TY - JOUR A1 - Kazuhino, Koshino A1 - Werner, Rudolf A. A1 - Toriumi, Fuijo A1 - Javadi, Mehrbod S. A1 - Pomper, Martin G. A1 - Solnes, Lilja B. A1 - Verde, Franco A1 - Higuchi, Takahiro A1 - Rowe, Steven P. T1 - Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images JF - Tomography N2 - Even as medical data sets become more publicly accessible, most are restricted to specific medical conditions. Thus, data collection for machine learning approaches remains challenging, and synthetic data augmentation, such as generative adversarial networks (GAN), may overcome this hurdle. In the present quality control study, deep convolutional GAN (DCGAN)-based human brain magnetic resonance (MR) images were validated by blinded radiologists. In total, 96 T1-weighted brain images from 30 healthy individuals and 33 patients with cerebrovascular accident were included. A training data set was generated from the T1-weighted images and DCGAN was applied to generate additional artificial brain images. The likelihood that images were DCGAN-created versus acquired was evaluated by 5 radiologists (2 neuroradiologists [NRs], vs 3 non-neuroradiologists [NNRs]) in a binary fashion to identify real vs created images. Images were selected randomly from the data set (variation of created images, 40%-60%). None of the investigated images was rated as unknown. Of the created images, the NRs rated 45% and 71% as real magnetic resonance imaging images (NNRs, 24%, 40%, and 44%). In contradistinction, 44% and 70% of the real images were rated as generated images by NRs (NNRs, 10%, 17%, and 27%). The accuracy for the NRs was 0.55 and 0.30 (NNRs, 0.83, 0.72, and 0.64). DCGAN-created brain MR images are similar enough to acquired MR images so as to be indistinguishable in some cases. Such an artificial intelligence algorithm may contribute to synthetic data augmentation for "data-hungry" technologies, such as supervised machine learning approaches, in various clinical applications. KW - AI KW - Magnetresonanztomografie KW - artificial intelligence KW - magnetic resonance imaging KW - MRI KW - DCGAN KW - GAN KW - stroke KW - machine learning Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172185 VL - 4 IS - 4 ER - TY - JOUR A1 - Loda, Sophia A1 - Krebs, Jonathan A1 - Danhof, Sophia A1 - Schreder, Martin A1 - Solimando, Antonio G. A1 - Strifler, Susanne A1 - Rasche, Leo A1 - Kortüm, Martin A1 - Kerscher, Alexander A1 - Knop, Stefan A1 - Puppe, Frank A1 - Einsele, Hermann A1 - Bittrich, Max T1 - Exploration of artificial intelligence use with ARIES in multiple myeloma research JF - Journal of Clinical Medicine N2 - Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. KW - natural language processing KW - ontology KW - artificial intelligence KW - multiple myeloma KW - real world evidence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197231 SN - 2077-0383 VL - 8 IS - 7 ER - TY - JOUR A1 - Davidson, Padraig A1 - Düking, Peter A1 - Zinner, Christoph A1 - Sperlich, Billy A1 - Hotho, Andreas T1 - Smartwatch-Derived Data and Machine Learning Algorithms Estimate Classes of Ratings of Perceived Exertion in Runners: A Pilot Study JF - Sensors N2 - The rating of perceived exertion (RPE) is a subjective load marker and may assist in individualizing training prescription, particularly by adjusting running intensity. Unfortunately, RPE has shortcomings (e.g., underreporting) and cannot be monitored continuously and automatically throughout a training sessions. In this pilot study, we aimed to predict two classes of RPE (≤15 “Somewhat hard to hard” on Borg’s 6–20 scale vs. RPE >15 in runners by analyzing data recorded by a commercially-available smartwatch with machine learning algorithms. Twelve trained and untrained runners performed long-continuous runs at a constant self-selected pace to volitional exhaustion. Untrained runners reported their RPE each kilometer, whereas trained runners reported every five kilometers. The kinetics of heart rate, step cadence, and running velocity were recorded continuously ( 1 Hz ) with a commercially-available smartwatch (Polar V800). We trained different machine learning algorithms to estimate the two classes of RPE based on the time series sensor data derived from the smartwatch. Predictions were analyzed in different settings: accuracy overall and per runner type; i.e., accuracy for trained and untrained runners independently. We achieved top accuracies of 84.8 % for the whole dataset, 81.8 % for the trained runners, and 86.1 % for the untrained runners. We predict two classes of RPE with high accuracy using machine learning and smartwatch data. This approach might aid in individualizing training prescriptions. KW - artificial intelligence KW - endurance KW - exercise intensity KW - precision training KW - prediction KW - wearable Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205686 SN - 1424-8220 VL - 20 IS - 9 ER - TY - JOUR A1 - Hoeser, Thorsten A1 - Bachofer, Felix A1 - Kuenzer, Claudia T1 - Object detection and image segmentation with deep learning on Earth Observation data: a review — part II: applications JF - Remote Sensing N2 - In Earth observation (EO), large-scale land-surface dynamics are traditionally analyzed by investigating aggregated classes. The increase in data with a very high spatial resolution enables investigations on a fine-grained feature level which can help us to better understand the dynamics of land surfaces by taking object dynamics into account. To extract fine-grained features and objects, the most popular deep-learning model for image analysis is commonly used: the convolutional neural network (CNN). In this review, we provide a comprehensive overview of the impact of deep learning on EO applications by reviewing 429 studies on image segmentation and object detection with CNNs. We extensively examine the spatial distribution of study sites, employed sensors, used datasets and CNN architectures, and give a thorough overview of applications in EO which used CNNs. Our main finding is that CNNs are in an advanced transition phase from computer vision to EO. Upon this, we argue that in the near future, investigations which analyze object dynamics with CNNs will have a significant impact on EO research. With a focus on EO applications in this Part II, we complete the methodological review provided in Part I. KW - artificial intelligence KW - AI KW - machine learning KW - deep learning KW - neural networks KW - convolutional neural networks KW - CNN KW - image segmentation KW - object detection KW - earth observation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213152 SN - 2072-4292 VL - 12 IS - 18 ER - TY - JOUR A1 - Hoeser, Thorsten A1 - Kuenzer, Claudia T1 - Object detection and image segmentation with deep learning on Earth observation data: a review-part I: evolution and recent trends JF - Remote Sensing N2 - Deep learning (DL) has great influence on large parts of science and increasingly established itself as an adaptive method for new challenges in the field of Earth observation (EO). Nevertheless, the entry barriers for EO researchers are high due to the dense and rapidly developing field mainly driven by advances in computer vision (CV). To lower the barriers for researchers in EO, this review gives an overview of the evolution of DL with a focus on image segmentation and object detection in convolutional neural networks (CNN). The survey starts in 2012, when a CNN set new standards in image recognition, and lasts until late 2019. Thereby, we highlight the connections between the most important CNN architectures and cornerstones coming from CV in order to alleviate the evaluation of modern DL models. Furthermore, we briefly outline the evolution of the most popular DL frameworks and provide a summary of datasets in EO. By discussing well performing DL architectures on these datasets as well as reflecting on advances made in CV and their impact on future research in EO, we narrow the gap between the reviewed, theoretical concepts from CV and practical application in EO. KW - artificial intelligence KW - AI KW - machine learning KW - deep learning KW - neural networks KW - convolutional neural networks KW - CNN KW - image segmentation KW - object detection KW - Earth observation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205918 SN - 2072-4292 VL - 12 IS - 10 ER - TY - CHAP ED - von Mammen, Sebastian ED - Klemke, Roland ED - Lorber, Martin T1 - Proceedings of the 1st Games Technology Summit BT - part of Clash of Realites 11th International Conference on the Technology and Theory of Digital Games N2 - As part of the Clash of Realities International Conference on the Technology and Theory of Digital Games, the Game Technology Summit is a premium venue to bring together experts from academia and industry to disseminate state-of-the-art research on trending technology topics in digital games. In this first iteration of the Game Technology Summit, we specifically paid attention on how the successes in AI in Natural User Interfaces have been impacting the games industry (industry track) and which scientific, state-of-the-art ideas and approaches are currently pursued (scientific track). KW - Veranstaltung KW - Künstliche Intelligenz KW - Mensch-Maschine-Kommunikation KW - Computerspiel KW - natural user interfaces KW - artificial intelligence Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245776 SN - 978-3-945459-36-2 ER - TY - CHAP A1 - Davies, Richard A1 - Dewell, Nathan A1 - Harvey, Carlo T1 - A framework for interactive, autonomous and semantic dialogue generation in games T2 - Proceedings of the 1st Games Technology Summit N2 - Immersive virtual environments provide users with the opportunity to escape from the real world, but scripted dialogues can disrupt the presence within the world the user is trying to escape within. Both Non-Playable Character (NPC) to Player and NPC to NPC dialogue can be non-natural and the reliance on responding with pre-defined dialogue does not always meet the players emotional expectations or provide responses appropriate to the given context or world states. This paper investigates the application of Artificial Intelligence (AI) and Natural Language Processing to generate dynamic human-like responses within a themed virtual world. Each thematic has been analysed against humangenerated responses for the same seed and demonstrates invariance of rating across a range of model sizes, but shows an effect of theme and the size of the corpus used for fine-tuning the context for the game world. KW - natural language processing · · · KW - interactive authoring system KW - semantic understanding KW - artificial intelligence Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246023 ER - TY - CHAP A1 - Sanusi, Khaleel Asyraaf Mat A1 - Klemke, Roland T1 - Immersive Multimodal Environments for Psychomotor Skills Training T2 - Proceedings of the 1st Games Technology Summit N2 - Modern immersive multimodal technologies enable the learners to completely get immersed in various learning situations in a way that feels like experiencing an authentic learning environment. These environments also allow the collection of multimodal data, which can be used with artificial intelligence to further improve the immersion and learning outcomes. The use of artificial intelligence has been widely explored for the interpretation of multimodal data collected from multiple sensors, thus giving insights to support learners’ performance by providing personalised feedback. In this paper, we present a conceptual approach for creating immersive learning environments, integrated with multi-sensor setup to help learners improve their psychomotor skills in a remote setting. KW - immersive learning technologies KW - multimodal learning KW - sensor devices KW - artificial intelligence KW - psychomotor training Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246016 ER - TY - JOUR A1 - Janiesch, Christian A1 - Zschech, Patrick A1 - Heinrich, Kai T1 - Machine learning and deep learning JF - Electronic Markets N2 - Today, intelligent systems that offer artificial intelligence capabilities often rely on machine learning. Machine learning describes the capacity of systems to learn from problem-specific training data to automate the process of analytical model building and solve associated tasks. Deep learning is a machine learning concept based on artificial neural networks. For many applications, deep learning models outperform shallow machine learning models and traditional data analysis approaches. In this article, we summarize the fundamentals of machine learning and deep learning to generate a broader understanding of the methodical underpinning of current intelligent systems. In particular, we provide a conceptual distinction between relevant terms and concepts, explain the process of automated analytical model building through machine learning and deep learning, and discuss the challenges that arise when implementing such intelligent systems in the field of electronic markets and networked business. These naturally go beyond technological aspects and highlight issues in human-machine interaction and artificial intelligence servitization. KW - analytical model building KW - machine learning KW - deep learning KW - artificial intelligence KW - artificial neural networks Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270155 SN - 1422-8890 VL - 31 IS - 3 ER - TY - THES A1 - Höser, Thorsten T1 - Global Dynamics of the Offshore Wind Energy Sector Derived from Earth Observation Data - Deep Learning Based Object Detection Optimised with Synthetic Training Data for Offshore Wind Energy Infrastructure Extraction from Sentinel-1 Imagery T1 - Globale Dynamik des Offshore-Windenergiesektors abgeleitet aus Erdbeobachtungsdaten - Deep Learning-basierte Objekterkennung, optimiert mit synthetischen Trainingsdaten für die Extraktion von Offshore-Windenergieinfrastrukturen aus Sentinel-1 Bildern N2 - The expansion of renewable energies is being driven by the gradual phaseout of fossil fuels in order to reduce greenhouse gas emissions, the steadily increasing demand for energy and, more recently, by geopolitical events. The offshore wind energy sector is on the verge of a massive expansion in Europe, the United Kingdom, China, but also in the USA, South Korea and Vietnam. Accordingly, the largest marine infrastructure projects to date will be carried out in the upcoming decades, with thousands of offshore wind turbines being installed. In order to accompany this process globally and to provide a database for research, development and monitoring, this dissertation presents a deep learning-based approach for object detection that enables the derivation of spatiotemporal developments of offshore wind energy infrastructures from satellite-based radar data of the Sentinel-1 mission. For training the deep learning models for offshore wind energy infrastructure detection, an approach is presented that makes it possible to synthetically generate remote sensing data and the necessary annotation for the supervised deep learning process. In this synthetic data generation process, expert knowledge about image content and sensor acquisition techniques is made machine-readable. Finally, extensive and highly variable training data sets are generated from this knowledge representation, with which deep learning models can learn to detect objects in real-world satellite data. The method for the synthetic generation of training data based on expert knowledge offers great potential for deep learning in Earth observation. Applications of deep learning based methods can be developed and tested faster with this procedure. Furthermore, the synthetically generated and thus controllable training data offer the possibility to interpret the learning process of the optimised deep learning models. The method developed in this dissertation to create synthetic remote sensing training data was finally used to optimise deep learning models for the global detection of offshore wind energy infrastructure. For this purpose, images of the entire global coastline from ESA's Sentinel-1 radar mission were evaluated. The derived data set includes over 9,941 objects, which distinguish offshore wind turbines, transformer stations and offshore wind energy infrastructures under construction from each other. In addition to this spatial detection, a quarterly time series from July 2016 to June 2021 was derived for all objects. This time series reveals the start of construction, the construction phase and the time of completion with subsequent operation for each object. The derived offshore wind energy infrastructure data set provides the basis for an analysis of the development of the offshore wind energy sector from July 2016 to June 2021. For this analysis, further attributes of the detected offshore wind turbines were derived. The most important of these are the height and installed capacity of a turbine. The turbine height was calculated by a radargrammetric analysis of the previously detected Sentinel-1 signal and then used to statistically model the installed capacity. The results show that in June 2021, 8,885 offshore wind turbines with a total capacity of 40.6 GW were installed worldwide. The largest installed capacities are in the EU (15.2 GW), China (14.1 GW) and the United Kingdom (10.7 GW). From July 2016 to June 2021, China has expanded 13 GW of offshore wind energy infrastructure. The EU has installed 8 GW and the UK 5.8 GW of offshore wind energy infrastructure in the same period. This temporal analysis shows that China was the main driver of the expansion of the offshore wind energy sector in the period under investigation. The derived data set for the description of the offshore wind energy sector was made publicly available. It is thus freely accessible to all decision-makers and stakeholders involved in the development of offshore wind energy projects. Especially in the scientific context, it serves as a database that enables a wide range of investigations. Research questions regarding offshore wind turbines themselves as well as the influence of the expansion in the coming decades can be investigated. This supports the imminent and urgently needed expansion of offshore wind energy in order to promote sustainable expansion in addition to the expansion targets that have been set. N2 - Der Ausbau erneuerbarer Energien wird durch den sukzessiven Verzicht auf fossile Energieträger zur Reduktion der Treibhausgasemissionen, dem stetig steigenden Energiebedarf sowie, in jüngster Zeit, von geopolitischen Ereignissen stark vorangetrieben. Der offshore Windenergiesektor steht in Europa, dem Vereinigten Königreich, China, aber auch den USA, Süd-Korea und Vietnam vor einer massiven Expansion. In den nächsten Dekaden werden die bislang größten marinen Infrastrukturprojekte mit tausenden neu installierten offshore Windturbinen realisiert. Um diesen Prozess global zu begleiten und eine Datengrundlage für die Forschung, für Entscheidungsträger und für ein kontinuierliches Monitoring bereit zu stellen, präsentiert diese Dissertation einen Deep Learning basierten Ansatz zur Detektion von offshore Windkraftanalagen aus satellitengestützten Radardaten der Sentinel-1 Mission. Für das überwachte Training der verwendeten Deep Learning Modelle zur Objektdetektion wird ein Ansatz vorgestellt, der es ermöglicht, Fernerkundungsdaten und die notwendigen Label synthetisch zu generieren. Hierbei wird Expertenwissen über die Bildinhalte, wie offshore Windkraftanlagen aber auch ihre natürliche Umgebung, wie Küsten oder andere Infrastruktur, gemeinsam mit Informationen über den Sensor strukturiert und maschinenlesbar gemacht. Aus dieser Wissensrepräsentation werden schließlich umfangreiche und höchst variable Trainingsdaten erzeugt, womit Deep Learning Modelle die Detektion von Objekten in Satellitendaten erlernen können. Das Verfahren zur synthetischen Erzeugung von Trainingsdaten basierend auf Expertenwissen bietet großes Potential für Deep Learning in der Erdbeobachtung. Deep Learning Ansätze können hierdurch schneller entwickelt und getestet werden. Darüber hinaus bieten die synthetisch generierten und somit kontrollierbaren Trainingsdaten die Möglichkeit, den Lernprozess der optimierten Deep Learning Modelle zu interpretieren. Das in dieser Dissertation für Fernerkundungsdaten entwickelte Verfahren zur Erstellung synthetischer Trainingsdaten wurde schließlich zur Optimierung von Deep Learning Modellen für die globale Detektion von offshore Windenergieanlagen eingesetzt. Hierfür wurden Aufnahmen der gesamten globalen Küstenlinie der Sentinel-1 Mission der ESA ausgewertet. Der abgeleitete Datensatz, welcher 9.941 Objekte umfasst, unterscheidet offshore Windturbinen, Trafostationen und im Bau befindliche offshore Windenergieinfrastrukturen voneinander. Zusätzlich zu dieser räumlichen Detektion wurde eine vierteljährliche Zeitreihe von Juli 2016 bis Juni 2021 für alle Objekte generiert. Diese Zeitreihe zeigt den Start des Baubeginns, die Bauphase und den Zeitpunkt der Fertigstellung mit anschließendem Betrieb für jedes Objekt. Der gewonnene Datensatz dient weiterhin als Grundlage für eine Analyse der Entwicklung des offshore Windenergiesektors von Juli 2016 bis Juni 2021. Für diese Analyse wurden weitere Attribute der Turbinen abgeleitet. In einem radargrammetrischen Verfahren wurde die Turbinenhöhe berechnet und anschließend verwendet, um die installierte Leistung statistisch zu modellieren. Die Ergebnisse hierzu zeigen, dass im Juni 2021 weltweit 8.885 offshore Windturbinen mit insgesamt 40,6 GW Leistung installiert waren. Die größten installierten Leistungen stellen dabei die EU (15,2 GW), China (14,1 GW) und das Vereinigte Königreich (10,7 GW). Von Juli 2016 bis Juni 2021 hat China 13 GW installierte Leistung ausgebaut. Die EU hat im selben Zeitraum 8 GW und das Vereinigte Königreich 5,8 GW offshore Windenergieinfrastruktur installiert. Diese zeitliche Analyse verdeutlicht, dass China der maßgebliche Treiber in der Expansion des offshore Windenergiesektors im untersuchten Zeitraum war. Der abgeleitete Datensatz zur Beschreibung des offshore Windenergiesektors wurde öffentlich zugänglich gemacht. Somit steht er allen Entscheidungsträgern und Stakeholdern, die am Ausbau von offshore Windenergieanlagen beteiligt sind, frei zur Verfügung. Vor allem im wissenschaftlichen Kontext dient er als Datenbasis, welche unterschiedlichste Untersuchungen ermöglicht. Hierbei können sowohl Forschungsfragen bezüglich der offshore Windenergieanlagen selbst, als auch der Einfluss des Ausbaus der kommenden Dekaden untersucht werden. Somit wird der bevorstehende und dringend notwendige Ausbau der offshore Windenergie unterstützt, um neben den gesteckten Zielen auch einen nachhaltigen Ausbau zu fördern. KW - deep learning KW - offshore wind energy KW - artificial intelligence KW - earth observation KW - remote sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-292857 ER -