TY - THES A1 - Niklaus, Patrick T1 - Adaptive Femtosekunden Quantenkontrolle chemischer Reaktionen in der flüssigen Phase T1 - Adaptive femtosecond quantum control of chemical reactions in the liquid phase N2 - Ziel der vorliegenden Arbeit war es, die Methode der adaptiven Pulsformung von Femtosekunden Laserpulsen in der flüssigen Phase experimentell zu realisieren. Eine Erweiterung dieser Technik auf die kondensierte Phase stellt einen wichtigen Schritt in Richtung einer breiten Anwendbarkeit zur Steuerung von chemischen Reaktionen dar. Die größere Teilchendichte im Vergleich zur Gasphase ermöglicht zum einen eine Erhöhung der erzielbaren absoluten Produktausbeuten. Andererseits ergibt sich erst dadurch die Möglichkeit, reale chemische Reaktionen, wie bimolekulare Reaktionen, gezielt zu steuern, da Stöße zwischen verschiedenen Molekülen wahrscheinlicher werden. Die Methode der adaptiven Quantenkontrolle ist für die Anwendung in der flüssigen Phase bestens geeignet, da sie eine kohärente Kontrolle von photoinduzierten molekularen Prozessen selbst in komplexen Quantensystemen erlaubt. In dieser experimentellen Umsetzung einer ,,geschlossenen Kontrollschleife'' wird die spektrale Phasenstruktur von fs-Laserpulsen in einem computergesteuerten Pulsformer moduliert. Der resultierende geformte Laserpuls wechselwirkt anschließend mit dem zu untersuchenden molekularen System und steuert aktiv die Entwicklung des erzeugten Wellenpakets auf der Potentialenergiefläche. Eine quantitative Messung der erzeugten Photoprodukte dieser Licht-Materie Wechselwirkung dient als Rückkopplungssignal eines selbstlernenden Computeralgorithmus. Der auf dem Prinzip der Evolutionstheorie arbeitende Algorithmus verbessert nun iterativ die Pulsform bis ein Optimum des gewünschten Reaktionskanals erreicht wird. Das modulierte elektrische Feld des Laserpulses passt sich somit entsprechend der gestellten Kontrollaufgabe automatisch den molekularen Eigenschaften an. Um jedoch die Anwendung dieser Technik auch in der kondensierten Phase zu demonstrieren, mussten Methoden zur Gewinnung eines Rückkopplungssignals gefunden werden. Im Rahmen dieser Arbeit wurden daher Möglichkeiten eines quantitativen Rückkopplungssignals für die adaptive Kontrolle in der flüssigen Phase untersucht, wie die Emissionsspektroskopie und die transiente Absorption im UV/VIS oder infraroten Spektralbereich. In einem ersten Experiment wurde die Emissionsspektroskopie verwendet, um einen Ladungstransferprozess (MLCT) in einem Ru(II)-Komplex ([Ru(dpb)3]2+) mit geformten fs-Laserpulsen zu steuern. Um die dominierende Intensitätsabhängigkeit der Anregung zu eliminieren, wurde die Emissionsausbeute mit dem SHG-Signal eines nichtlinearen Kristalls „normiert“. Diese Auslöschung des intensitätsabhängigen Faktors in beiden Prozessen ermöglichte es, Pulsformen zu finden, die dieses Verhältnis sowohl maximieren als auch minimieren. Ein Ansatz zur Erklärung der experimentellen Ergebnisse konnte mit Hilfe eines störungstheoretischen Modells beschrieben werden. In einem zweiten Experiment wurde erstmals eine photochemische Selektivität zwischen zwei verschiedenen Substanzen in der kondensierten Phase demonstriert. Dabei sollte die jeweilige Zwei-Photonen Anregung des Komplexes [Ru(dpb)3]2+ gegenüber dem Molekül DCM selektiv kontrolliert werden. Wiederum diente die spontane Emission beider Substanzen als Rückkopplungssignal für die Effektivität des Anregungsschritts. Verschiedene Ein-Parameter Kontrollmethoden, wie der Variation der Anregungswellenlänge, der Intensität sowie des linearen Chirps, konnten diese Kontrollaufgabe nicht erfüllen. Jedoch konnte eine Optimierung des Verhältnisses der beiden Emissionsausbeuten mit Hilfe der adaptiven Pulsformung erzielt werden. Das Ergebnis dieses Experiments zeigt, dass photoinduzierte Prozesse in zwei unterschiedlichen molekularen Substanzen trotz der Wechselwirkungen der gelösten Moleküle mit ihrer Lösungsmittelumgebung selektiv und simultan kontrolliert werden können. Das Ziel des dritten Experiments war eine gezielte Steuerung einer komplexeren chemischen Reaktion. Mit Hilfe der adaptiven Pulsformung konnte eine optimale Kontrolle der Photoisomerisierungsreaktion des Moleküls NK88 demonstriert werden. Das dazu benötigte Rückkopplungssignal für den evolutionären Algorithmus wird durch transiente Absorptionsspektroskopie im UV/VIS Spektralbereich bereitgestellt. Eine Untersuchung der Dynamik der Isomerisierungsreaktion mit Hilfe der Pump-Probe Technik erlaubte eine Zuordnung zweier verschiedener Absorptionsbereiche zu den jeweiligen Isomeren. Die Ergebnisse der Optimierung des Verhältnisses der Quantenausbeuten der beiden Isomere zeigten, dass die geformten Laserpulse eine Kontrolle der Effizienz der Photoisomerisierung in der flüssigen Phase ermöglichen. Zusammenfassend kann man sagen, dass im Rahmen dieser Arbeit mit Hilfe der fs-Lasertechnologie und der Technik der adaptiven fs-Quantenkontrolle Experimente durchgeführt wurden, die einen wichtigen Beitrag zu dem neuen Forschungsbereich der Femtochemie darstellen. Die Erweiterung dieser Technik auf die flüssige Phase beschreibt einen ersten Erfolg in Richtung einer neuartigen Chemie. N2 - The goal of this work was to experimentally implement the technique of adaptive femtosecond quantum control of photoinduced reactions in solution. A successful experiment in the liquid phase would represent an important step towards an universal applicability to the control of chemical reactions. The sufficiently high particle densities available in solution allow the processing of macroscopic amounts of chemical substances. Additionally, only in the condensed phase the particle densities are high enough to achieve control for bimolecular synthetic-chemical applications. The technique of adaptive quantum control is most suitable for an application in the liquid phase, as it allows the coherent control of quantum-mechanical processes even in complex systems. In this experimental “closed-loop” setup, the spectral phase structure of fs laser pulses is modulated by a computer-controlled pulse shaper. The resulting shaped laser pulses then interact with the quantum system under consideration, where specific wavepacket dynamics is initiated. The quantitative detection of the generated photoproducts is used as feedback within a learning algorithm. Based on concepts of the evolution theory, this optimization algorithm iteratively improves the pulse-shaper settings until an optimum is reached. Thus the modulated electric field automatically “adapts” to the molecular properties according to the specified control objective. For a successful demonstration of an application of this technology to chemical reactions in the solution phase, suitable feedback signals have to be found. Hence in this work, suitable feedback signals were explored which can be used to probe the result of the solution phase photoreactions reliably and fast. Besides the emission spectroscopy, especially transient absorption techniques in the UV/visible or infrared spectral region turned out to be suitable for quantitatively detecting the quantum yields of the different photoproducts generated by a shaped laser pulse. In a first experiment, emission spectroscopy was employed to investigate the metal-to-ligand charge transfer (MLCT) in a Ru(II) coordination complex ([Ru(dpb)3]2 using adaptive fs pulse shaping. Using the spontaneous emission signal as feedback in the learning procedure, it was possible to control the MLCT excitation process. However, the MLCT excitation occurs via two-photon absorption and is therefore dominantly second-order intensity dependent. This trivial intensity dependence can be removed by using as a new feedback signal the ratio of the molecular response (here: emission) versus a purely optical signal of the same nonlinear order (here: SHG in a thin crystal). The resulting optimized laser pulse shapes were able to both maximize and minimize the ratio emission/SHG, thus proving that adaptive fs quantum control is sensitive to the electronic and vibrational properties of molecules under liquid-phase conditions. The results of this experiment could be understood within a simple perturbation theory model. In a second experiment, chemically selective molecular excitation of two distinct complex molecules (the MLCT-complex [Ru(dpb)3]2+ and the laser dye DCM) in solution was achieved employing shaped fs laser pulses. After two-photon absorption and excited-state dynamics, the spontaneous emission yields are again used as a measure for the excited-state populations in the feedback loop. The experiment was designed to ask if and how coherent light fields can be used to selectively excite one specific molecule (but not another one) within liquid-phase solute/solvent mixtures. Despite the failure of single-parameter approaches (variation of wavelength, intensity or linear chirp), an optimization of the emission yield ratio was successful employing adaptive quantum control. This experiment demonstrates that photoprocesses in two different molecular species can selectively be controlled simultaneously. The goal of a third experiment was the control of a more complex chemical reaction. The reaction type we chose to investigate and to control was the cis-trans isomerization of the molecular system NK88. We chose as feedback signal the ratio of cis-isomers in their ground state after the photoisomerization process to the amount of initially excited trans-isomers (i.e., the relative reaction yield). To determine these quantities, we recorded the transient absorption signal at two different wavelengths. By optimizing the ratio of the relative quantum yields of the two isomers, we demonstrated that the efficiency of the photoisomerization reaction can both be enhanced and reduced. In conclusion, in the context of this work experiments were performed employing the technology of fs laser pulses and adaptive quantum control, which represent an important contribution to the relatively new research field of femtochemistry. The successful transfer of this technique to the liquid phase constitutes a first step towards a new kind of chemistry. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Ausgangsmaterial KW - Flüssiger Zustand KW - Photochemische Reaktion KW - Kohärente Kontrolle KW - adaptive Quantenkontrolle KW - Femtosekunden KW - evolutionärer Algorithmus KW - Coherent control KW - adaptive quantum control KW - femtosecond KW - evolutionary algorithm Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12855 ER - TY - THES A1 - Dietl, Christian T1 - Beobachtung und Steuerung molekularer Dynamik mit Femtosekunden-Laserpulsen T1 - Observation and control of molecular dynamics using femtosecond laser pulses N2 - In dieser Arbeit wurden zwei Aspekte der Femtochemie mit den Methoden der Femtosekunden--Laserspektroskopie untersucht. Dabei wurden folgende Ziele verfolgt: Einerseits sollte die jüngst entwickelte Technik der adaptiven Pulsformung auf das Problem bindungsselektiver Photodissoziationsreaktionen angewandt werden, zum Anderen bestand die Aufgabe darin, die nichtadiabatische, photoinduzierte Dynamik am Beispiel der Photoisomerisierung von Stilben mit Hilfe der Photoelektronenspektroskopie zeitaufgelöst zu untersuchen. Die Methode der adaptiven Pulsformung wurde mit dem Ziel eingesetzt, eine bindungsselektive Photodissoziation zu verwirklichen. Dazu wurde diese Technik in Verbindung mit einem massenspektroskopischen Nachweis der Photofragmente verwendet. Die Experimente wurden an einigen Spezies der Methylhalogenide CH2XY (X,Y = Halogen) durchgeführt. Diese Verbindungen wurden als Modellsysteme gewählt, da sich gezeigt hat, dass auf Grund stark gekoppelter konkurrierender Dissoziationskanäle durch modenselektive Laseranregung keine Kontrolle erreicht werden kann. Mit dem hier durchgeführten Experiment an CH2ClBr wurde erfolgreich erstmals die Anwendung der adaptiven Femtosekunden-Pulsformung auf das Problem einer bindungsselektiven Photodissoziation demonstriert. Dabei konnte eine Steigerung der Dissoziation der stärkeren Kohlenstoff-Halogen Bindung um einen Faktor zwei erreicht werden. Weiterhin konnte experimentell gezeigt werden, dass das optimierte Produktverhältnis nicht durch eine einfache Variation der Laserpulsdauer oder Laserpulsenergie erzielt werden kann. Es wurde ein möglicher Mechanismus für die Kontrolle diskutiert, der im Gegensatz zu einem unmodulierten Laserpuls die Wellenpaketdynamik auf neutralen dissoziativen Potentialflächen zur Steuerung des Produktverhältnisses involviert. Wie sich aus einer genaueren Analyse des Fragmentspektrums ergab, wird durch den optimalen Laserpuls die Dissoziation in komplexer Weise moduliert. Dies zeigte sich z.B. auch durch eine Änderung des Isotopenverhältnisses in der Ausbeute des dissoziierten Br-Liganden vor und nach der Optimierung. Dieser Frage nach einer isotopenselektiven Photodissoziation wurde in einem weiteren Experiment an CH2Br2 nachgegangen. Dabei konnte jedoch nur eine geringe Variation von etwa fünf Prozent gegenüber dem natürlichen Isotopenverhältnis festgestellt werden. Als größtes experimentelles Problem stellte sich dabei die starke Intensitätsabhängigkeit der Produktausbeuten heraus, was die Suche nach der optimalen Pulsform stark einschränkte. Anhand des molekularen Photodetachments CH2I2-->CH2+I2 wurde gezeigt, dass durch die Analyse der optimalen Pulsformen Informationen über die Dynamik dieses Prozesses gewonnen werden können. Dazu wurde zunächst in einem Pump-Probe-Experiment die Dynamik der I2-Fragmentation nach einer Mehrphotonen-Anregung von CH2I2 mit 266nm Laserpulsen untersucht. Dieses Experiment ergab, dass das Molekül über einen angeregten Zwischenzustand auf einer sehr schnellen Zeitskala über Dissoziationskanälen zerfallen kann. Der dominante Kanal führt zu einer sequentiellen Abgabe einer der I-Liganden und resultiert in den Photoprodukten CH2I und I Im anderen Kanal, dem molekularen Photodetachment, werden die Photoprodukte I2 und CH2 gebildet. In einem Kontrollexperiment wurde dann versucht, das molekulare Photodetachment gegenüber dem dominanten sequentiellen Kanal mit geformten 800nm Laserpulsen zu optimieren. Es wurden Optimierungen mit dem Ziel der Maximierung der Ausbeute an den Photoprodukten I2 und CH2 gegenüber CH2I durchgeführt. Diese Experimente ergaben, dass für beide Fragmente des molekularen Photodetachments eine Steigerung des Produktverhältnisses um etwa einen Faktor drei möglich ist. Dabei zeigte sich, dass eine Maximierung auf ein Produktverhältnis (z.B. I2/CH2I) eine Steigerung des anderen um etwa den gleichen Faktor hervorruft. Dies ist ein deutlicher Hinweis, dass beide Photoprodukte über denselben Dissoziationskanal gebildet werden. Ein weiterer inweis wurde aus der Analyse der optimalen Pulsformen erhalten: In beiden Fällen weisen diese eine markante Doppelpulsstruktur mit einem zeitlichen Abstand von etwa 400fs auf. Dies erinnert stark an die Situation des Pump-Probe--Experiments, wo durch die Analyse des transienten Signals ebenfalls eine optimale Verzögerungszeit zwischen dem Pump- und Probe-Laserpuls von etwa 400fs ermittelt werden konnte, bei der die Produktverhältnisse gerade maximal sind. Im Vergleich zur Massenspektroskopie liefert die Photoelektronenspektroskopie in der kinetischen Energie der Photoelektronen eine zusätzliche Messgröße, die direkt Informationen über die Kerngeometrie des Systems liefern kann. Mit dieser Technik wurde die trans-cis-Photoisomerisierung von Stilben im ersten elektronisch angeregten Zustand S1(1Bu) zeitaufgelöst untersucht. Dabei ging es speziell um die Frage nach der Existenz eines weiteren 1Bu Zustandes, der in neueren theoretischen Untersuchungen diskutiert wurde. In einem Pump-Probe-Experiment wurde dazu das im Molekularstrahl präparierte trans-Stilben durch einen 266nm Laserpuls angeregt und die Dynamik durch einen weiteren 266nm Laserpuls abgefragt. Im Photoelektronenspektrum konnten zwei signifikante Beiträge mit unterschiedlicher Dynamik gefunden werden. Das transiente Signal des ersten Beitrags weist eine Zeitkonstante von etwa 20ps auf und konnte eindeutig der Isomerisierung des S1 Zustandes zugeordnet werden. Im Gegensatz dazu zeigte das Signal des zweiten Beitrags eine Zeitkonstante von 100fs. Dieses Signal könnte aus der Ionisation des S2 Zustandes resultieren, welcher bislang experimentell nicht beobachtet werden konnte. N2 - Adaptive femtosecond quantum control has proven to be a very successful method in many different scientific fields like physics, chemistry or biology. This technique allows to go beyond observation, another important field of femtosecond laser spectroscopy, and to obtain active control over quantum-mechanical systems. It uses interference phenomena in the time and/or frequency domain to achieve selectivity among different reaction channels available to the system. Adaptive femtosecond quantum control has been implemented using automated control algorithms, namely genetic algorithms, embedded in a feedback loop. The Feedback is obtained directly in the experiment. This means, that no information is needed about the underlying complex physical processes. Adaptive pulse shaping in combination with mass spectroscopy was employed in order to control the photo dissociation dynamics of some methyl halides (CH2XY). In this context, methyl halides serve as a model system in order to study bond selective photochemistry, as it is known that mode selective laser excitation failed to achieve control due to strong non adiabatic coupling between the different dissociation channels. In a first experiment bond selective photodissociation on CH2ClBr was demonstrated. The results show, that by using optimally tailored laser pulses the cleavage of stronger carbon halogen bond can be enhanced by a factor of two. This enhancement cannot be explained by a simple variation of laser pulse energy or intensity, respectively. Further spectroscopic results indicate that the optimally formed laser pulse found in the optimization experiment involves dynamics on neutral dissociative potential surfaces. A more detailed analysis of the optimal pulse shape found in the control experiment revealed that the optimal laser pulse alters the photodissociation of CH2ClBr in subtle way. This was seen in the change of the branching ratio of the bromine isotopes following the excitation with the optimal laser pulse. In order to investigate this further, optimization of the bromine isotope ratio in CH2Br2 was studied, where however, only a small change could be achieved. This can mainly be explained by a strong laser intensity dependence of the absolute yield of the photoproduct, which leads to large errors in the product ration and thus confuses the optimization algorithm.In a third experiment it was demonstrated that the analysis of the optimal pulse shapes allows extracting information about the underlying molecular processes. Therefore the molecular photodetachment CH2I2-->CH2+I2 was investigated using pump-probe spectroscopy as well as adaptive pulse shaping. The photoproducts were again detected using mass spectroscopy. Time resolved experiments reveal an ultrafast dissociation of the molecule via an intermediate state resulting in the dominant photoproducts CH2I and I. As a minor contribution molecular photodetachment is observed leading to the products CH2 and I2. In an automated control experiment the branching ratio of these two reaction channels is varied by a factor of three as compared to a bandwidth limited laser pulse. It is found that maximization of one product ratio (e.g. I2/CH2I) also results in a maximization of the other (CH2/CH2I). This shows that the photoproducts I2 and CH2 originate form one common intermediate species. Analysis of the optimal pulse shape reveals a double pulse with a distance of 400fs between the two features. This can be directly compared to the results of the pump-probe experiment. There the ratio of the transient signals of I2 versus CH2I was analysed. It was found that the maximum is reached after 400fs after the excitation of the molecule by the pump laser pulse. In the second part of the thesis photoelectron spectroscopy in combination with time-resolved femtosecond laser spectroscopy was employed to investigate the isomerization dynamics of trans-Stilbene in its first excited state S1 (1Bu). In a pump-probe experiment the molecule was excited by a 266nm laser pulse to its first excited state about 0.5eV above the isomerization barrier. The dynamics of the intermediate species was probed by ionization with a second time delayed 266nm laser pulse and the kinetic energy of the photoelectrons was measured as a function of the pump-probe delay. The spectra obtained clearly indicate contributions from two distinct reaction pathways. The transient signal of the first contribution shows a time constant of about 20ps and can be assigned to the isomerization dynamics of trans-Stilbene on the S1 state. The second contribution exhibits an ultrafast dynamics of about 100fs decay time and can be attributed to a second electronics state. Theoretical studies indeed predict a second electronic state of same symmetry as S1in the energy region reached by the experiment. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Molekulardynamik KW - Photochemische Reaktion KW - Regelung KW - Femtosekunden-Laserspektroskopie KW - Adaptive Quanten Kontrolle KW - molekulare Dynamik KW - Massenspektroskopie KW - Photoelektronenspektroskopie KW - femtosecond laser spectroscopy KW - adaptive quantum control KW - molecular Dynamics KW - mass spectrocopy KW - photoelectron spectroscopy Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12182 ER - TY - THES A1 - Wissel, Kathrin T1 - Untersuchungen zur Typ-, Regio- und Stereoselektivität bei Norrish-Typ-II-Yang-Cyclisierungen und Di-Pi-Methan-Umlagerungen in organisierten Medien T1 - Investigation of the type-, regio- and stereoselectivity of Norrish-Type-II-Yang-cyclizations and Di-pi-methane-rearrangements in organized media N2 - Gegenstand der vorliegenden Arbeit ist die Untersuchung der Typ-, Regio- und Stereoselektivität photochemischer Reaktionen in organisierten Medien. Es wird anhand ausgewählter Beispiele gezeigt, daß bei der Festkörperbestrahlung von kronenetherverknüpften Substraten sowie von photoaktiven Verbindungen, die mit Polyaminosäuren, Cyclodextrinen oder Zeolithen assoziiert sind, häufig andere Produkte gebildet und höhere Selektivitäten erreicht werden als in Lösung. N2 - The subject of the present work is the investigation of the type-, regio- and stereoselectivity of photochemical reactions in organized media. Upon solid-state irradiation of selected crownether- substituted substrates and photoactive compounds, which are associated with polyamino acids, cyclodextrines or zeolites, it is shown that in many cases other products are formed or higher selectivities are achieved than in solution. KW - Photochemische Reaktion KW - Regioselektivität KW - Stereoselektivität KW - Organisierte Medien KW - Norrish-Typ-II-Yang-Cyclisierung KW - Di-Pi-Methan-Umlagerung KW - Selektivität KW - Festkörper KW - Organized media KW - Norrish-Type-II-Yang-cyclization KW - Di-pi-methane-rearrangement KW - selectivity KW - solid state Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8935 ER - TY - THES A1 - Krampert, Gerhard T1 - Femtosecond quantum control and adaptive polarization pulse shaping T1 - Femtosekunden Quanten Kontrolle und Adaptive Polarisations Puls Formung N2 - Adaptive Femtosekunden-Quantenkontrolle hat sich in den letzten Jahren als eine sehr erfolgreiche Methode in vielen wissenschaftlichen Gebieten wie Physik, Chemie oder Biologie erwiesen. Eine Vielzahl von Quantensystemen und insbesondere Moleküle, die eine chemische Reaktion durchlaufen, sind durch speziell geformte, Femtosekunden-Laserimpulse kontrolliert worden. Diese Methode erlaubt es, nicht nur das Quantensystem zu beobachten, sondern einen Schritt weiterzugehen und aktive Kontrolle über quantenmechanische Dynamik zu erlangen. In diesem Schema werden Interferenzphänomene im Zeit- und Frequenzraum benutzt, um Selektivität zum Beispiel in einer chemischen Reaktion zu erhalten. Die dazu benutzten, speziell geformten Femtosekunden-Laserimpulse waren bislang nur linear polarisiert. Deshalb konnten sie nur die skalaren Eigenschaften der Licht - Materie - Wechselwirkung ausnutzen und haben so den vektoriellen Charakter des elektrischen Dipolmoments $\vec{\mu}$ und des elektrischen Lichtfeldes $\vec{E}(t)$ vernachlässigt. Im besonderen in der Quantenkontrolle von chemischen Reaktionen ist das untersuchte System, die Moleküle, dreidimensional und zeigt komplexe raumzeitliche Dynamik. Mit der Hilfe von polarisations-geformten Laserimpulsen ist man jetzt in der Lage dieser Dynamik, sowohl in der Zeit als auch in der räumlichen Richtung zu folgen. Deshalb kann nun ein neues Niveau an Kontrolle in quanten-mechanischen Systemen erreicht werden. In dieser Arbeit konnte die Erzeugung von polarisations-geformten Laserimpulsen in einem optischen Aufbau verwirklicht werden. Dieser Aufbau erfordert keine interferometrische Stabilität, da beide Polarisationskomponenten demgleichen Strahlweg folgen. Zwei-Kanal spektrale Interferometrie wurde eingesetzt, um die Laserimpulse experimentell vollständig zu charakterisieren. Um den zeitabhängigen Polarisationszustand dieser Pulse exakt zu beschreiben, wurde eine mathematische Darstellung entwickelt und angewandt. Die Veränderungen des Polarisationszustandes durch optische Elemente wurde untersucht und einige Lösungen wurden aufgezeigt, um diese Veränderungen zu minimieren. Der Jones Matrix Formalismus wurde dazu benutzt, alle Verzerrungen des Polarisationszustandes zwischen dem Impulsformer und dem Ort des Experiments zu berücksichtigen. Zugleich können die Jones Matrizen zu einer vollständigen Charakterisierung der erzeugten Laserimpulse verwendet werden. Dabei wurden experimentell kalibrierte Matrizen eingesetzt. Adaptive Polarisations-Impulsformung konnte in einem rein optischen Demonstrationsexperiment gezeigt werden. Dabei wurde die computergesteuerte Polarisationsformung mit einer Lernschleife und einem experimentellen Rückkopplungssignal kombiniert. Durch diesen selbstlernenden Algorithmus konnte der benötigte, linear polarisierte Laserimpuls mit möglichst kleiner Impulsdauer gefunden werden, der für die effektive Erzeugung der zweiten Harmonischen in einem nichtlinearen optischen Kristall am besten geeignet ist. Durch diese Rückkopplungsschleife war es möglich auch noch kompliziertere Polarisationsverzerrungen, die durch eine Wellenplatte für eine falsche Wellenlänge verursacht wurden, rückgängig zu machen. Die zusätzliche Verformung der spektralen Phase durch Materialdispersion in einem 10~cm langen Glasblock konnte ebenfalls automatisch kompensiert werden. Nach diesen optischen Demonstrationsexperimenten wurde ultraschnelle Polarisationsformung angewandt, um ein Quantensystem zu kontrollieren. Die Polarisationsabhängigkeit der Multi-Photonen Ionisation von Kaliumdimeren konnte in einer Anrege-Abtast Messung nachgewiesen werden. Diese Abhängigkeit wurde dann in einem adaptiven Polarisationsformungsexperiment in einer sehr viel allgemeineren Art ausgenutzt. Statt nur einem Anrege- und Abtastlaserimpuls mit jeweils unterschiedlicher Polarisation zu benutzen, wurde der zeitabhängige Polarisationszustand eines geformtem Laserimpulses benutzt, um die Ionisation zu maximieren. Anstelle von einer nur quantitativen Verbesserung konnte eine qualitativ neue Art von Kontrolle über Quantensysteme demonstriert werden. Diese Polarisationskontrolle ist anwendbar selbst bei zufällig ausgerichteten Molekülen. Durch diese Möglichkeit, auf Ausrichtung der Moleküle zu verzichten, konnte mit einem wesentlich vereinfachten experimentellen Aufbau gearbeitet werden. Über diese Polarisationskontrollexperimente hinaus wurden auch die dreidimensionalen Aspekte der Dynamik von Molekülen erforscht und kontrolliert. Die \textit{cis-trans} Photoisomerisierungsreaktion von 3,3$'$-Diethyl-2,2$'$-Thiacyanin Iodid (NK88) wurde in der flüssigen Phase mit transienter Absorptionsspektroskopie untersucht. Die Isomerisierungsausbeute konnte sowohl erhöht als auch erniedrigt werden durch den Einsatz geformter Femtosekunden-Laserimpulse mit einer Zentralwellenlänge von 400~nm, die sowohl in spektraler Phase als auch Amplitude moduliert waren. Dieses Experiment zeigt die Möglichkeit, die kohärente Bewegung großer molekularer Gruppen durch Laserimpulse gezielt zu beeinflussen. Diese Modifikation der molekularen Geometrie kann als erster Schritt angesehen werden, kontrollierte Stereochemie zu verwirklichen. Insbesondere da im ersten Teil dieser Arbeit die Kontrolle von Molekülen mit Polarisations-geformten Impulsen gezeigt werden konnte, ist der Weg geebnet zu einer Umwandlung von einem chiralen Enantiomer in das andere, da theoretische Modelle dieser Umwandlung polarisations-geformte Laserimpulse benötigen. Außer diesen faszinierenden Anwendungen der Polarisationsformung sollte es nun möglich sein den Wellenlängenbereich der polarisations-geformten Laserimpulse auszuweiten. Sowohl Erzeugung der zweiten Harmonischen um in den ultravioletten Bereich zu kommen als auch optische Gleichrichtung von äußerst kurzen Femtosekunden-Impulsen um den mittleren infrarot Bereich abzudecken sind Möglichkeiten, den Wellenlängenbereich von polarisations-geformten Laserimpulsen zu erweitern. Mit diesen neuen Wellenlängen tut sich eine Vielzahl an neuen Möglichkeiten auf, Polarisationsformung für die Kontrolle von quantenmechanischen Systemen einzusetzen. N2 - Adaptive femtosecond quantum control has proven to be a very successful method in many different scientific fields like physics, chemistry or biology. Numerous quantum systems and in particular molecules undergoing chemical reactions have been controlled using shaped femtosecond laser pulses. This method allows to go beyond simple observation and to obtain active control over quantum--mechanical systems. It uses interference phenomena in the time and/or frequency domain to achieve selectivity. The shaped femtosecond laser pulses employed in this scheme have until recently been purely linearly polarized. Therefore, they only address the scalar properties of light--matter interaction and neglect the vectorial character of both the dipole moment $\vec{\mu}$ and the electric field $\vec{E}(t)$. Especially in the quantum control of chemical reactions the investigated systems ---the molecules--- are three dimensional and exhibit complex spatio--tempo\-ral dynamics. With the help of polarization--shaped laser pulses one is now able to follow these dynamics in both, time and spatial direction, and can therefore reach a new level of control over quantum--mechanical systems. In this work, the generation of polarization--shaped laser pulses has been implemented in an optical setup. It requires no interferometric stability as a result of the identical beam path for both polarization components. Dual--channel spectral interferometry was employed as experimental pulse characterization and a mathematical description of the time--dependent polarization state of these pulses was given. The polarization modulation of the shaped pulses by subsequent optical elements was investigated and some solutions to minimize these modulations were presented. Jones matrix calculus with experimentally calibrated matrices was implemented to account for all polarization distortions from the LCD to the position of the experiment and for full characterization of the generated pulse shapes. Adaptive polarization shaping was demonstrated in a purely optical realization of the learning--loop concept. The learning algorithm was able to find the needed linear polarization in order to maximize second harmonic generation in a nonlinear optical crystal. The closed--loop configuration has proven to be capable to clear up more complicated polarization distortion, which was introduced using a multiple order half--wave plate designed for use at a wavelength of 620~nm. The additional deformation of the spectral phase through dispersion in a 10~cm long SF10 glass rod has also been compensated automatically. After these optical demonstration experiments ultrafast polarization shaping was applied to control a quantum system. Polarization sensitivity was shown in pump--probe measurements of the multiphoton ionization of potassium dimer molecules K$_2$. This sensitivity was exploited in a more general way in a learning--loop experiment with polarization--shaped laser pulses. A qualitatively new level of control was demonstrated using the time--dependent polarization state of laser pulses as an active agent. This polarization control was applicable even in randomly aligned molecules, which is a significant simplification of the experimental setup. In addition to these polarization control experiments, the three dimensional dynamics of molecules were also investigated and controlled. The \textit{cis--trans} photoisomerization of NK88 was studied in the liquid phase by transient absorption spectroscopy. The isomerization reaction efficiency was enhanced as well as reduced using linearly polarized laser pulses at 400~nm shaped in spectral phase and amplitude. This experiment demonstrates the ability to control the large scale motion of complex molecular groups with shaped femtosecond laser pulses. The modification of the molecular geometry can be regarded as a first step towards control of chirality in photochemistry. Especially with the successful demonstration of polarization quantum control, which is required in the theoretical models for the selective conversion of one enantiomer into the other, the way is paved towards coherent control of chirality. Besides these fascinating applications of polarization shaping it should now also be possible to extend the wavelength range of these pulses. Apart from second harmonic generation in order to reach the ultraviolet region intra-pulse difference frequency generation could be an option to open the mid-infrared spectral range for polarization shaping. With these new wavelength regions numerous new perspectives arise for quantum control using polarization--shaped laser pulses. Referring once more to the novel of Edwin A. Abbott presented in the introduction one could say that shaped femtosecond pulses really have left Flatland. Or to put it into the words of the sphere, when it teaches the square about the perception of dimensions: \begin{quote} ``Look yonder [...] in Flatland thou hast lived; of Lineland thou hast received a vision; thou hast soared with me to the heights of Spaceland;'' \hfill Edwin A.~Abbott~\cite{abbott1884}, 1884 \end{quote} KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Photochemische Reaktion KW - Regelung KW - Pulsformung KW - Quanten-Kontrolle KW - Femtosekunden Dynamik KW - Photoisomerisation KW - Femtochemie KW - Quantum Control KW - Pulse Shaping KW - Femtosecond Dynamics KW - Photoisomerization KW - Femtochemistry Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10304 ER - TY - THES A1 - Papastathopoulos, Evangelos T1 - Adaptive control of electronic excitation utilizing ultrafast laser pulses T1 - Adaptive Kontrolle elektronischer Anregung mitels Femtosekunden-Laserpulsen N2 - The subject of this work has been the investigation of dynamical processes that occur during and after the interaction of matter with pulses of femtosecond laser radiation. The experiments presented here were performed in the gas phase and involve one atomic and several model molecular systems. Absorption of femtosecond laser radiation by these systems induces an electronic excitation, and subsequently their ionization, photofragmentation or isomerization. The specific adjustment of the excitation laser field properties offers the possibility to manipulate the induced electronic excitation and to influence the formation of the associated photoproducts. From the perspective of the employed spectroscopic methods, the development of photoelectron spectroscopy and its implementation in laser control experiments has been of particular interest in this thesis. This technique allows for a most direct and intuitive observation of electronic excitation dynamics in atomic as well as in complex polyatomic molecular systems. The propagation of an intermediate electronic transient state, associated to the formation of a particular photoproduct, can be interrogated by means of its correlation to a specific state of the atomic or molecular continuum. Such correlations involve the autoionization of the transient state, or by means of a second probe laser field, a structural correlation, as summarized by the Koopman's theorem (section 2.4.1). The technique of adaptive femtosecond quantum control has been the subject of development in our group for many years. The basic method, by which the temporal profile of near-infrared laser pulses at a central wavelength of 800 nm, can be adjusted, is a programmable femtosecond pulse-shaper that comprises of a zero dispersion compressor and a commercial liquid crystal modulator (LCD). This experimental arrangement was realized prior to this thesis and served as a starting point to extend the pulse-shaping technique to the ultraviolet spectral region. This technological development was realized for the purposes of the experiments presented in Chapter 5. It involves a combination of the LCD-pulse-shaper with frequency up-conversion techniques on the basis of producing specifically modulated laser pulses of central wavelength 266 nm. Furthermore, the optical method X-FROG had to be developed in order to characterize the often complex structure of generated ultraviolet pulses. In the adaptive control experiments presented in this work, the generated femtosecond laser pulses could be automatically adjusted by means of specifically addressing the 128 independent voltage parameters of the programmable liquid-crystal modulator. Additionally a machine learning algorithm was employed for the cause of defining laser pulse-shapes that delivered the desired (optimal) outcome in the investigated laser interaction processes. In Chapter 4, the technique of feedback-controlled femtosecond pulse shaping was combined with time-of-flight mass spectroscopy as well as photoelectron spectroscopy in order to investigate the multiphoton double ionization of atomic calcium. A pronounced absolute enhancement of the double ionization yield was obtained with optimized femtosecond laser pulses. On the basis of the measured photoelectron spectra and of the electron optimization experiments, a non-sequential process was found, which plays an important role in the formation of doubly charged Calcium ions. Then in Chapter 5, the dynamics following the pp* excitation of ethylene-like molecules were investigated. In this context, the model molecule stilbene was studied by means of femtosecond photoelectron spectroscopy. Due to the simplicity of its chemical structure, stilebene is one of the most famous models used in experimental as well as theoretical studies of isomerization dynamics. From the time-resolved experiments described in that chapter, new spectroscopic data involving the second excited electronic state S2 of the molecule were acquired. The second ethylenic product was the molecule tetrakis (dimethylamino) ethylene (TDMAE). Due to the presence of numerous lone pair electrons on the four dimethylamino groups, TDMAE exhibits a much more complex structure than stilbene. Nevertheless, previously reported studies on the dynamics of TDMAE provided vital information for planning and conducting a successful optimisation control experiment of the wavepacket propagation upon the (pp*) S1 excited potential surface of the molecule. Finally, in Chapter 6 the possibility of employing femtosecond laser pulses as an alternative method for activating a metallocene molecular catalyst was addressed. By means of an adaptive laser control scheme, an optimization experiment was realized. There, the target was the selective cleavage of one methyl-ligand of the model catalyst (Cp)^2Zr(CH3)^2, which induces a catalytic coordination position on the molecule. The spectroscopic studies presented in that chapter were performed in collaboration to the company BASF A.G. and constitute a proof-of principle attempt for a commercial application of the adaptive femtosecond quantum control technique. N2 - Das Thema der hier vorgestellten Arbeit umfasst die Untersuchung von dynamischen Prozessen, die während der Wechselwirkung von Femtosekunden Laserpulsen mit Atomen und Molekülen stattfinden. Die entsprechenden Experimente sind in der Gasphase durchgeführt worden, wobei ein Atom- und mehrere Molekül-Modellsysteme untergesucht wurden. Die Absorption von Femtosekunden-Laserstrahlung induziert die elektronische Anregung der quantumsmechanischen Systeme und eventuell deren Ionisation, Photofragmentnation oder Isomerisierung. Die gezielte Einstellung der Laserfeldeigenschaften bietet die Möglichkeit, diese Prozesse zu beeinflussen, beziehungsweise die Formung von entsprechenden Photoprodukten zu steuern. Im Hinblick auf die verwendeten spektroskopischen Methoden wurde besonderes Interesse auf die Entwicklung von Photoelektronen-Spektroskopie und in deren Einsatz zur Durchführung von laserinduzierten Kontrollexperimente gelegt. Photoelektronen-Spektroskopie ermöglicht die direkte und intuitive Beobachtung elektronischer Anregungsdynamik in Atomen sowie in komplexen mehreratomaren Molekülsystemen. Die zeitliche Entwicklung von angeregten elektronischen Zuständen ist oft bei der Formung von bestimmten Photoprodukten assoziiert. Die Dynamik kann mittels der Korrelation des sich entwickelnden Zustandes zu den Kontinuumzuständen des Atom- oder Molekül-Systems untersucht werden. Das detektionsverfahren umfasst die Autoionization oder, mittels eines zweiten Laserpulses, die Weiteranregung des Systems ins Kontinuum. Denn, die Beobachtung der entsprechenden Strukturänderungen des Systems erfolgt mittels der Korrelation des zwischenangeregten Zustand zu den verschiedenen Kontinuumzuständen (Koopman Theorem). Seit mehreren Jahren wurde die Methode der adaptiven Femtosekunden-Pulsformung in unserer Gruppe entwickelt. Die anfängliche experimentelle Anordnung besteht aus einer Kombination von einem Flüssig-Kristall-Modulator (LCD) und einen Null-Dispersions-Kompressor. Damit ist es möglich, das zeitliche Profil von Laserpulsen im Infrarot (800 nm) Spektralbereich automatisch zu modulieren. Diese Entwicklungsarbeit stand bereits zu Verfügung vor dem Anfang der vorgestellten Dissertation. Hier wurde die Erweiterung dieser Methode in den uravioletten Spektralbereich vorgestellt (Kapitel 5). Es umfasst eine Kombination von dem bestehenden LCD-Pulsformer und einem Verfahren zur Frequenzkonversion, das die Erzeugung von modulierten aserpulsen mit eine Wellenlänge 266 nm ermöglicht. Die entsprechende Charakterisierungsmethoden (X-FROG) wurden ebenfalls entwickelt. Die Femtosekunden-Laserpulse können automatisch moduliert werden durch die entsprechende Einstellung der 128 unabhängigen Spannungsparametern des LCD-Modulators. Zusätzlich wurden die optimale Parameter für die Kontrolle eines bestimmten anregungsprozess mittels eines Machine-Learning Algorithmus gefunden. In Kapitel 4 wurde die Mehrphoton-Doppleionization von Calciumatomen untersucht. Dabei wurde die Methode der adaptiven Pulsformung zusammen mit time-of-flight Massenspektroskopie und Photoelektronenspektroskopie ingesetzt. Das absolute Signal der Doppleionization konnte verdoppelt werden durch die Anregung mit bestimmten komplexen Pulsformen. Gerade bei den Optimierungexperimenten an photoelektronenspektra konnte ein „non-sequential" Prozess entdeckt werden, der eine wichtige Rolle bei der Doppleionization von Calcium spielt. In Kapitel 5 wurde die Dynamik von pp* Anregungsprozessen von Ethylenähnlichen-Moleküle untersucht. Im diesen Zusammenhang wurde das Modelmolekül Stilbene mittels Photoelektronenspektroskopie weiteruntersucht. Wegen seiner einfachen Struktur ist Stilbene eines der meistbenutzten Moleküle für Untersuchungen zur Photoisomerisierungsdynamik. Gerade bei den hier dargestellten zeitaufgelüsten Messungen wurde neu spektroskopische Information über den zweiten angeregten elektronische Zustand S2 entdeckt. Das zweite untersuchte Molekül ist Tetrakis Dimethylamino) Ethylen (TDMAE). Wegen den zahlreichen „Lone-Pair" Elektronen an seinen Dimethylamino Gruppen ist die gesamte Struktur des Moleküls deutlich komplexer im Vergleich zu Stilbene. Allerdings, ausgehend von gegebenen spektroskopischen Informationen aus der Literatur konnte ein erfolgreiches Kontrollexperiment an der Wellenpackets-Propagation des pp* Anregungsprozesses (auf dem S1 Zustand) geplant und durchgeführt werden. In Kapitel 6 wurde schließlich die Möglichkeit erforscht, einen Metallocene-Katalysator mittels Femtosekunden-Laserpulsen zu aktivieren. Das Kotrollschema der adaptiven Pulsformung wurde dabei eingesetzt, um eine der zwei identischen Methylgruppen des Moleküls selektiv abzuspalten, was zur Aktivierung des Katalysators führt. Diese spektroskopische Untersuchung wurde in Kollaboration mit der Firma BASF A.G. durchgeführt. Es stellt einen Grundlagenversuch der industriellen Anwendung der adaptiven Quantumskontrollemethode dar. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Molekulardynamik KW - Photochemische Reaktion KW - Regelung KW - Laser KW - Femtosekundendynamik KW - Photofragmentation KW - Isomerizierung KW - Ionization KW - Laser KW - Femtosecond dynamics KW - Photofragmentation KW - Isomerization KW - Ionization Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12533 ER -