TY - JOUR A1 - Dupuis, Luc A1 - Dengler, Reinhard A1 - Heneka, Michael T. A1 - Meyer, Thomas A1 - Zierz, Stephan A1 - Kassubek, Jan A1 - Fischer, Wilhelm A1 - Steiner, Franziska A1 - Lindauer, Eva A1 - Otto, Markus A1 - Dreyhaupt, Jens A1 - Grehl, Torsten A1 - Hermann, Andreas A1 - Winkler, Andrea S. A1 - Bogdahn, Ulrich A1 - Benecke, Reiner A1 - Schrank, Bertold A1 - Wessig, Carsten A1 - Grosskreutz, Julian A1 - Ludolph, Albert C. T1 - A Randomized, Double Blind, Placebo-Controlled Trial of Pioglitazone in Combination with Riluzole in Amyotrophic Lateral Sclerosis JF - PLoS One N2 - Background: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS). Methods/Principal Findings: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated. Conclusion/Significance: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole. KW - ALS KW - transgenic mouse model KW - central nervous system KW - nonalcoholic steatohepatitis KW - PPAR-gamme KW - hexanucleotide repeat KW - disease progression KW - delays progression KW - SOD1 mutations KW - monocycline Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130255 VL - 7 IS - 6 ER - TY - JOUR A1 - Palkovits, Miklós A1 - Šebeková, Katarína A1 - Klenovics, Kristina Simon A1 - Kebis, Anton A1 - Fazeli, Gholamreza A1 - Bahner, Udo A1 - Heidland, August T1 - Neuronal Activation in the Central Nervous System of Rats in the Initial Stage of Chronic Kidney Disease-Modulatory Effects of Losartan and Moxonidine JF - PLoS ONE N2 - The effect of mild chronic renal failure (CRF) induced by 4/6-nephrectomy (4/6NX) on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus). Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons) and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow) did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances. KW - brain natriuretic peptide KW - kidneys KW - cognitive impairment KW - central nervous system KW - chronic kidney disease KW - neurons KW - homeostasis KW - blood pressure Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130108 VL - 8 IS - 6 ER - TY - JOUR A1 - Üçeyler, Nurcan A1 - Homola, György A. A1 - González, Hans Guerrero A1 - Kramer, Daniela A1 - Wanner, Christoph A1 - Weidemann, Frank A1 - Solymosi, László A1 - Sommer, Claudia T1 - Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease N2 - A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males – females; normal – impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13%) and 5/57 (9%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87%, specificity: 86%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity. KW - Arterial Diameters KW - ischemic stroke KW - magnetic resonance imaging KW - stroke KW - cerebral arteries KW - renal system KW - central nervous system KW - blood flow KW - lesions Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112614 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Förster, Carola T1 - In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter JF - Advances and Applications in Bioinformatics and Chemistry N2 - The blood–brain barrier choline transporter (BBB-ChT) may have utility as a drug delivery vector to the central nervous system (CNS). We therefore initiated molecular docking studies with the AutoDock and AutoDock Vina (ADVina) algorithms to develop predictive models for compound screening and to identify structural features important for binding to this transporter. The binding energy predictions were highly correlated with r2=0.88, F=692.4, standard error of estimate =0.775, and P-value<0.0001 for selected BBB-ChT-active/inactive compounds (n=93). Both programs were able to cluster active (Gibbs free energy of binding <−6.0 kcal*mol-1) and inactive (Gibbs free energy of binding >−6.0 kcal*mol-1) molecules and dock them significantly better than at random with an area under the curve value of 0.86 and 0.84, respectively. In ranking smaller molecules with few torsional bonds, a size-related bias in scoring producing false-negative outcomes was detected. Finally, important blood–brain barrier parameters, such as the logBBpassive and logBBactive values, were assessed to predict compound transport to the CNS accurately. Knowledge gained from this study is useful to better understand the binding requirements in BBB-ChT, and until such time as its crystal structure becomes available, it may have significant utility in developing a highly predictive model for the rational design of drug-like compounds targeted to the brain. KW - virtual screening KW - Gibbs free energy of binding KW - diffusion KW - molecular docking KW - drug delivery vector KW - central nervous system KW - blood–brain barrier choline transporter Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120200 VL - 7 ER - TY - JOUR A1 - Prinz, Johanna A1 - Karacivi, Aylin A1 - Stormanns, Eva R. A1 - Recks, Masha S. A1 - Kürten, Stefanie T1 - Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis JF - PloS One N2 - Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Limited availability of human tissue underscores the importance of animal models to study the pathology of MS. Methods Twenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord. Results B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. In addition, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation. Conclusions Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse histopathological aspects of MS. KW - Multiple sclerosis KW - spinal cord KW - central nervous system KW - nerve fibers KW - inflammatory diseases KW - axons KW - mitochondria KW - mouse models Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146651 VL - 10 IS - 12 ER - TY - JOUR A1 - Tran-Gia, Johannes A1 - Wech, Tobias A1 - Bley, Thorsten A1 - Köstler, Herbert T1 - Model-Based Acceleration of Look-Locker T1 Mapping JF - PLoS One N2 - Mapping the longitudinal relaxation time \(T_1\) has widespread applications in clinical MRI as it promises a quantitative comparison of tissue properties across subjects and scanners. Due to the long scan times of conventional methods, however, the use of quantitative MRI in clinical routine is still very limited. In this work, an acceleration of Inversion-Recovery Look-Locker (IR-LL) \(T_1\) mapping is presented. A model-based algorithm is used to iteratively enforce an exponential relaxation model to a highly undersampled radially acquired IR-LL dataset obtained after the application of a single global inversion pulse. Using the proposed technique, a \(T_1\) map of a single slice with 1.6mm in-plane resolution and 4mm slice thickness can be reconstructed from data acquired in only 6s. A time-consuming segmented IR experiment was used as gold standard for \(T_1\) mapping in this work. In the subsequent validation study, the model-based reconstruction of a single-inversion IR-LL dataset exhibited a \(T_1\) difference of less than 2.6% compared to the segmented IR-LL reference in a phantom consisting of vials with \(T_1\) values between 200ms and 3000ms. In vivo, the \(T_1\) difference was smaller than 5.5% in WM and GM of seven healthy volunteers. Additionally, the \(T_1\) values are comparable to standard literature values. Despite the high acceleration, all model-based reconstructions were of a visual quality comparable to fully sampled references. Finally, the reproducibility of the \(T_1\) mapping method was demonstrated in repeated acquisitions. In conclusion, the presented approach represents a promising way for fast and accurate \(T_1\) mapping using radial IR-LL acquisitions without the need of any segmentation. KW - algorithms KW - cerebrospinal fluid KW - NMR relaxation KW - data acquisition KW - relaxation (physics) KW - relaxation time KW - central nervous system KW - magnetic resonance imaging Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126436 VL - 10 IS - 4 ER - TY - JOUR A1 - Neuhaus, Winfried A1 - Schlundt, Marian A1 - Fehrholz, Markus A1 - Ehrke, Alexander A1 - Kunzmann, Steffen A1 - Liebner, Stefan A1 - Speer, Christian P. A1 - Förster, Carola Y. T1 - Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups JF - PLoS One N2 - Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation. KW - endothelial cells KW - protein expression KW - central nervous system KW - mouse models KW - pregnancy KW - tight junctions KW - sheep KW - angiogenesis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125471 VL - 10 IS - 8 ER - TY - JOUR A1 - Rottlaender, Andrea A1 - Kuerten, Stefanie T1 - Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research JF - International Journal of Molecular Sciences N2 - Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities. KW - experimental autoimmune encephalomyelitis KW - white matter KW - lesions KW - remyelination KW - multiple sclerosis KW - regeneration KW - neuroprotection KW - degeneration KW - axonal damage KW - neurodegeneration KW - pathology KW - sodium channels KW - axonal injury KW - central nervous system Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148416 VL - 16 ER - TY - JOUR A1 - Rosenbaum, Corinna A1 - Schick, Martin Alexander A1 - Wollborn, Jakob A1 - Heider, Andreas A1 - Scholz, Claus-Jürgen A1 - Cecil, Alexander A1 - Niesler, Beate A1 - Hirrlinger, Johannes A1 - Walles, Heike A1 - Metzger, Marco T1 - Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo JF - PLoS One N2 - Background Enteric glial cells (EGCs) are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammatory microenvironment. Previous studies on EGC pathophysiology have specifically focused on mucosal glia activation and its contribution to mucosal inflammatory processes observed in the gut of inflammatory bowel disease (IBD) patients. In contrast knowledge is scarce on intestinal inflammation not locally restricted to the mucosa but systemically affecting the intestine and its effect on the overall EGC network. Methods and Results In this study, we analyzed the biological effects of a systemic LPS-induced hyperinflammatory insult on overall EGCs in a rat model in vivo, mimicking the clinical situation of systemic inflammation response syndrome (SIRS). Tissues from small and large intestine were removed 4 hours after systemic LPS-injection and analyzed on transcript and protein level. Laser capture microdissection was performed to study plexus-specific gene expression alterations. Upon systemic LPS-injection in vivo we observed a rapid and dramatic activation of Glial Fibrillary Acidic Protein (GFAP)-expressing glia on mRNA level, locally restricted to the myenteric plexus. To study the specific role of the GFAP subpopulation, we established flow cytometry-purified primary glial cell cultures from GFAP promotor-driven EGFP reporter mice. After LPS stimulation, we analyzed cytokine secretion and global gene expression profiles, which were finally implemented in a bioinformatic comparative transcriptome analysis. Enriched GFAP+ glial cells cultured as gliospheres secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Additionally, a shift in myenteric glial gene expression profile was induced that predominantly affected genes associated with immune response. Conclusion and Significance Our findings identify the myenteric GFAP-expressing glial subpopulation as particularly susceptible and responsive to acute systemic inflammation of the gut wall and complement knowledge on glial involvement in mucosal inflammation of the intestine. KW - gene expression KW - gastrointestinal tract KW - inflammatory bowel disease KW - central nervous system KW - systemic inflammatory response syndrome KW - inflammation KW - astrocytes KW - cytokines Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146544 VL - 11 IS - 3 ER -