TY - JOUR A1 - Kunz, Tobias C. A1 - Götz, Ralph A1 - Gao, Shiqiang A1 - Sauer, Markus A1 - Kozjak-Pavlovic, Vera T1 - Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae JF - Frontiers in Cell and Developmental Biology N2 - Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4–4.5, improving the resolution to 60–70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria. KW - Expansion microscopy KW - mitochondria KW - cristae KW - structured illumination microscope KW - ultrastructure Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208296 SN - 2296-634X VL - 8 ER - TY - JOUR A1 - Prinz, Johanna A1 - Karacivi, Aylin A1 - Stormanns, Eva R. A1 - Recks, Masha S. A1 - Kürten, Stefanie T1 - Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis JF - PloS One N2 - Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Limited availability of human tissue underscores the importance of animal models to study the pathology of MS. Methods Twenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord. Results B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. In addition, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation. Conclusions Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse histopathological aspects of MS. KW - Multiple sclerosis KW - spinal cord KW - central nervous system KW - nerve fibers KW - inflammatory diseases KW - axons KW - mitochondria KW - mouse models Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146651 VL - 10 IS - 12 ER - TY - THES A1 - Pedrotti, Lorenzo T1 - The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation T1 - Das SnRK1-C/S1-bZIP-Netzwerk: ein Signalknoten in der Regulation des Arabidopsis Energie-Metabolismus N2 - The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages. N2 - Die Kontrolle der Energiehomöostase ist für alle lebenden Organismen von großer Bedeutung. In den letzten Jahren kam die Idee auf, dass viele Stressantworten, die scheinbar unabhängig voneinander sind, durch den Energiebedarf doch miteinander verbunden sind. Das sogenannte Energie-Signaling wird von vielen verschiedenen Stress- Arten aktiviert und ist verantwortlich für die Aktivierung der allgemeinen Stressantwort. In Arabidopsis thaliana ist die Proteinfamilie der SnF1-verwandten Proteinkinasen (SnRK1) an der Regulation vieler physiologischer Prozesse beteiligt. Auch bei der Regulation der Energiehomöostase als Folge von Stress spielen SnRK1-Kinasen eine wichtige Rolle. Proteine aus der SnRK1-Familie sind SnRK1.1, auch als KIN10 bezeichnet, SnRK1.2 (KIN11) und SnRK1.3 (KIN12). SnRK1-Proteine können die Aktivität von metabolischen Enzyme oder bestimmten Transkriptionsfaktoren (TF) direkt regulieren. Bislang wurde nur für den basischen Leucin-Zipper (bZIP) TF bZIP63 die Regulation durch SnRK1 gezeigt. bZIP63 gehört zur Gruppe C der bZIP Proteinfamilie (C-bZIP). Ebenfalls zu Gruppe C werden bZIP9, bZIP10 und bZIP25 zugeordnet. SnRK1.1 phosphoryliert das bZIP63- Protein an Serin (S) 29, S294 und S300. Der Grad der Phosphorylierung von bZIP63 steht in direktem Zusammenhang mit dem Energiehaushalt der Pflanze. Unter normalen Bedingungen wird bZIP63 kaum phosphoryliert, während bei verlängerter Nacht bZIP63 stark phosphoryliert wird. bZIP TF bilden untereinander Dimere aus und binden so an die DNA um die Expression ihrer Zielgene zu regulieren. C-bZIP TF bilden bevorzugt Dimere mit bZIP TF der Gruppe S1, bekannt als das C/S1-bZIP-Netzwerk. Die SnRK1-abhängige Phosphorylierung von bZIP63 steuert das Aktivierungspotential und die Dimerisierungseigenschaften. Besonders bei bZIP63 ändern sich die Dimerisierungspartner in Abhängigkeit des Phosphorylierungsgrads. Nicht-phosphoryliert dimerisiert bZIP61 mit bZIP1, im phosphorylierten Zustand dagegen bildet bZIP63 Dimere neben bZIP1 auch mit bZIP11 und bZIP63. S1-bZIP TF sowie bZIP63 sind wichtige Regulatoren der transkriptionellen Reprogrammierung, die durch SnRK1 bei verlängerter Dunkelheit induziert wird. S1-bZIP TF regulieren die Expression von 4'000 der 10'000 durch SnRK1 regulierten Gene in der Energieverarmungsantwort. Besonders S1-bZIP TF sind sehr wichtig für die Regulation vieler Gene, die für Enzyme aus dem Aminosäuremetabolismus codieren und als alternative Energiequelle der Pflanze bekannt sind. Wird die Nacht für einige Stunden verlängert, greift die Pflanze auf jede mögliche Energiequelle zurück. Als Energiequelle werden besonders Aminosäuren, aber auch Lipiden und Proteinen herangezogen. Interessanterweise regulieren S1-bZIP TF die Expression von ETFQO. ETFQO ist ein besonderes Protein, das die Elektronen aus dem Metabolismus verzweigter Aminosäuren in die mitochondriale Elektronentransportkette steuert. Das Dimer aus bZIP63 und bZIP2 rekrutiert SnRK1.1 direkt an das Chromatin des ETFQO-Promotors. Dieser Rekrutierung folgt die Acetylierung des Histonproteins 3 (K14H3) am Lysin 14. Diese Modifikation des Chromatins führt normalerweise zu einem euchromatischen Status der DNA und der nachfolgenden transkriptionellen Aktivierung. Neben der Regulation des ETFQO-Gens sind S1-bZIP TF auch an der Regulation von vielen anderen Genen in Folge von verschiedenen Stressen beteiligt. bZIP1 ist beispielsweise ein wichtiger Regulator der Antwort auf Salz-Stress. Auch der primäre Kohlenstoff- und Stickstoffmetabolismus werden von bZIP1 reguliert. Es wird angenommen, dass die Expression von bZIP1 wie auch von bZIP53 und bZIP63 in der Antwort auf Salzstress und Energieverarmung durch SnRK1 gesteuert wird. Abgesehen von der Regulation der Antwort auf Energieverarmung und Salzstress spielen SnRK1-Proteine auch bei der Aktivierung des Lipidmetabolismus während der Keimung eine Rolle. SnRK1 kontrolliert die Expression von CALEOSINs und OLEOSINs. Diese beiden Proteine sind sehr wichtig für die Mobilisierung von Lipiden aus Öltröpfchen. In Abwesenheit von SnRK1 finden aufgrund von Energiemangel weder die Keimung noch die nachfolgende Entwicklung statt. KW - Ackerschmalwand KW - Homöostase KW - Proteinkinasen KW - Stress-Syndrom KW - SnRK1 KW - bZIPs KW - mitochondria KW - energy metabolism Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116080 ER - TY - THES A1 - De Lira, Maria Nathalia T1 - The regulation of T cell metabolism by neutral sphingomyelinase 2 T1 - Die Regulation des T-Zell-Metabolismus durch Neutrale Sphingomyelinase 2 N2 - T cells play an essential role in the immune system. Engaging the T cell receptor (TCR) initiates a cascade of signaling events that activates the T cells. Neutral sphingomyelinase (NSM) is a member of a superfamily of enzymes responsible for the hydrolysis of sphingomyelin into phosphocholine and ceramide. Sphingolipids are essential mediators in signaling cascades involved in apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. Upon specific ablation of NSM2, T cells proved to be hyper-responsive to CD3/CD28 co-stimulation, indicating that the enzyme acts to dampen early overshooting activation of these cells. It remained unclear whether a deregulated metabolic activity supports the hyper-reactivity of NSM2 deficient T cells. This work demonstrates that the ablation of NSM2 activity affects the metabolism of the quiescent CD4+ T cells. These accumulate ATP in mitochondria and increase basal glycolytic activity by increasing the basal glucose uptake and GLUT1 receptor expression, which, altogether, raises intracellular ATP levels and boosts cellular respiration. The increased basal metabolic activity is associated with rapid phosphorylation of S6, a mTORC1 target, as well as enhanced elevation total ATP levels within the first hour after CD3/CD28 costimulation. Increased metabolic activity in resting NSM2 deficient T cells does, however, not support sustained stimulated responses. While elevated under steady-state conditions and elevated early after co-stimulation in NSM2 deficient CD4+ T cells, the mTORC1 pathway regulating mitochondria size, oxidative phosphorylation, and ATP production is impaired after 24 hours of stimulation. Taken together, the absence of NSM2 promotes a hyperactive metabolic state in unstimulated CD4+ T cells yet fails to support sustained T cell responses upon antigenic stimulation without affecting T cell survival. N2 - T-Zellen spielen eine wesentliche Rolle im Immunsystem. Die Aktivierung des T-Zell-Rezeptors (TCR) löst eine Kaskade von Signalereignissen aus, die die T-Zellen aktivieren. Neutrale Sphingomyelinase (NSM) gehört zu einer Superfamilie von Enzymen, die für die Aufspaltung von Sphingomyelin in Phosphocholin und Ceramid verantwortlich sind. Sphingolipide sind wesentliche Mediatoren in Signalkaskaden, die an Apoptose, Proliferation, Stressreaktionen, Nekrose, Entzündung, Autophagie, Seneszenz und Differenzierung beteiligt sind. NSM2-depletierte T-Zellen erwiesen sich als hyper-reaktiv gegenüber CD3/CD28-Kostimulation, was darauf hinweist, dass das Enzym eine überschießende Aktivierung dieser Zellen dämpft. Es blieb unklar, ob die Hyperreaktivität NSM2-defizienter T-Zellen durch eine deregulierte Stoffwechselaktivität unterstützt wird. Diese Arbeit zeigt, dass NSM2-Insuffizienz den Metabolismus ruhender CD4+-T-Zellen beeinflusst: Diese akkumulieren ATP in Mitochondrien und zeigen eine erhöhte basale glykolytische Aktivität, die auf einer erhöhten Glukoseaufnahme und Expression des GLUT1-Rezeptors beruht und mit einer Erhöhung intrazellulärer ATP-Werte und gesteigerten Zellrespiration einhergeht. Aufgrund ihrer bereits erhöhten basalen metabolische Aktivität zeigen NSM2 defiziente T Zellen eine im Vergleich zu Kontrollzellen schnellere, effizientere Aktivierung nach Kostimulation, die sich in Phosphorylierung von S6, eines mTORC1 Targets, sowie erhöhtem ATP Spiegel manifestiert. Dies kann jedoch nicht aufrechterhalten werden:Die mTORC1-Aktivierung, die die Größe der Mitochondrien, die oxidative Phosphorylierung und die ATP-Produktion reguliert, unter stationären Bedingungen in NSM2-defizienten CD4+-T-Zellen erhöht ist, ist nach 24-stündiger Kostimulation beeinträchtigt. Insgesamt scheint die NSM2-Aktivität wesentlich für die Regulation der basalen metabolischen Aktivität ruhender T-Zellen und der Vermeidung überschiessender Antworten nach Kostimulation zu sein, jedoch ebenso wichtig für die dauerhafte Aufrechterhaltung des Aktivierungssignals zu sein. KW - T zellen KW - metabolism KW - t cell KW - NSM2 KW - mitochondria Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215673 ER - TY - JOUR A1 - Goos, Carina A1 - Dejung, Mario A1 - Janzen, Christian J. A1 - Butter, Falk A1 - Kramer, Susanne T1 - The nuclear proteome of Trypanosoma brucei JF - PLoS ONE N2 - Trypanosoma brucei is a protozoan flagellate that is transmitted by tsetse flies into the mammalian bloodstream. The parasite has a huge impact on human health both directly by causing African sleeping sickness and indirectly, by infecting domestic cattle. The biology of trypanosomes involves some highly unusual, nuclear-localised processes. These include polycistronic transcription without classical promoters initiated from regions defined by histone variants, trans-splicing of all transcripts to the exon of a spliced leader RNA, transcription of some very abundant proteins by RNA polymerase I and antigenic variation, a switch in expression of the cell surface protein variants that allows the parasite to resist the immune system of its mammalian host. Here, we provide the nuclear proteome of procyclic Trypanosoma brucei, the stage that resides within the tsetse fly midgut. We have performed quantitative label-free mass spectrometry to score 764 significantly nuclear enriched proteins in comparison to whole cell lysates. A comparison with proteomes of several experimentally characterised nuclear and non-nuclear structures and pathways confirmed the high quality of the dataset: the proteome contains about 80% of all nuclear proteins and less than 2% false positives. Using motif enrichment, we found the amino acid sequence KRxR present in a large number of nuclear proteins. KRxR is a sub-motif of a classical eukaryotic monopartite nuclear localisation signal and could be responsible for nuclear localization of proteins in Kinetoplastida species. As a proof of principle, we have confirmed the nuclear localisation of six proteins with previously unknown localisation by expressing eYFP fusion proteins. While proteome data of several T. brucei organelles have been published, our nuclear proteome closes an important gap in knowledge to study trypanosome biology, in particular nuclear-related processes. KW - Trypanosoma KW - gambiense KW - Trypanosoma brucei KW - proteomes KW - yellow fluorescent protein KW - mitochondria KW - protein structure KW - histones Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158572 VL - 12 IS - 7 ER - TY - JOUR A1 - Niemann, Axel A1 - Huber, Nina A1 - Wagner, Konstanze M. A1 - Somandin, Christian A1 - Horn, Michael A1 - Lebrun-Julien, Frédéric A1 - Angst, Brigitte A1 - Pereira, Jorge A. A1 - Halfter, Hartmut A1 - Welzl, Hans A1 - Feltri, M. Laura A1 - Wrabetz, Lawrence A1 - Young, Peter A1 - Wessig, Carsten A1 - Toyka, Klaus V. A1 - Suter, Ueli T1 - The Gdap1 knockout mouse mechanistically links redox control to Charcot–Marie–Tooth disease JF - Brain N2 - The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot–Marie–Tooth disease. We found that Gdap1 knockout mice (\(Gdap1^{−/−}\)), mimicking genetic alterations of patients suffering from severe forms of Charcot–Marie–Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in \(Gdap1^{−/−}\) mice and mitochondrial transport is impaired in cultured sensory neurons of \(Gdap1^{−/−}\) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of \(Gdap1^{−/−}\) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged \(Gdap1^{−/−}\) mice compared with controls. Our findings demonstrate that Charcot–Marie–Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione. KW - animal models KW - Charcot-Marie-Tooth disease KW - mitochondria KW - axonal transport KW - demyelinating disease Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120731 VL - 137 IS - 3 ER - TY - JOUR A1 - Wagner, Michael A1 - Bertero, Edoardo A1 - Nickel, Alexander A1 - Kohlhaas, Michael A1 - Gibson, Gary E. A1 - Heggermont, Ward A1 - Heymans, Stephane A1 - Maack, Christoph T1 - Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart JF - Basic Research in Cardiology N2 - In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H\(_2\)O\(_2\) by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H\(_2\)O\(_2\) elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H\(_2\)O\(_2\) emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H\(_2\)O\(_2\) emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H2O2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H\(_2\)O\(_2\)-eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H2O2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H\(_2\)O\(_2\)-eliminating capacity increases H\(_2\)O\(_2\) emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H\(_2\)O\(_2\) emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H\(_2\)O\(_2\) elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure. KW - mitochondria KW - α-Ketoglutarate dehydrogenase KW - reactive oxygen species KW - nicotinamide nucleotide transhydrogenase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234907 SN - 0300-8428 VL - 115 ER - TY - INPR A1 - Hennig, Thomas A1 - Prusty, Archana B. A1 - Kaufer, Benedikt A1 - Whisnant, Adam W. A1 - Lodha, Manivel A1 - Enders, Antje A1 - Thomas, Julius A1 - Kasimir, Francesca A1 - Grothey, Arnhild A1 - Herb, Stefanie A1 - Jürges, Christopher A1 - Meister, Gunter A1 - Erhard, Florian A1 - Dölken, Lars A1 - Prusty, Bhupesh K. T1 - Selective inhibition of microRNA processing by a herpesvirus-encoded microRNA triggers virus reactivation from latency N2 - Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a novel cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the latent-lytic switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture, which impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 was sufficient to trigger virus reactivation from latency thereby identifying it as a readily drugable master regulator of the herpesvirus latent-lytic switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders like myalgic encephalitis/chronic fatigue syndrome (ME/CFS) and Long-COVID. KW - Herpesvirus KW - HHV-6 KW - miRNA processing KW - miR-30 KW - mitochondria KW - fusion and fission KW - type I interferon KW - latency KW - virus reactivation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267858 UR - https://doi.org/10.21203/rs.3.rs-820696/v1 ET - submitted version ER - TY - JOUR A1 - Boltze, Johannes A1 - Kleinschnitz, Christoph A1 - Reymann, Klaus G. A1 - Reiser, Georg A1 - Wagner, Daniel-Christoph A1 - Kranz, Alexander A1 - Michalski, Dominik T1 - Neurovascular pathophysiology in cerebral ischemia, dementia and the ageing brain – current trends in basic, translational and clinical research JF - Experimental & Translational Stroke Medicine N2 - The 7th International Symposium on Neuroprotection and Neurorepair was held from May 2nd to May 5th, 2012 in Potsdam, Germany. The symposium, which directly continues the successful Magdeburg meeting series, attracted over 330 colleagues from 29 countries to discuss recent findings and advances in the field. The focus of the 2012 symposium was widened from stroke and traumatic brain injury to neurodegenerative diseases, notably dementia, and more generally the ageing brain. Thereby, emphasis was given on neurovascular aspects of neurodegeneration and stroke including the blood–brain barrier, recent findings regarding the pathomechanism of Alzheimer’s disease, and brain imaging approaches. In addition, neurobiochemical aspects of neuroprotection, the role of astrogliosis, the clinical progress of cell-based approaches as well as translational hurdles and opportunities were discussed in-depth. This review summarizes some of the most stimulating discussions and reports from the meeting. KW - translational research KW - small vessel disease KW - Alzheimer’s disease KW - cerebral ischemia KW - neurorepair KW - neuroprotection KW - vascular dementia KW - mitochondria KW - astrogliosis KW - in vivo imaging Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126679 VL - 4 IS - 14 ER - TY - JOUR A1 - Janz, Anna A1 - Walz, Katharina A1 - Cirnu, Alexandra A1 - Surjanto, Jessica A1 - Urlaub, Daniela A1 - Leskien, Miriam A1 - Kohlhaas, Michael A1 - Nickel, Alexander A1 - Brand, Theresa A1 - Nose, Naoko A1 - Wörsdörfer, Philipp A1 - Wagner, Nicole A1 - Higuchi, Takahiro A1 - Maack, Christoph A1 - Dudek, Jan A1 - Lorenz, Kristina A1 - Klopocki, Eva A1 - Ergün, Süleyman A1 - Duff, Henry J. A1 - Gerull, Brenda T1 - Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes JF - Molecular Metabolism N2 - Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy. KW - cell biology KW - molecular biology KW - dilated cardiomyopathy with ataxia KW - genetics KW - metabolism KW - mitochondria KW - OXPHOS KW - ROS KW - contractility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350393 SN - 2212-8778 VL - 79 ER -