TY - THES A1 - Bach, Lars T1 - Neuartige nanostrukturierte Halbleiterlaser und Mikroringresonatoren auf InP-Basis für Wellenlängenmultiplexsysteme in der optischen Nachrichtenübertragung T1 - New types of nanostructured semiconductor lasers and micro ring resonators based on InP for dense wavelength division multiplexing systems in optical telecommunication applications N2 - Zusammenfassung Diese Arbeit beschäftigt sich mit der Herstellung und Untersuchung von neuartigen nanostrukturierten Halbleiterbauelementen. Es wird gezeigt, dass durch den Einsatz von optischer und hochauflösender Elektronenstrahl- und Ionenstrahllithographie verschiedene optoelektronische Bauelemente (Laser und Filter) definiert werden können. Die Kombination dieser Definitionsprozesse mit speziellen nass- und trockenchemischen Ätzverfahren erlaubt die Herstellung von Bauelementen mit sehr hoher Genauigkeit, Reproduzierbarkeit und monolithischer Integrationsfähigkeit mit verschiedensten Geometrien und Bereichen innerhalb der Bauelemente. Die Grundlagen zum Verständnis der Funktionsweise und der Hochfrequenzeigenschaften der einzelnen Resonatorarten, Gitterstrukturen und der Laser mit diesen Gitterstrukturen sind in Kapitel 2 zusammen gefasst. Nach einer kurzen Abhandlung des Laserprinzips und des Aufbaus einer Laserdiode, werden die statischen und dynamischen Kenngrößen und Prozesse in den Lasern ausführlich vorgestellt. Besonderes Augenmerk gilt dabei den dynamischen Grundlagen und der Erläuterung eines zusätzlichen Wechselwirkungsprinzips, genannt „Detuned Loading“, im Laser und die sich daraus ergebenden neuen Eigenschaften. Die Auswirkungen der Resonatorgeometrien und Gitterstrukturen auf die spektralen Eigenschaften der Laser sind Bestandteil des zweiten Teiles von Kapitel 2. In Kapitel 3 werden die technologischen Prozesse zur Herstellung der verschiedensten präsentierten Bauelemente im Detail vorgestellt. Die Vorstellung der Charakterisierungsmethoden und der verwendeten Messplätze schließen dieses Kapitel ab. Kapitel 4 beschäftigt sich ausschließlich mit den elektrischen und spektralen Eigenschaften der einzel- und gekoppelten Quadrat-Resonator-Lasern. Kapitel 5 beschäftigt sich mit monomodige DFB- oder DBR-Lasern für Wellenlängenmultiplexsysteme im Wellenlängenbereich um 1.55 µm, als Einzelkomponenten oder in Arrays, die eine exakt einstellbarere Wellenlänge und hoher Modenstabilität aufweisen. Durch die Verwendung des DBR-Prinzips kann eine signifikante Verbesserung der statischen und dynamischen Eigenschaften gegenüber dem DFB-Prinzip erreicht werden. Die Verbesserungen der statischen Eigenschaften beruhen hauptsächlich auf der räumlichen Trennung von Verstärkungs- und Gitterbereich im Fall des DBR-Lasers und der damit verbundenen Erhöhung der Reflexion des Rückfacettenbereiches. Die Trennung bewirkt eine Reduktion der Absorption im Verstärkungsbereich, keine gitterimplantationsbedingten Erhöhung der internen Absorption wie im DFB-Fall, und damit eine Erhöhung der Effizienz was sich wiederum in einer geringern Wärmeproduktion äußert. Aufgrund der aufgeführten Ursachen ist es möglich durch Größenoptimierung der jeweiligen Bereiche Schwellenströme von 8 mA, Effizienzen von 0.375 W/A, Ausgangsleistungen bis zu 70 mW, Betriebsbereiche bis zum 12fachen des Schwellenstromes, Verschiebungen der Wellenlänge mit dem Betriebsstrom von 0.01 nm/mA, eine thermische Belastbarkeiten bis zu 120°C und Seitenmodenunterdrückungen bis zu 67 dB durch das DBR-Laserprinzip zu realisieren. In Kapitel 6 wird ein neues Konzept eines hochfrequenzoptimierten Lasers vorgestellt. Das Prinzip des „Detuned Loading“ ist sehr sensitiv auf die Phasenlage der umlaufenden Welle im Laser und auf die Lage der Hauptmode auf der Reflexionsfunktion des Gitters. Da eine Phasenänderung von 2einer Längenänderung von einigen 100 nm entspricht und dies außerhalb der Herstellungstoleranz liegt, ist eine gezielte Kontrolle dieses Prinzips im DBR-Laser nicht möglich. Dies führte zu einer Weiterentwicklung des DBR-Lasers in einem Laser der einer Phasenkontrolle ermöglicht, genannt CCIG-Laser. Dieser Laser besteht aus einer Lasersektion, einer zentralen Gittersektion und einer angeschlossenen Phasensektion. Durch Strominjektion in die Phasensektion ist es möglich über eine Änderung des Brechungsindexes eine gezielte Einstellung der Phasenlage zu gewährleisten. Die Phasensektion hat keine Auswirkungen auf die statischen elektrischen und spektralen Eigenschaften der Laser. Diese sind sehr gut mit denen der DBR-Laser vergleichbar. Damit war es möglich durch einen CCIG-Laser mit Sektionsgrößen von 500 µm für jede Sektion eine Steigerung der Bandbreite auf einen Rekordwert von 37 GHz, dass entspricht einem Steigerungsfaktor von 4.5 gegenüber Fabry-Perot-Lasern gleicher Länge, zu steigern. N2 - Summary This dissertation occupies with the fabrication and investigation of new types ofnanostructured semiconductor devices. It will be shown that the use of high resolution e-beam and focused ion beam technologies enables the fabrication of several types of optoelectronic devices (laser and filter). The combination of these methods with specific wet- and drychemical etching procedures allows the fabrication of devices with high accuracy, reproducibility and the potential of monolithic integration. The theoretical background for a better understanding of the functionality and the high frequency properties of the several resonator types, grating structures and lasers with these gratings will be given in chapter 2. After a short explanation of the laser principle and the geometry of a laser diode the static and dynamic parameters and processes inside the lasers will be explained. The main focus of this chapter is the explanation of the detuned loading principle in the lasers. This principle is responsible for the new dynamic properties of these lasers. In the second part of chapter 2 the affects of the resonator geometries and grating structures at the spectral properties will be discussed. The technological processes for the fabrication of the several-presented devices will be discussed in detail in chapter 3. Also the measurement methods and setups will be presented in this chapter. Exclusive in chapter 4 the spectral and electrical properties of the single- and coupled squareresonator lasers will be shown. The specific analysis of the geometrical parameters (width, radius) allows a reduction of the size of these lasers down to diameters of D = 30 µm. The square like geometry of these lasers with the four 45° facets results in 8 singularities at the corners of these facets. The content of chapter 5 are the single mode emitting DFB- and DBR-lasers for dense wavelength division multiplexing systems at the 1.55 µm wavelength region. These lasers have a high potential as single devices or in arrays. Based at the in fabrication technology presented in chapter 3 these types of lasers were fabricated at InGaAsP/InP quantum well and InGaAlAs/InAs/InP quantum dash laser structures. Using the FIB technology a wavelength tuning of the emission wavelength over a 100 nm wide wavelength region could be obtained. The DBR-principle leads to a significant improvement of the static and dynamic properties in comparison to the DFB-principle. The enhancement of the static properties results in the separation of the gain- a grating-section and the higher reflectivity of this section. Further this separation leads to a reduction of the absorption inside the gain-section due to the absent of the grating like in the DFB case. A lower absorption results in a higher efficiency and this leads to a lower heat production. Using all these effects it is possible to fabricate DBR-lasers with threshold currents of 8 mA, efficiencies of 0.375 W/A, output powers of more than 70 mW, side mode suppression ratios up to 67 dB and a three times thermal stability. Due to the fact that lasers are key components for telecommunication applications their dynamic properties are of major importance. To get access to the high frequency properties small signal measurements are necessary. Out of these measurements the resonance frequency and the modulation bandwidth can be determined. DBR-lasers show resonance frequencies up to 14 GHz and modulation bandwidths up to 22.5 GHz, which is a rise of 2.5 in comparison to Fabry-Perot-lasers. In chapter 6 the detuned loading principle will be presented in a new type of laser called “CCIG-laser “ (coupled cavity injected grating). This laser consists of three sections: the gain-, the grating- and the phase-section. Due to the fact that this principle is very sensitive to the phase conditions of the waves at the facets a phase section was added. By current injection in this section the phase conditions can be controlled by a variation of the refractive index via the injected current. The spectral and electrical properties of the CCIG-laser are the same like the DBR-laser. Due to the complexity of the CCIG-laser exist a lot of cavities inside of them, which are correlated to the current level of each section. These cavities are of major importance because of the position of the photon-photon-resonance depended on them. For an increase of the modulation bandwidth the three current levels must optimized. The exact influence of each section at the bandwidth will be given in detail in chapter 6. With the CCIG-laser it was able to increase the modulation bandwidth by a factor of 4.5 in comparison to Fabry-Perot-lasers. The best value was 37 GHz which is the highest value world wide up today on InP. KW - Halbleiterlaser KW - Nanostrukturiertes Material KW - Ringresonator KW - DFB-Laser KW - DBR-Laser KW - CCIG-Laser KW - FIB KW - optoelektronische Bauelemente KW - DFB-laser KW - DBR-laser KW - CCIG-laser KW - FIB KW - optoelectronic devices Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9474 ER - TY - THES A1 - Krebs, Roland T1 - Herstellung und Charakterisierung von kanten- und vertikalemittierenden (Ga)InAs/Ga(In)As-Quantenpunkt(laser)strukturen T1 - Fabrication and Characterization of edge and vertical emitting (Ga)InAs/Ga(In)As quantum dot (laser) structures N2 - Im Vergleich zu Quantenfilmlasern haben Quantenpunktlaser (unter anderem) die Vorteile, dass kleinere Schwellenströme zu erreichen sind und die Emissionswellenlänge über einen größeren Bereich abgestimmt werden kann, da diese aufgrund der Größenfluktuation im Quantenpunktensemble über ein breites Verstärkungsspektrum verfügen. Ziel des ersten Teils der Arbeit war es, monomodige 1.3 µm Quantenpunktlaser für Telekommunikationsanwendungen herzustellen und deren Eigenschaften zu optimieren. Es wurden sechs Quantenpunktschichten als aktive Zone in Laserstrukturen mit verbreitertem Wellenleiter eingebettet. Eine Messung der optischen Verstärkung einer solchen Laserstruktur mit sechs Quantenpunktschichten ergab einen Wert von 16.6 1/cm (für den Grundzustandsübergang) bei einer Stromdichte von 850 A/cm^2. Dadurch ist Laserbetrieb auf dem Grundzustand bis zu einer Resonatorlänge von 0.8 mm möglich. Für eine Laserstruktur mit sechs asymmetrischen DWELL-Schichten und optimierten Wachstumsparametern ergab sich eine Transparenzstromdichte von etwa 20 A/cm^2 pro Quantenpunktschicht und eine interne Quanteneffizienz von 0.47 bei einer internen Absorption von 1.0 1/cm. Aus den Laserproben wurden außerdem Stegwellenleiterlaser hergestellt. Mit einem 0.8 mm x 4 µm großen Bauteil konnte im gepulsten Betrieb Laseroszillation bis zu einer Rekordtemperatur von 156 °C gezeigt werden. 400 µm x 4 µm große Bauteile mit hochreflektierenden Spiegelvergütungen wiesen im Dauerstrichbetrieb Schwellenströme um 6 mA und externe Quanteneffizienzen an der Frontfacette von 0.23 W/A auf. Für Telekommunikationsanwendungen werden Bauteile benötigt, die lateral und longitudinal monomodig emittieren. Bei kantenemittierenden Lasern kann dies durch das DFB-Prinzip (DFB: distributed feedback) erreicht werden. Im Rahmen dieser Arbeit wurden die weltweit ersten DFB-Laser auf der Basis von 1.3 µm Quantenpunktlaserstrukturen hergestellt. Dazu wurden lateral zu den Stegen durch Elektronenstrahllithographie Metallgitter definiert, die durch Absorption die Modenselektion bewirken. Dank des etwa 100 nm breiten Verstärkungsspektrums der Laserstrukturen konnte eine Verstimmung der Emissionswellenlänge über einen Wellenlängenbereich von 80 nm ohne signifikante Verschlechterung der Bauteildaten erzielt werden. Anhand der 0.8 mm langen Bauteile wurden die weltweit ersten ochfrequenzmessungen an Lasern dieser Art durchgeführt. Für Quantenpunktlaser sind theoretisch aufgrund der hohen differentiellen Verstärkung kleine statische Linienbreiten und ein kleiner Chirp zu erwarten. Dies zeigte sich auch im Experiment. Der zweite Teil der Arbeit befasst sich mit vertikal emittierenden Quantenpunktstrukturen. Ziel dieses Teils der Arbeit war es, Quantenpunkt-VCSEL mit dotierten Spiegeln zunächst im Wellenlängenbereich um 1 µm herzustellen und auf dieser Basis die Realisierbarkeit von 1.3 µm Quantenpunkt-VCSELn zu untersuchen. Zunächst wurden undotierte Mikroresonatorstrukturen für Grundlagenuntersuchungen hergestellt, um die Qualität der Spiegelschichten zu testen und zu optimieren. Diese Strukturen bestanden aus 23.5 Perioden von Spiegelschichten aus AlAs und GaAs im unteren DBR (DBR: Distributed Bragg Reflector), einer lambda-dicken Kavität aus GaAs mit einer Quantenpunktschicht im Zentrum und einem oberen DBR mit 20 Perioden. Es konnten Resonatoren mit sehr hohen Güten über 8000 realisiert werden. Für die weiteren Arbeiten hinsichtlich der Herstellung von Quantenpunkt-VCSEL-Strukturen haben die Untersuchungen an den Mikroresonatorstrukturen gezeigt, dass es an der verwendeten MBE-Anlage möglich ist, qualitativ sehr hochwertige Spiegelstrukturen herzustellen. Aufbauend auf den Ergebnissen, die aus der Herstellung und Charakterisierung der Mikroresonatorstrukturen gewonnen worden waren, wurden nun Quantenpunkt-VCSEL-Strukturen hergestellt. Es wurden Strukturen mit 17.5 Perioden im unteren und 21 Perioden im oberen DBR sowie mit 20.5 Perioden im unteren und 30 Perioden im oberen DBR hergestellt. Erwartungsgemäß zeigten die VCSEL mit der höheren Spiegelanzahl auch die besseren Bauteildaten. Um VCSEL auch im Dauerstrich betreiben zu können, wurden Bauteile mit Oxidapertur hergestellt. Dazu wurden bei 30 µm großen Mesen die beiden Aperturschichten aus AlAs auf beiden Seiten der Kavität zur Strompfadbegrenzung bis auf 6 µm einoxidiert. Es konnte gezeigt werden, dass die Realisierung von Quantenpunkt-VCSELn im Wellenlängenbereich um 1 µm mit komplett dotierten Spiegeln ohne größere Abstriche bei den Bauteildaten möglich ist. Bei der Realisierung von 1.3 µm Quantenpunkt-VCSELn mit dotierten Spiegeln bereitet die im Vergleich zu den Absorptionsverlusten geringe optische Verstärkung Probleme. N2 - In comparison to quantum well lasers, quantum dot lasers provide (among others) the advantages that lower threshold currents are achievable and that the emission wavelength can be tuned over a larger range because the gain spectrum is wider due to the inhomogeneous broadening of the size distribution. The first part of the thesis deals with the theoretical basics and the preliminary investigations which were done before the fabrication of 1.3 µm quantum dot lasers as well as the characteristics of these lasers. The objective of this part of the thesis was the fabrication of single mode 1.3 µm quantum dot lasers for telecommunication applications and the optimization of their properties. Six quantum dot layers were included in the active region of a laser structure with a large optical cavity. The measurement of the optical gain of such a laser structure with six quantum dot layers yielded a value of 16.6 1/cm (for the ground state transition) at a current density of 850 A/cm^2. Thus, laser operation on the ground state is possible down to a cavity length of 0.8 mm. For a laser structure with six asymmetric DWELL layers and optimized growth parameters, a transparency current density of about 20 A/cm^2 per quantum dot layer and an internal quantum efficiency of 0.47 at an internal absorption as low as 1.0 1/cm could be obtained. Based on the laser structures ridge waveguide lasers were processed. With a 0.8 mm x 4 µm large device, laser operation in pulsed mode until 156 °C could be demonstrated. 400 µm x 4 µm large devices with highly reflective mirror coatings operated in continuous wave mode showed threshold currents as low as 6 mA and external quantum efficiencies at the front facet of 0.23 W/A. With these devices continuous wave operation up to 80 °C at an output power above 1 mW is possible. For telecommunication applications devices are needed that show lateral and longitudinal single mode emission. In the case of edge emitting lasers this can be realized with the DFB principle (DFB: distributed feedback). In the scope of this thesis the worldwide first DFB lasers on 1.3 µm quantum dot laser structures were fabricated. During the process, metal gratings lateral to the ridges were defined by electron beam lithography which cause the mode selection by absorption. Due to the 100 nm broad gain spectrum of the laser structures, the emission wavelength could be tuned over a range of about 80 nm without a significant degradation of the device properties. With 0.8 mm long DFB lasers the worldwide first high frequency measurements on lasers of this kind were performed. For quantum dot lasers one theoretically expects a small static linewidth and a small chirp because of the high differential gain. This was confirmed by the experiment. The second part of the thesis deals with vertical cavity surface emitting quantum dot structures. The main objective of this part of the thesis was to fabricate quantum dot VCSELs with doped mirrors in wavelength range around 1 µm and to examine on this basis the realizability of 1.3 µm quantum dot VCSELs. At first, undoped microresonator structures for fundamental studies were fabricated in order to test and to optimize the quality of the mirror layers. These structures consisted of 23.5 periods of AlAs and GaAs mirror layers in the lower DBR (DBR: Distributed Bragg Reflector), a lambda thick GaAs cavity with a single quantum dot layer in the center and an upper DBR with 20 periods. Resonators with high quality factors well above 8000 could be realized. For the further workings concerning the fabrication of quantum dot VCSEL structures the investigations on the microresonator samples have shown that with the MBE system used it is possible to fabricate high quality mirror structures. Based on the results from the fabrication and characterization of the microresonator structures, quantum dot VCSEL structures were fabricated. The VCSEL structures were designed as bottom emitters, which means that they emit from the substrate side. This design permits the epi-side down mounting of the samples on a heat sink. Samples with 17.5 periods in the lower and 21 periods in the upper DBR as well as samples with 20.5 periods in the lower and 30 periods in the upper DBR were fabricated. To be able to operate the VCSELs in continuous wave mode, devices with oxide aperture were processed. For that purpose, on 30 µm pillars both aperture layers consisting of AlAs adjacent to the cavity were oxidized down to a diameter of 6 µm to confine the current path. It could be demonstrated that the realization of quantum dot VCSELs in the 1 µm wavelength range with doped mirrors is possible without having to accept a trade-off as to the device performance. When trying to realize 1.3 µm quantum dot VCSELs with doped mirrors one runs into problems with the optical gain which is rather low as compared to the absorption losses. KW - Drei-Fünf-Halbleiter KW - Halbleiterlaser KW - Halbleiterlaser KW - GaAs KW - Quantenpunkte KW - VCSEL KW - DFB-Laser KW - semiconductor lasers KW - GaAs KW - quantum dots KW - VCSEL KW - DFB laser Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11328 ER -