian T1 - Strukturelle und elektronische Zusammenhänge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl) T1 - Structural and electronic dependencies of non-centrosymmetric semiconductors with strong spin-orbit-coupling; BiTeX (X = I, Br, Cl) N2 - Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabhängigen Spinaufspaltung der Bandstruktur führt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabhängigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplementärer, oberflächensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zusätzliche Experimente werden an dünnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgeführt. Die inversionsasymmetrische Kristallstruktur in BiTeX führt zur Existenz zweier nicht-äquivalenter Oberflächen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberflächen gespaltener Einkristalle belegen für BiTeI(0001) eine Koexistenz beider Terminierungen auf einer Längenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zurückführen lassen. Diese Domänen sind groß genug, um eine vollständig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei räumlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen Längenskala aus. Atomar aufgelöste STM-Messungen zeigen für die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberflächen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativität der Halogene resultiert in verschieden starken Ladungsübergängen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberflächeneigenschaften ist durch die Bedampfung mit Cs möglich, wobei eine Änderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfläche durch Heizen im Vakuum, bewirkt dies eine Veränderung der Bandstruktur in zwei Schritten. So führt zunächst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberflächenzustände hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfläche - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von Dünnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Veränderung der Morphologie und elektronischen Struktur in Abhängigkeit von Stöchiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der Dünnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberflächenzustands auf. N2 - This thesis is about the analysis and manipulation of semiconductor surfaces, for which Spin-Orbit-Coupling (SOC) in combination with a break of structural symmetry leads to a k-dependent spin separation in the electronic structure. Therefore, the relation between the spin-dependent electronic structure and the atomic geometry is of particular interest. Suitable model systems have been investigated by a combination of complementary surface-sensitive measuring methods, e.g. Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (PES). In this work, the main experimental focus is on the BiTeX (X =I, Br, Cl) polar semiconductors. Additional experiments have been carried out on thin films of topological insulators (TI) Bi1,1-xSb0,9+xSe3 (X = 0. . . 1.1) and Bi2Te2Se. The non-centrosymmetric crystal structure of BiTeX results in two non-equivalent surfaces with different terminations (Te or X) and inverted layer structure. STM measurements of the surface of cleaved single crystals show a coexistence of both terminations for BiTeI(0001) on a length scale of around 100 nm, which is caused by bulk stacking faults. These domains are large enough to show a fully developed band dispersion and therefore yield a combined band structure of both terminations when investigated with spatially integrating methods. By contrast, BiTeBr(0001) and BiTeCl(0001) show homogeneous terminations on a macroscopic scale. Atomically resolved STM measurements on each of the three systems reveal different defect densities for each of the atomic layers as well as different structural influences of the halogens. PES measurements show a strong influence of the termination on several surface properties, e.g. electronic band structure, work function and absorbate interaction. The different electronegativities of the halogens result in a varying degree of charge transfer within the covalently-ionically bonded BiTe+ X- unit cell. A more detailed study of the surface properties has been facilitated by Cs deposition and the subsequent investigation of alterations of the electronic structure resulting from interactions with the alkali metal. A surface modification of the crystal structure and chemical properties of BiTeI(0001) by vacuum annealing results in a variation of the band structure in two steps. At first, the loss of I causes a disappearance of the Rashba-splitting, which might be caused by the loss of non-centrosymmetry of the unit cell. In a second step, a new unit cell forms at the surface, which generates non-trivial topological surface states. This reordering only affects the surface while the unit cells of the crystal bulk remain non-centrosymmetric. Hybrid systems like this are expected to exhibit novel electronic properties. A systematic analysis of thin _lm TIs grown by molecular beam epitaxy (MBE) shows changes in morphology and electronic structure as a function of stoichiometry and substrate. The comparison of MBE and grown single crystals reveals a considerable difference between sample properties. One particular system even shows a locally inhomogeneous density of states within the binding energy regime of the topological surface state. KW - Rashba-Effekt KW - Inversionsasymmetrische Halbleiter KW - Polarer Halbleiter KW - Spin-Bahn-Wechselwirkung KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - BiTeI KW - BiTeBr KW - BiTeCl KW - Spin-Bahn-Kopplung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155624 ER - TY - THES A1 - Maaß, Henriette T1 - Spin-dependence of angle-resolved photoemission from spin-orbit split surface states T1 - Spin-Abhängigkeit in winkelaufgelöster Photoemission von Oberflächenzuständen mit Spin-Bahn-Aufspaltung N2 - Spin- and angle-resolved photoelectron spectroscopy is the prime method to investigate spin polarized electronic states at solid state surfaces. In how far the spin polarization of an emitted photoelectron reflects the intrinsic spin character of an electronic state is the main question in the work at hand. It turns out that the measured spin polarization is strongly influenced by experimental conditions, namely by the polarization of the incoming radiation and the excitation energy. The photoemission process thus plays a non-negligible role in a spin-sensitive measurement. This work is dedicated to unravel the relation between the result of a spin-resolved measurement and the spin character in the ground state and, therefore, to gain a deep understanding of the spin-dependent photoemission process. Materials that exhibit significant spin-splittings in their electronic structure, owing to a strong spin-orbit coupling, serve as model systems for the investigations in this work. Therefore, systems with large Rashba-type spin-splittings as BiTeI(0001) and the surface alloys BiAg2/Ag(111) and PbAg2/Ag(111) are investigated. Likewise, the surface electronic structure of the topological insulators Bi2Te2Se(0001) and Bi2Te3(0001) are analyzed. Light polarization dependent photoemission experiments serve as a probe of the orbital composition of electronic states. The knowledge of the orbital structure helps to disentangle the spin-orbital texture inherent to the different surface states, when in addition the spin-polarization is probed. It turns out that the topological surface state of Bi2Te2Se(0001) as well as the Rashba-type surface state of BiTeI(0001) exhibit chiral spin-textures associated with the p-like in-plane orbitals. In particular, opposite chiralities are coupled to either tangentially or radially aligned p-like orbitals, respectively. The results presented here are thus evidence that a coupling between spin- and orbital part of the wave function occurs under the influence of spin-orbit coupling, independent of the materials topology. Systematic photon energy dependent measurements of the out-of-plane spin polarization of the topological surface state of Bi2Te3(0001) reveal a strong dependence and even a reversal of the sign of the photoelectron spin polarization with photon energy. Similarly, the measured spin component perpendicular to the wave vector of the surface state of BiAg2/Ag(111) shows strong modulations and sign reversals when the photon energy is changed. In BiAg2/Ag(111) the variations in the photoelectron spin polarization are accompanied by significant changes and even a complete suppression of the photoemission intensity from the surface state, indicating that the variations of the spin polarization are strongly related to the photoemission cross section. This relation is finally analyzed in detail by employing a simple model, which is based on an evaluation of the transition matrix elements that describe the presented experiments. The model shows that the underlying cause for the observed photoelectron spin reversals can be found in the coupling of the spin structure to the spatial part of the initial state wave function, revealing the crucial role of spin-orbit interaction in the initial state wave function. The model is supported by ab initio photoemission calculations, which show strong agreement with the experimental results. N2 - Spin- und winkelaufgelöste Photoelektronenspektroskopie bietet einen Einblick in die elektronische Struktur spinpolarisierter Zustände an Festkörperoberflächen. In- wieweit eine Messung der Spinpolarisation emittierter Photoelektronen den tatsäch- lichen intrinsischen Spincharakter eines elektronischen Zustandes wiedergibt, ist die zentrale Fragestellung der vorliegenden Arbeit. Dabei zeigt sich, dass die gemessene Spinpolarisation stark von den experimentellen Gegebenheiten wie etwa der Pola- risation des einfallenden Lichtes oder der Photonenenergie abhängt und der Photo- emissionsprozess eine somit nicht zu vernachlässigende Rolle für das Messergebnis spielt. Das Ziel dieser Arbeit ist es, den Zusammenhang zwischen dem Ergebnis einer spinsensitiven Messung und dem Spincharakter des Grundzustandes zu entschlüsseln und dabei ein tieferes Verständnis der Spinpolarisation im Photoemissionsprozess zu gewinnen. Als Modellsysteme dienen dabei Materialien, die aufgrund einer starken Spin- Bahn-Kopplung spinaufgespaltene Zustände aufweisen. Daher wird zum einen der Spin-und Orbitalcharakter der elektronischen Struktur von Modellsystemen mit Rashba-artigen Oberflächenzuständen untersucht, wie sie etwa BiTeI(0001) oder die Oberflächenlegierungen BiAg2/Ag(111) und PbAg2/Ag(111) aufweisen. Zum anderen wird die Oberflächenbandstruktur der topologischen Isolatoren Bi2Te2Se(0001) und Bi2Te3(0001) genauer analysiert. Mithilfe der winkelaufgelösten Photoelektronenspektroskopie mit unterschiedlicher Lichtpolarisation wird die orbitale Struktur der untersuchten elektronischen Zustände entschlüsselt. Im folgenden Schritt wird das Wissen um den orbitalen Charakter der Wellenfunktion genutzt, um durch zusätzliche Detektion des Photoelektronenspins einen Einblick in die gekoppelte Spin- und Orbitalstruktur zu gewinnen. Hierbei zeigt sich, dass sowohl der topologische Oberflächenzustand von Bi2Te2Se(0001) als auch der Rashba-artige Oberflächenzustand von BiTeI(0001) chirale Spinstrukturen aufweist, die an die in der Oberflächenebene orientierten p-artigen Orbitale gekoppelt sind. Für Orbitale, die tangential an den Oberflächenzustand angeordnet sind, und solche, die radial angeordnet sind, findet sich dabei eine entgegengesetzte Chiralität. Die Resultate dieser Arbeit dienen somit als Nachweis, dass die Kopplung zwischen Spin und Orbital unter dem Einfluss starker Spin-Bahn-Kopplung bei topologischen wie nicht-topologischen Zuständen in ähnlicher Form auftritt. Systematische photonenenergieabhängige Messungen der Spinpolarisation paral- lel zur Oberflächennormalen im topologischen Oberflächenzustand von Bi2Te3(0001) weisen eine starke Photonenenergieabhängigkeit und sogar Vorzeichenwechsel in der Photoelektronenspinpolarisation auf. In ähnlicher Weise zeigt auch die am Rashba- artigen Zustand von BiAg2/Ag(111) gemessene Spinpolarisation starke Änderun- gen bis hin zu einer Umkehr der Spinpolarisation mit der Photonenenergie. In BiAg2/Ag(111) gehen die Veränderungen der gemessenen Spinpolarisation mit deut- lichen Modulationen der Photoemissionsintensität einher. Dies impliziert einen mö- glichen Zusammenhang zwischen den Veränderungen des Photoelektronenspins und dem Wirkungsquerschnitt des Photoemissionsprozesses. Ein solcher Zusammenhang wird zuletzt im Rahmen eines einfachen Modells genauer untersucht. Dieses basiert auf den Übergangsmatrixelementen, die die vorgestellten Photoemissionsexperimente beschreiben, und ermöglicht es, die beobach- teten Veränderungen des Photoelektronenspins auf die Kopplung des Spins an die Realraumwellenfunktion des Ausgangszustands zurückzuführen. Das Modell wird durch ab initio-Photoemissionsrechnungen unterstützt, die eine hohe Übereinstim- mung mit den gemessenen Daten aufweisen. KW - Photoelektronenspektroskopie KW - spin-orbit-coupling KW - SARPES KW - spin KW - Spinpolarisation KW - ARPES Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151025 ER - TY - THES A1 - Scheiderer, Philipp T1 - Spectroscopy of Prototypical Thin Film Mott Materials T1 - Spektroskopie prototypischer Mott-Materialien in dünnen Filmen N2 - The rich phase diagram of transition metal oxides essentially roots in the many body physics arising from strong Coulomb interactions within the underlying electron system. Understanding such electronic correlation effects remains challenging for modern solid state physics, therefore experimental data is required for further progress in the field. For this reason, spectroscopic investigations of prototypical correlated materials are the scope of this thesis. The experimental methods focus on photoelectron spectroscopy, and the test materials are the correlated metal SrVO\(_3\) and the Mott insulator LaTiO\(_3\), both of which are fabricated as high quality thin films. In SrVO\(_3\) thin films, a reduction of the film thickness induces a dimensional crossover from the metallic into the Mott insulating phase. In this thesis, an extrinsic chemical contribution from a surface over-oxidation is revealed that emerges additionally to the intrinsic change of the effective bandwidth usually identified to drive the transition. The two contributions are successfully disentangled by applying a capping layer that prevents the oxidation, allowing for a clean view on the dimensional crossover in fully stoichiometric samples. Indeed, these stoichiometric layers exhibit a higher critical thickness for the onset of the metallic phase than the bare and therefore over-oxidized thin films. For LaTiO\(_3\) thin films, the tendency to over-oxidize is even stronger. An uncontrolled oxygen diffusion from the substrate into the film is found to corrupt the electronic properties of LaTiO\(_3\) layers grown on SrTiO\(_3\). The Mott insulating phase is only detected in stoichiometric films fabricated on more suitable DyScO\(_3\) substrates. In turn, it is demonstrated that a \(controlled\) incorporation of excess oxygen ions by increasing the oxygen growth pressure is an effective way of \(p\) doping the material which is used to drive the band filling induced Mott transition. Gaining control of the oxygen stoichiometry in both materials allows for a systematic investigation of correlation effects in general and of the Mott transition in particular. The investigations are realized by various photoelectron spectroscopy techniques that provide a deep insight into the electronic structure. Resonant photoemission not only gives access to the titanium and vanadium related partial density of states of the valence band features, but also shows how the corresponding signal is enhanced by tuning the photon energy to the \(L\) absorption threshold. The enhanced intensity turns out to be very helpful for probing the Fermi surface topology and band dispersions by means of angular-resolved photoemission. The resulting momentum resolved electronic structure verifies central points of the theoretical description of the Mott transition, viz. the renormalization of the band width and a constant Luttinger volume in a correlated metal as the Mott phase is approached. N2 - Das reichhaltige Phasendiagramm von Übergansmetalloxiden ist im Wesentlichen auf Aspekte der Vielteilchenphysik zurückzuführen, welche durch starke Coulomb Wechselwirkungen im zugrundeliegenden Elektronensystem auftreten. Die Beschreibung solcher Korrelationseffekte stellt immernoch eine Herausforderung für die moderne Festkörperhysik dar, wobei für weitere Fortschritte experimentelle Daten nötig sind. Aus diesem Grund beschäftigt sich diese Arbeit mit spektroskopischen Untersuchungen an prototypischen korrelierten Materialien. Die experimentellen Methoden fokussieren sich dabei auf die Photoelektronenspektroskopie. Diese wird auf das korrelierte Metall SrVO\(_3\) und dem Mott Isolator LaTiO\(_3\) angewandt, welche beide als dünne Filme in hoher Qualität hergestellt werden. Eine Verkleinerung der Schichtdicke kann in SrVO\(_3\)-Dünnfilmen einen dimensionsgetriebenen Übergang von der metallischen in die Mott-isolierende Phase induzieren. In dieser Arbeit konnte der extrinsische Beitrag einer Oberflächenoxidation identifiziert werden, der zusätzlich zu den intrinsischen Veränderungen der effektiven Bandbreite, die für gewöhnlich als Grund für den Phasenübergang angeführt werden, auftritt. Durch das Aufbringen einer Deckschicht wird die Oxidation verhindert. So kann der dimensionsinduzierte Übergang ohne extrinsische Einflüsse in stöchiometrischen Proben untersucht werden, die tatsächlich eine höhere kritische Schichtdicke für das Einsetzen des metallischen Verhaltens aufweisen als die freiliegenden und damit überoxidierten Dünnfilme. Bei LaTiO\(_3\)-Dünnfilmen ist die Tendenz zur Überoxidation noch stärker. Eine unkontrollierte Diffusion von Sauerstoff aus dem Substrat in den Film verfälscht die elektronischen Eigenschaften von LaTiO\(_3\)-Schichten, die auf SrTiO\(_3\) gewachsen werden. Die Mott-isolierende Phase kann nur in stöchiometrischen Filmen stabilisiert werden, die auf geeigneteren DyScO\(_3\) Substraten hergestellt werden. Dahingegen kann eine \(kontrollierte\) \(p\)-Dotierung durch eine Erhöhung des Sauerstoffdrucks während des Wachstumsprozesses angewendet werden um den bandfüllungsinduzierten Mott-Übergang zu treiben. Die Kontrolle der Sauerstoffstöchiometrie in beiden Materialien erlaubt eine systematische Untersuchung von Korrelationseffekten im Allgemeinen und des Mott-Übergangs im Speziellen. Dies wird durch die Anwendung diverser spezialisierter Techniken der Photoelektronenspektroskopie realisiert, welche weitreichende Einblicke in die elektronische Struktur gewähren. Resonante Photoelektronenspektroskopie macht nicht nur die partielle Zustandsdichte mit Titan- und Vanadium-Charakter im Valenzband zugänglich, sondern zeigt auch, wie stark die zugehörigen Signale an der \(L\)-Absorptionskante verstärkt werden. Diese Intensitätsverstärkung erweist sich zudem als hilfreich bei der Untersuchung der Fermiflächentopologie und Banddispersion mittels winkelaufgelöster Phototemission. Die daraus gewonnenen Erkenntnisse zur impulsaufgelösten, elektronischen Struktur bestätigen zentrale Punkte der theoretischen Beschreibung des Mott-Übergangs, nämlich eine Renormierung der Bandbreite und ein konstantes Luttingervolumen in einem korrelierten Metall, welches sich der Mott-Phase annähert. KW - Übergangsmetalloxide KW - Mott-Übergang KW - Dünne Schicht KW - Metall-Isolator-Phasenumwandlung KW - Photoelectron Spectroscopy KW - Thin Films KW - Correlated Electron Materials KW - Mott Transistion KW - Photoelektronenspektroskopie KW - Mott-Isolator KW - Lanthantitanate KW - Strontiumvanadate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186358 ER - TY - THES A1 - Gerlach, Marius David T1 - Spectroscopy of fulminic acid HCNO with VUV- and soft X-ray radiation T1 - Spektroskopie der Fulminsäure HCNO mit VUV- und weicher Röntgenstrahlung N2 - Die Fulminsäure HCNO wurde zum ersten Mal im Jahre 1800 synthetisiert und wurde seitdem immer wieder verwendet, um neue chemische Konzepte und Theorien zu entwickeln. Durch die erstmalige Entdeckung der Fulminsäure im Weltall im Jahr 2009 ist die Fulminsäure heutzutage vor allem im Bereich der Astrochemie interessant. In dieser Doktorarbeit haben wir die Interaktion von Fulminsäure mit interstellar Strahlung, genauer mit VUV- sowie weicher Röntgenstrahlung untersucht. In Zuge der Messung mit VUV-Strahlung konnten wir das Photoelektronenspektrum von HCNO mit hoher Auflösung aufnehmen und den Renner-Teller verzerrten Grundzustand des Kations mit Hilfe von Wellenpaketdynamiksimulationen beschreiben. Außerdem konnten wir den Mechanismus der dissoziativen Photoionisation bis zu einer Bindungsenergie von 15.3 eV aufklären. Mit weicher Röntgenstrahlung ist es möglich die 1s Elektronen des HCNO zu ionisieren oder anzuregen. Der erzeugte Zustand zerfällt anschließend durch einen Auger-Meitner Prozess, bei dem ein Auger-Elektron erzeugt wird. Im Zuge der Auger-Elektronenspektroskopie haben wir die kinetische Energie dieser Elektronen gemessen und konnten mittels quantenchemischer Rechnung die beobachten Signale analysieren. Wir untersuchten außerdem, wie das durch den Auger-Meitner Prozess erzeugte Ion zerfällt. Hier konnten wir eine Selektivität des Zerfalls beobachten, je nachdem welches der 1s Elektronen im ersten Schritt angeregt oder ionisiert wurde. Diese Beobachtung konnten wir durch ein einfaches thermodynamisches Argument erklären. Diese Arbeit gibt also ein vollständiges Bild über die Interaktion von HCNO mit ionisierender Strahlung. Die erhaltenen Daten könnten für die Beschreibung von HCNO im interstellaren Raum Bedeutung haben. N2 - Fulminic acid, HCNO, was first synthesized in the year 1800 and has since then been used numerous times to develop new chemical theories and concepts. Nowadays, research on HCNO is mainly motivated due to its detection in interstellar space in the year 2009. In this thesis, we investigated the interaction of fulminic acid with VUV- and soft X-ray radiation, i.e., radiation that is also present in the interstellar medium. In our study using VUV radiation, we were able to record the photoelectron spectrum of HCNO with high resolution and we were able to simulate the Renner-Teller distorted ground state of the cation using simulation of wavepacket dynamics. We also elucidated the mechanism of the dissociative photoionisation up to 15.3 eV binding energy. Using soft X-ray radiation enables us to ionise or excite the 1s electrons of HCNO. The created state can decay via an Auger-Meitner process, which produces an Auger electron. We measured the kinetic energy of these auger electron and were able to analyse the observed signals using quantum chemical calculations. We also investigated how the ion fragments after the Auger-Meitner process. We observed a site-selectivity, where the initial ionisation/excitation site influenced the product distribution. We were able to explain this observation with a simple thermodynamic argument. This thesis provides a comprehensive description of the interaction of HCNO with ionising radiation. The obtained data may be valuable for the description of the behaviour of HCNO in interstellar space. KW - Chemie KW - Auger-Spektroskopie KW - Photoelektronenspektroskopie KW - Fulminsäure KW - Astrochemie KW - Kosmochemie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-329722 ER - TY - THES A1 - Reis, Felix T1 - Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide T1 - Realisierung und Spektroskopie des Quanten-Spin-Hall-Isolators Bismuten auf Siliziumkarbid N2 - Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel. N2 - Topologische Materie ist seit der Vorhersage des Quanten-Spin-Hall-Effekts in Graphen im Jahr 2005 eines der spannendsten Forschungsgebiete der gegenwärtigen Festkörperphysik. Quanten-Spin-Hall-Isolatoren besitzen zwar eine verschwindende Volumen-Leitfähigkeit, aber symmetriegeschützte, helikale Randzustände, welche verlustfreien Ladungstransport erlauben. Der 2007 erfolgte experimentelle Nachweis dieses außergewöhnlichen Materiezustands führte, inspiriert von möglicherweise bahnbrechenden zukünftigen Anwendungen, zu einem sprunghaften Anstieg der Forschungsaktivitäten auf diesem Gebiet. Jedoch ist der Nutzen der derzeit verfügbaren Quanten-Spin-Hall-Materialien aufgrund ihrer vergleichsweise kleinen Volumen-Bandlücken auf kryogene Temperaturen beschränkt. In dieser Arbeit verfolgen wir einen neuen Weg, ein Quanten-Spin-Hall-Material mit einer großen Energielücke zu realisieren und wachsen Bismuten, ein Honigwabengitter aus Bi-Atomen, epitaktisch in einer \((\sqrt{3}\times\sqrt{3})\)-Rekonstruktion auf den Halbleiter SiC(0001). Dadurch nutzen wir sowohl die Honigwaben-Symmetrie, als auch die große Spin-Bahn-Wechselwirkung von Bi aus, welche in Kombination zu einer topologisch nicht-trivialen Bandlücke in der Größenordnung eines Elektronenvolts führen. Eine eingehende theoretische Analyse zeigt, dass die kovalente Bindung zwischen den Si- und Bi-Atomen nicht nur den Bi-Film stabilisiert, sondern entscheidend zur Ausprägung der Quanten-Spin-Hall-Phase beiträgt. Die Präparation unrekonstruierter SiC(0001)-Substrate hoher Güte ist der Grundstein für das Bismutenwachstum und erfordert die Anwendung einer aufwändigen Prozedur in hochreinem, trockenem H\(_2\)-Gas. Messungen mit Rastertunnelmikroskopie enthüllen die (\(1\times1\))-Periodizität der Oberfläche und glatte Terrassenebenen, welche für das Aufwachsen einzelner Bi-Lagen mittels eines dedizierten Molekularstrahlepitaxieprozesses geeignet sind. Die chemische Konfiguration der Filme und ihre Oxidation nach Kontakt mit Umgebungsluft wird mit Röntgenphotoelektronenspektroskopie untersucht. Winkelaufgelöste Photoelektronenspektroskopie legt die exzellente Übereinstimmung zwischen gemessener und berechneter Bandstruktur offen. Insbesondere zeigt sie die charakteristische Rashba-Spinaufspaltung der Valenzbänder am K-Punkt. Messungen mit Rastertunnelspektroskopie beinhalten ebenso Hinweise dieser Aufspaltung, und ermöglichen die Bestimmung der vollständigen Größe der Bandlücke von \(E_\text{gap}\approx0.8\,\text{eV}\). Konstantstrom-Aufnahmen und Karten der lokalen Zustandsdichte bestätigen die Ausbildung eines planaren Honigwabengitters, welches aufgrund unterschiedlicher, jedoch äquivalenter Nukleationszentren der (\(\sqrt{3}\times\sqrt{3}\))-Bi-Rekonstruktion in mehreren Domänen auftritt. Messungen der differenziellen Leitfähigkeit offenbaren, dass sich Bismuten-Randzustände an atomaren Stufen des SiC-Substrats ausbilden. Die gemessene, lokale Zustandsdichte und die gemäß der Energiedispersion des Randzustands in Dichtefunktionaltheorierechnungen erwartete Zustandsdichte stimmen - abgesehen von einem starken Abfall am Fermi-Niveau - überein. Mit temperatur- und energieabhängiger Tunnelspektroskopie wird gezeigt, dass die spektralen Eigenschaften dieser unterdrückten Leitfähigkeit erfolgreich im Rahmen der Tomonaga-Luttinger-Flüssigkeitstheorie beschrieben und wahrscheinlich durch verstärkte elektronische Korrelationen im Randkanal ausgelöst werden. KW - Zweidimensionales Material KW - Topologischer Isolator KW - Siliziumcarbid KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - Bismuthene KW - Silicon Carbide KW - scanning tunneling spectroscopy KW - photoelectron spectroscopy KW - molecular beam epitaxy KW - quantum spin hall insulator KW - two-dimensional topological insulator KW - helical edge states KW - Luttinger liquid KW - honeycomb lattice Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258250 ER -