TY - JOUR A1 - Costea, Paul I. A1 - Coelho, Louis Pedro A1 - Sunagawa, Shinichi A1 - Munch, Robin A1 - Huerta-Cepas, Jaime A1 - Forslund, Kristoffer A1 - Hildebrand, Falk A1 - Kushugulova, Almagul A1 - Zeller, Georg A1 - Bork, Peer T1 - Subspecies in the global human gut microbiome JF - Molecular Systems Biology N2 - Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large‐scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture‐independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72% of the total assigned microbial abundance, single‐nucleotide variation clearly indicates the existence of sub‐populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies‐specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro‐inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host. KW - biology KW - genetic variation KW - metagenomics KW - microbiome KW - population structure KW - prokaryotic subspecies Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172674 VL - 13 IS - 12 ER - TY - JOUR A1 - Coelho, Luis Pedro A1 - Kultima, Jens Roat A1 - Costea, Paul Igor A1 - Fournier, Coralie A1 - Pan, Yuanlong A1 - Czarnecki-Maulden, Gail A1 - Hayward, Matthew Robert A1 - Forslund, Sofia K. A1 - Schmidt, Thomas Sebastian Benedikt A1 - Descombes, Patrick A1 - Jackson, Janet R. A1 - Li, Qinghong A1 - Bork, Peer T1 - Similarity of the dog and human gut microbiomes in gene content and response to diet JF - Microbiome N2 - Background Gut microbes influence their hosts in many ways, in particular by modulating the impact of diet. These effects have been studied most extensively in humans and mice. In this work, we used whole genome metagenomics to investigate the relationship between the gut metagenomes of dogs, humans, mice, and pigs. Results We present a dog gut microbiome gene catalog containing 1,247,405 genes (based on 129 metagenomes and a total of 1.9 terabasepairs of sequencing data). Based on this catalog and taxonomic abundance profiling, we show that the dog microbiome is closer to the human microbiome than the microbiome of either pigs or mice. To investigate this similarity in terms of response to dietary changes, we report on a randomized intervention with two diets (high-protein/low-carbohydrate vs. lower protein/higher carbohydrate). We show that diet has a large and reproducible effect on the dog microbiome, independent of breed or sex. Moreover, the responses were in agreement with those observed in previous human studies. Conclusions We conclude that findings in dogs may be predictive of human microbiome results. In particular, a novel finding is that overweight or obese dogs experience larger compositional shifts than lean dogs in response to a high-protein diet. KW - microbiome KW - diet KW - metagenomics KW - dog microbiome KW - human microbiome KW - mouse microbiome KW - pig microbiome Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-223177 VL - 6 ER - TY - JOUR A1 - Schmidt, Thomas S. B. A1 - Hayward, Matthew R. A1 - Coelho, Luiis P. A1 - Li, Simone S. A1 - Costea, Paul I. A1 - Voigt, Anita Y. A1 - Wirbel, Jakob A1 - Maistrenko, Oleksandr M. A1 - Alves, Renato J. C. A1 - Bergsten, Emma A1 - de Beaufort, Carine A1 - Sobhani, Iradj A1 - Heintz-Buschart, Anna A1 - Sunagawa, Shinichi A1 - Zeller, Georg A1 - Wilmes, Paul A1 - Bork, Peer T1 - Extensive transmission of microbes along the gastrointestinal tract JF - eLife N2 - The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease. KW - Colonization KW - Annotation KW - Dynamics KW - Accurate KW - Strains KW - Barrier KW - Health KW - Acids KW - Research Article KW - Computational and Systems Biology KW - Microbiology and Infectious Disease KW - microbiome KW - gastrointestinal tract KW - colorectal cancer KW - rheumatoid arthritis KW - metagenomics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228954 VL - 8 ER - TY - JOUR A1 - Voulgari-Kokota, Anna A1 - Steffan-Dewenter, Ingolf A1 - Keller, Alexander T1 - Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions JF - Insects N2 - Solitary bees are subject to a variety of pressures that cause severe population declines. Currently, habitat loss, temperature shifts, agrochemical exposure, and new parasites are identified as major threats. However, knowledge about detrimental bacteria is scarce, although they may disturb natural microbiomes, disturb nest environments, or harm the larvae directly. To address this gap, we investigated 12 Osmia bicornis nests with deceased larvae and 31 nests with healthy larvae from the same localities in a 16S ribosomal RNA (rRNA) gene metabarcoding study. We sampled larvae, pollen provisions, and nest material and then contrasted bacterial community composition and diversity in healthy and deceased nests. Microbiomes of pollen provisions and larvae showed similarities for healthy larvae, whilst this was not the case for deceased individuals. We identified three bacterial taxa assigned to Paenibacillus sp. (closely related to P. pabuli/amylolyticus/xylanexedens), Sporosarcina sp., and Bacillus sp. as indicative for bacterial communities of deceased larvae, as well as Lactobacillus for corresponding pollen provisions. Furthermore, we performed a provisioning experiment, where we fed larvae with untreated and sterilized pollens, as well as sterilized pollens inoculated with a Bacillus sp. isolate from a deceased larva. Untreated larval microbiomes were consistent with that of the pollen provided. Sterilized pollen alone did not lead to acute mortality, while no microbiome was recoverable from the larvae. In the inoculation treatment, we observed that larval microbiomes were dominated by the seeded bacterium, which resulted in enhanced mortality. These results support that larval microbiomes are strongly determined by the pollen provisions. Further, they underline the need for further investigation of the impact of detrimental bacterial acquired via pollens and potential buffering by a diverse pollen provision microbiome in solitary bees. KW - Osmia bicornis KW - solitary bee KW - bacterial transmission KW - microbiome KW - pollen provisions KW - pathogen KW - secondary invader KW - Paenibacillus KW - Bacillus KW - Sporosarcina Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207948 SN - 2075-4450 VL - 11 IS - 6 ER - TY - JOUR A1 - Lehenberger, Maximilian A1 - Foh, Nina A1 - Göttlein, Axel A1 - Six, Diana A1 - Biedermann, Peter H. W. T1 - Nutrient-Poor Breeding Substrates of Ambrosia Beetles Are Enriched With Biologically Important Elements JF - Frontiers in Microbiology N2 - Fungus-farming within galleries in the xylem of trees has evolved independently in at least twelve lineages of weevils (Curculionidae: Scolytinae, Platypodinae) and one lineage of ship-timber beetles (Lymexylidae). Jointly these are termed ambrosia beetles because they actively cultivate nutritional “ambrosia fungi” as their main source of food. The beetles are obligately dependent on their ambrosia fungi as they provide them a broad range of essential nutrients ensuring their survival in an extremely nutrient-poor environment. While xylem is rich in carbon (C) and hydrogen (H), various elements essential for fungal and beetle growth, such as nitrogen (N), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), and manganese (Mn) are extremely low in concentration. Currently it remains untested how both ambrosia beetles and their fungi meet their nutritional requirements in this habitat. Here, we aimed to determine for the first time if galleries of ambrosia beetles are generally enriched with elements that are rare in uncolonized xylem tissue and whether these nutrients are translocated to the galleries from the xylem by the fungal associates. To do so, we examined natural galleries of three ambrosia beetle species from three independently evolved farming lineages, Xyleborinus saxesenii (Scolytinae: Xyleborini), Trypodendron lineatum (Scolytinae: Xyloterini) and Elateroides dermestoides (Lymexylidae), that cultivate unrelated ambrosia fungi in the ascomycete orders Ophiostomatales, Microascales, and Saccharomycetales, respectively. Several elements, in particular Ca, N, P, K, Mg, Mn, and S, were present in high concentrations within the beetles’ galleries but available in only very low concentrations in the surrounding xylem. The concentration of elements was generally highest with X. saxesenii, followed by T. lineatum and E. dermestoides, which positively correlates with the degree of sociality and productivity of brood per gallery. We propose that the ambrosia fungal mutualists are translocating essential elements through their hyphae from the xylem to fruiting structures they form on gallery walls. Moreover, the extremely strong enrichment observed suggests recycling of these elements from the feces of the insects, where bacteria and yeasts might play a role. KW - ambrosia beetle KW - ecological stoichiometry KW - microbiome KW - nutrients KW - macro- and micro-elements KW - element translocation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237602 SN - 1664-302X VL - 12 ER -