TY - THES A1 - Storim, Julian T1 - Dynamic mapping of the immunological synapse in T cell homeostasis and activation T1 - Dynamische Untersuchung der immunologischen Synapse während T-Zellhomöostase und -aktivierung N2 - Polarity and migration are essential for T cell activation, homeostasis, recirculation and effector function. To address how T cells coordinate polarization and migration when interacting with dendritic cells (DC) during homeostatic and activating conditions, a low density collagen model was used for confocal live-cell imaging and high-resolution 3D reconstruction of fixed samples. During short-lived (5 to 15 min) and migratory homeostatic interactions, recently activated T cells simultaneously maintained their amoeboid polarization and polarized towards the DC. The resulting fully dynamic and asymmetrical interaction plane comprised all compartments of the migrating T cell: the actin-rich leading edge drove migration but displayed only moderate signaling activity; the mid-zone mediated TCR/MHC induced signals associated with homeostatic proliferation; and the rear uropod mediated predominantly MHC independent signals possibly connected to contact-dependent T cell survival. This “dynamic immunological synapse” with distinct signaling sectors enables moving T cells to serially sample antigen-presenting cells and resident tissue cells and thus to collect information along the way. In contrast to homeostatic contacts, recognition of the cognate antigen led to long-lasting T cell/DC interaction with T cell rounding, disintegration of the uropod, T cell polarization towards the DC, and the formation of a symmetrical contact plane. However, the polarity of the continuously migrating DC remained intact and T cells aggregated within the DC uropod, an interesting cellular compartment potentially involved in T cell activation and regulation of the immune response. Taken together, 3D collagen facilitates high resolution morphological studies of T cell function under realistic, in vivo-like conditions. N2 - Zellpolarität und Migration sind essentielle Voraussetzungen für T Zellaktivierung und homöostase sowie für Rezirkulation, und Effektorfunktionen. Um unter homöostatischen bzw. aktivierenden Bedingungen die Koordi¬nation von Polarisation und Migration von T Lymphozyten, die mit dendritischen Zellen (DC) interagieren, zu untersuchen, wurde ein Kollagenmatrix-Model mit niedriger Kollagendichte für konfokale Zeitraffermikro¬skopie und die hochaufgelöste Rekonstruktion fixierter Proben genutzt. Bei kurzen (5-15 min), migratorischen homöostatischen Kontakten behielten voraktivierte T-Zel¬len ihr amöboide Polarisation bei, während sie sich gleichzeitig Richtung DC polarisierten. Die hieraus resultie¬rende, dynamische und asymmetrische Kontaktflä¬che bestand aus allen Kompartimenten der migrierenden T-Zelle: Der F-Aktin-reiche vordere Zellpol („leading edge“) sorgte für Vor¬schub, hatte aber nur einen geringen Anteil an der Singaltransduktion; im mittleren Bereich („mid-zone“) waren MHC/TCR-abhängige Signale mit homöostatischer Proliferation assozi¬iert; und im als Uropod bezeichneten hintere Zellpol fanden sich vor allem MHC-unabhän¬gige Signale, die möglicherweise im Zusammenhang mit kontaktabhängigem Überleben stehen. Diese „dynamische immuno¬logische Synapse“ mit ihren Signaltransduktionsbereichen versetzt wan¬dernde T-Zellen in die Lage, nacheinander Kontakt zu mehreren antigenpräsen¬tierenden oder gewebsspezifischen Zellen aufzunehmen und so Informationen „im Vorbeigehen“ zu sammeln. Im Gegensatz zu homöostatischen Kontakten führte die Bindung des spezifischen Antigens zu langlebigen T Zellen/DC Kontakten, die mit der Abrundung der T Zelle und der Pola¬risation Richtung DC, der Auflösung ihres Uropods sowie der Ausbildung einer symmetri¬schen Kontaktfläche einher gin¬gen. Die Polarität der währenddessen fortge¬setzt migrierenden DC blieb dem gegenüber erhal¬ten und T-Zellen akkumulierten im DC-Uropod, einem interes¬santen Zellkompartiment, dass an T Zell-aktivierung und der Regu¬lation der Immunantwort beteiligt sein könnte. Zusammenge¬fasst ermöglicht das 3D Kollagenmatrix-Modell die hoch aufgelöste morphologische Untersu¬chung von T-Zell¬funk¬tionen unter realistischen, in vivo-artigen Bedingungen. KW - T-Lymphozyt KW - Dendritische Zelle KW - Zellmigration KW - Immunologische Synapse KW - T-Zellaktivierung KW - T-Zellhomöostase KW - Kollagen KW - T lymphocyte KW - dendritic cell KW - immunological synapse KW - migration Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70114 ER - TY - THES A1 - Pletinckx, Katrien T1 - Dendritic cell maturation and instruction of CD4+ T cell tolerance in vitro T1 - Reifung der dendritischen Zelle und Instruktion der CD4+ T Zell Toleranz in vitro N2 - Effective T cell immunity was believed to occur by mature DC, whereas tolerogenicity was attributed strictly to immature DC phenotypes. However, intermediate DC maturation stages were identified conditioned by inflammatory mediators like TNF. Furthermore, the T cell tolerance mechanisms are dependent on distinct modes and intensities of co-stimulation. Therefore, in this study it was addressed how distinct DC maturation signatures instruct CD4+ T cell tolerance mechanisms. DC acquire antigens from apoptotic cells for self-peptide-MHC presentation and functionally adapt presumed tolerogenic DC phenotypes. Here, immature murine bone-marrow derived DC representing both inflammatory and conventional DC subsets adapted a maturationresistant DC signature upon apoptotic cell recognition but no additional tolerogenic features. Immature DC instruct CD4+ FoxP3+ regulatory T cells in a TGF-β prone micro-environment or generate anergic CD4+ T cells hampered in the TCR-induced proliferation and IL-2 secretion. Secondary stimulation of such anergic CD4+ T cells by immature DC increased primarily IL-10 production and conferred regulatory function. These IL-10+ regulatory T cells expressed high levels of CTLA-4, which is potently induced by immature DC in particular. Data in this work showed that anergic T cells can be re-programmed to become IL-10+ regulatory T cells upon ligation of CTLA-4 and CD28 signalling cascades by B7 costimulatory ligands on immature DC. In contrast, semi-mature DC phenotypes conditioned by the inflammatory mediator TNF prevented autoimmune disorders by induction of IL-10+ Th2 responses as demonstrated previously. Here, it was shown that TNF as an endogenous maturation stimulus and pathogenic Trypanosoma brucei variant-specific surface glycoproteins (VSG) induced highly similar DC gene expression signatures which instructed default effector Th2 responses. Repetitive administration of the differentially conditioned semi-mature DC effectively skewed T cell immunity to IL-10+ Th2 cells, mediating immune deviation and suppression. Collectively, the data presented in this work provide novel insights how immature and partially mature DC phenotypes generate T cell tolerance mechanisms in vitro, which has important implications for the design of effective DC-targeted vaccines. Unravelling the DC maturation signatures is central to the long-standing quest to break tolerance mimicked by malignant tumours or re-establish immune homeostasis in allergic or autoimmune disorders. N2 - Reife DC sind potente Induktoren von T Zell Immunität, wogegen unreife DC Stadien zur Induktion von Immuntoleranz befähigt sind. Zudem sind intermediäre semireife DC Entwicklungsstadien identifiziert worden, wie sie nach Behandlung mit inflammatorischen TNF entstehen. Die bekannten T Zell Toleranzmechanismen sind wiederum abhängig von unterschiedlicher Art und Intensität von Kostimulation. Hier wurde deshalb untersucht wie verschiedene DC Reifungsstadien CD4+ T Zelltoleranz induzieren können. DC nehmen apoptotisches Zellmaterial auf, was als Antigenquelle zur Präsentation von MHC/Selbstpeptid-Komplexen genutzt wird und tolerogene Funktionen in DC hervorrufen kann. Unsere Ergebnisse zeigten dass aus Knochenmark generierte DC der Maus, die sowohl inflammatorische als auch klassische DC Subtypen darstellen, nach Erkennung apoptotischen Zellmaterials reifungsresistent wurden, jedoch unverändert unreif und keine neuen tolerogenen Funktionen erwarben. Unreife DC induzierten in Gegenwart von TGF-β CD4+ FoxP3+ regulatorische T Zellen und in dessen Abwesenheit anergische CD4+ T Zellen. Wiederholte Stimulation anergischer CD4+ T Zellen durch unreife DC, induzierte deren IL-10 Produktion und regulatorische Eigenschaften. Diese IL-10+ regulatorischen T Zellen zeigten keine FoxP3 Expression, jedoch verstärkt CTLA-4, insbesondere nach Interaktion mit unreifen DC. Zusammen zeigten die hier erhaltenen Daten, dass das Reprogrammieren anergischer T Zellen zu IL-10+ regulatorischen T Zellen über CTLA-4 als auch über CD28 Signalkaskaden durch deren B7 Liganden auf der Zelloberfläche unreifer DC gesteuert wird. Frühere Arbeiten zeigten, dass repetitive Injektion semireifer DC, Autoimmunerkrankungen vorbeugen konnten durch die Induktion IL-10+ Th2 Antworten. Hier konnte gezeigt werden dass TNF als endogener Reifungsstimulus sowie pathogene T. brucei Varianten-spezifische Glykoproteine (VSG) sehr ähnliche semireife DC Reifungsqualitäten hervorrufen. Die entsprechend generierten Th2 Effektor Zellen unterschieden sich lediglich geringfügig in deren Zytokinproduktion. Repetitive Injektionen dieser semireifen DC induzierten ebenfalls IL-10+ Th2 Differenzierung und effektive Immundeviation in vivo. Insgesamt hat die vorliegende Arbeit wichtige Erkenntnisse ergeben, wie unreife und semireife DC die Generierung unterschiedlicher T Zell Toleranzmechanismen in vitro unterstützen. Diese Erkenntnisse sind ein wichtiger Schritt bei der Entwicklung effektiver DC-basierter Immunvakzinen. Die Definition der verschiedenen DC Reifungsstadien ist von großer Bedeutung bei der Optimierung von Behandlungsverfahren gegen infektiöse Erreger, Krebs oder Autoimmunerkrankungen. KW - Dendritische Zelle KW - T-Lymphozyt KW - Immuntoleranz KW - Toleranz KW - Dendritic cell KW - tolerance Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67375 ER -