TY - JOUR A1 - Amthor, Matthias A1 - Weißenseel, Sebastian A1 - Fischer, Julian A1 - Kamp, Martin A1 - Schneider, Christian A1 - Höfling, Sven T1 - Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity N2 - We report on the condensation of microcavity exciton polaritons under optical excitation in a microcavity with four embedded InGaAs quantum wells. The polariton laser is characterized by a distinct nonlinearity in the input-output-characteristics, which is accompanied by a drop of the emission linewidth indicating temporal coherence and a characteristic persisting emission blueshift with increased particle density. The temporal coherence of the device at threshold is underlined by a characteristic drop of the second order coherence function to a value close to 1. Furthermore an external electric field is used to switch between polariton regime, polariton condensate and photon lasing. KW - Quantum-well, -wire and -dot devices KW - Scattering KW - stimulated KW - Resonators KW - Microcavity devices Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111130 ER - TY - JOUR A1 - Maier, Sebastian A1 - Gold, Peter A1 - Forchel, Alfred A1 - Gregersen, Niels A1 - Mork, Jesper A1 - Höfling, Sven A1 - Schneider, Christian A1 - Kamp, Martin T1 - Bright single photon source based on self-aligned quantum dot-cavity systems JF - Optics Express N2 - We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42% demonstrated) and pure (g(2)(0) value of 0.023) single-photon emission. KW - photon statistics KW - quantum communications KW - resonators KW - quantum-well -wire and -dot devices Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119801 SN - 1094-4087 VL - 22 IS - 7 ER - TY - JOUR A1 - Rau, Markus A1 - Heindel, Tobias A1 - Unsleber, Sebastian A1 - Braun, Tristan A1 - Fischer, Julian A1 - Frick, Stefan A1 - Nauerth, Sebastian A1 - Schneider, Christian A1 - Vest, Gwenaelle A1 - Reitzenstein, Stephan A1 - Kamp, Martin A1 - Forchel, Alfred A1 - Höfling, Sven A1 - Weinfurter, Harald T1 - Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources-a proof of principle experiment JF - New Journal of Physics N2 - Highly efficient single-photon sources (SPS) can increase the secure key rate of quantum key distribution (QKD) systems compared to conventional attenuated laser systems. Here we report on a free space QKD test using an electrically driven quantum dot single-photon source (QD SPS) that does not require a separate laser setup for optical pumping and thus allows for a simple and compact SPS QKD system. We describe its implementation in our 500 m free space QKD system in downtown Munich. Emulating a BB84 protocol operating at a repetition rate of 125 MHz, we could achieve sifted key rates of 5-17 kHz with error ratios of 6-9% and g((2))(0)-values of 0.39-0.76. KW - QKD KW - electrically driven KW - free space KW - quantum dots KW - quantum key distribution Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116760 VL - 16 IS - 043003 ER -