TY - JOUR A1 - Chen, Nanhai G. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Szalay, Aladar A. T1 - Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice JF - Journal of Translational Medicine N2 - Background: We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, beta-galactosidase, and beta-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV 1h68. This strain shows tumor specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods: A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV 1h68 with short non coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results: we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions: These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals. KW - Recombinant vaccinia KW - Nude-mice KW - Cancer KW - GLV-1H68 KW - Therapy KW - Agent KW - Regression KW - Carcinoma KW - Deletion KW - Protein KW - modulation of virus replication KW - GI-101A tumor xenografts KW - oncolytic virotherapy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142268 VL - 9 IS - 164 ER - TY - THES A1 - Sturm, Julia T1 - Effekte von Hyper-IL-6 in der Vaccinia-Virus-vermittelten Krebstherapie T1 - Effects of Hyper-IL-6 in vaccinia virus-mediated cancer therapy N2 - In der vorliegenden Arbeit wurde ein onkolytisches Vaccinia-Virus unter Ausnutzung seiner Eigenschaft als Vektorsystem mit dem Designer-Zytokin Hyper-IL-6 ausgestattet (GLV 1h90). Bei Hyper IL 6 handelt es sich um ein Fusionsprotein bestehend aus humanem Interleukin-6 und der Liganden-Bindungsdomäne des löslichen Interleukin-6-Rezeptors, welche kovalent über einen flexiblen Linker miteinander verbunden sind. Dieses chimäre Designer-Zytokin erlaubt die Untersuchung von IL-6-Effekten, welche über das IL-6-Trans-Signaling vermittelt werden. Daraus ergibt sich einerseits eine beträchtliche Erweiterung des Wirkspektrums und darüber hinaus weist Hyper-IL-6 sowohl in vitro als auch in vivo eine 100-1000fach verstärkte biologische Aktivität auf. Aufgrund der Tatsache, dass Hyper-IL-6, neben seiner Tumor-inhibierenden Wirkung, eine Vielzahl weiterer Effekte zugeschrieben wird, wurde in dieser Arbeit durch die Kombination des Designer-Zytokins mit einem onkolytischen Vaccinia-Virus nicht nur additive Effekte auf die Tumorregression, sondern darüber hinaus auch mögliche systemisch-vermittelte Hyper-IL-6-Effekte untersucht. Nach intravenöser Injektion von GLV-1h90 in DU-145-Tumor-tragende Mäuse konnte neben der intratumoralen Replikation des Virus und der Expression des Markerproteins Ruc-GFP zusätzlich die Expression des integrierten Designer-Zytokins Hyper-IL-6 im Tumor nachgewiesen werden. Von entscheidender Bedeutung war der zusätzliche Nachweis des Designer-Zytokins in Serum-Proben von GLV-1h90-injizierten Mäusen. Nach einer aktiven Hyper-IL-6-Sekretion von infizierten Tumorzellen, bildet der Transport in die Blutbahn die Voraussetzung für systemisch-vermittelte Hyper-IL-6-Effekte. In dieser Arbeit wurde untersucht, ob sich durch die Überexpression von Hyper-IL-6 im Tumor, zusätzlich zu den onkolytischen Eigenschaften des Vaccinia-Virus, additive anti-Tumor-Effekte ergeben. Eine systemische Injektion von GLV 1h90 bzw. GLV 1h68 in DU-145-Tumor-tragende Mäuse führte zu einer signifikanten Reduktion des Tumorvolumens im Vergleich zu PBS-injizierten Mäusen. Neben Effekten, welche mit Entzündungsprozessen assoziiert sind, wie eine Rotfärbung der Haut, eine signifikanten Vergrößerung der Leber sowie eine massive Stimulation der Akute-Phase-Antwort in der Leber, konnte in GLV-1h90-injizierten Mäusen ein verbesserter Gesundheitszustand auf der Basis einer signifikanten Gewichtszunahme, verbunden mit einer beschleunigten Wundheilung Virus-induzierter Schwanzläsionen, beobachtet werden. Darüber hinaus konnte für Hyper-IL-6 eine Stimulierung der Megakaryopoese im Knochenmark nachgewiesen werden, welche zu einer signifikanten Erhöhung der Thrombozyten-Zahl im Blutkreislauf von GLV-1h90-injizierten Mäusen führte. Es ist von entscheidender Bedeutung anzumerken, dass alle beobachteten systemischen Hyper-IL-6-Effekte eine zeitliche Limitierung aufwiesen, welche sich höchstwahrscheinlich auf die Virus-bedingte Zerstörung Hyper IL 6-produzierender Tumorzellen zurückführen lässt. Dies impliziert zudem, dass eventuelle Komplikationen, welche durch die Überexpression des Designer-Zytokins hervorgerufen werden können, ebenfalls selbstlimitierend sind. Es konnte bereits mehrfach gezeigt werden, dass eine Kombinationstherapie aus onkolytischen Viren und Chemotherapie über synergistische Effekte zu einer signifikant verbesserten Tumorregression führt. Allerdings kommt es in Folge einer Chemotherapie oft zu einer Vielzahl von gefährlichen Nebenwirkungen, da alle schnell proliferierenden Zellen des Körpers betroffen sind. Thrombozytopenie ist eine der am häufigsten vorkommenden Nebenwirkung und beschreibt eine massive Reduktion der Thrombozyten-Zahl im Blut. Im Hinblick auf eine mögliche klinische Anwendung von GLV 1h90 wurde deshalb untersucht, ob in einer Kombinationstherapie mit Mitomycin C, neben einer Verstärkung der therapeutischen Effekte des Virus, basierend auf den beobachteten Hyper-IL-6-Effekten, zusätzlich der Gesundheitszustand der behandelten Mäuse verbessert werden kann. Die Experimente belegen, dass eine Kombination onkolytischer Vaccinia-Virus-Konstrukte mit Mitomycin C zu einer signifikant verbesserten Tumorregression im Vergleich zu den jeweiligen Monotherapien führt. Von bedeutender Relevanz war die Beobachtung, dass in einer Kombinationstherapie von Mitomycin C und GLV-1h90, im Gegensatz zu GLV-1h68, eine signifikante zeitliche Verkürzung der auftretenden Thrombozytopenie erreicht wird. Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass eine systemische Injektion von GLV-1h90 zu einer funktionellen Expression des Designer-Zytokins Hyper-IL-6 führte, welches in der Lage ist eine erfolgreiche Kombinationstherapie aus einem onkolytischen Vaccinia-Virus und dem Chemotherapeutikum Mitomycin C durch eine Reduktion der Nebenwirkungen zusätzlich zu optimieren. N2 - In this thesis, an oncolytic vaccinia virus was armed with the designer cytokine Hyper-IL-6 by recombinant integration (GLV-1h90), exploiting its features as a vector system. Hyper IL-6 is composed of human interleukin-6 (IL-6) and the cytokine-binding domain of its soluble receptor sIL-6R which are bond covalently by a flexible peptide linker. Hyper-IL-6 is a multifunctional cytokine which exhibits not only anti-tumor activity, but also a variety of other effects. For this reason, the combination of the designer cytokine and an oncolytic vaccinia virus was used to study possible improvements regarding tumor regression and more importantly additional systemically mediated Hyper IL-6 effects. In addition to intratumoral replication and visualization of the marker gene ruc-gfp, intratumoral expression of the inserted designer cytokine Hyper-IL-6 could be detected after systemic administration of GLV-1h90 into DU-145-tumor-bearing mice. Of special interest was the presence of hyper-IL-6 in blood serum samples of GLV-1h90-injected mice. Following active hyper-IL-6 secretion of infected tumor cells, the transport into the blood circulation is essential for its ability to induce signal transduction pathways outside the tumor. IL-6 is a pro-inflammatory cytokine which is postulated to exhibit both, tumor promoting as well as tumor inhibiting effects. However, growth or proliferation inhibition of tumors could only be observed after addition of soluble IL-6 receptor and is consequently associated with the IL 6-trans-signaling pathway. Therefore, the thesis deals with the question of whether overexpression of hyper-IL-6 can further enhance the pre-existing oncolytic effects of vaccinia virus. Systemic administration of either GLV-1h90 or GLV-1h68 led to significant tumor regression compared to PBS-treated mice. Comparison of the two viral constructs demonstrated a slightly increased oncolytic activity of GLV-1h90. However, further studies have to clarify to which extend this improvement is resulting from an intratumoral overexpression of hyper IL 6. Following the detection of hyper-IL-6 in the blood circulation as a consequence of GLV 1h90-mediated overexpression in the tumor, functionality of the designer cytokine was analyzed regarding systemically mediated effects. Besides effects which can be associated with inflammatory processes, such as red skin, significant enlargement of the liver as well as enormous stimulation of the acute-phase-response, GLV-1h90-injected mice showed improved healthiness. Health status was assessed by significant gain in body weight associated with accelerated epithelial barrier repair of virus-induced tail lesions. Moreover, it could be demonstrated that Hyper-IL-6 stimulates megakaryopoiesis in the bone marrow, which in turn leads to significantly elevated levels of blood platelets in GLV-1h90-injected mice. It is particularly important to note that all observed systemic Hyper-IL-6 effects occurred only temporarily, which could be explained by virus-mediated oncolysis, reducing the amount of viable Hyper-IL-6 producing tumor cells. The results also implicate that potential complications associated with the overexpression of the designer cytokine can be self-limiting due to the destruction of the virus replication site. Recently, we and others demonstrated that the combination of oncolytic virotherapy and chemotherapy could lead to synergistic interactions that ultimately result in enhanced tumor regression. On the other hand, chemotherapy is often associated with serious side effects, since all fast proliferating cells are affected. Among the most frequently observed adverse effects is thrombocytopenia, which is characterized by a massive reduction of blood platelets. With regard to a possible clinical application of GLV 1h90, combination therapy of the hyper IL 6 encoding vaccinia-virus strain and the chemotherapeutic agent mitomycin C was investigated. Besides therapeutic effects of the virus, the issue was addressed, whether the health status of mice can be improved based on the observed hyper-IL-6 effects. Experimental results clearly demonstrated that combination therapy of mitomycin C and oncolytic vaccinia viruses led to a significantly improved DU-145 tumor regression compared to the respective monotherapies. Of particular importance was the finding that as compared to GLV-1h68, a combination of GLV-1h90 and mitomycin C reduced the time interval during which treated mice suffered from thrombocytopenia significantly. Taken together, this thesis revealed that systemic injection of GLV-1h90 leads to functional expression of the designer cytokine hyper-IL-6, which is able to further optimize the already effective combination therapy of the oncolytic virus GLV-1h90 and the chemotherapeutic agent mitomycin C by reducing of serious adverse effects. KW - Prostatakrebs KW - Vaccinia-Virus KW - Interleukin 6 KW - Chemotherapie KW - Mitomycin C KW - Onkolytische Virotherapie KW - Hyper-IL-6 KW - Thrombozytopenie KW - oncolytic virotherapy KW - Hyper-IL-6 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66831 ER - TY - THES A1 - Donat, Ulrike T1 - Detektion und Therapie von Metastasen des humanen Prostatakarzinoms durch das onkolytische Vaccinia-Virus GLV-1h68 T1 - Detection and therapy of human prostate carcinoma metastases with the oncolytic vaccinia virus GLV-1h68 N2 - Zurzeit sterben jährlich ca. 11.000 Männer in Deutschland am Prostatakarzinom. Damit stellt dies die zweithäufigste Krebstodesursache von Männern dar. Da das Prostatakarzinom häufig asymptomatisch verläuft, wird die Erkrankung oftmals erst so spät erkannt, dass zum Zeitpunkt der Diagnose bereits eine Metastasierung stattgefunden hat. Durch metastasierende Prostatakarzinomzellen werden Lymphknoten, Knochen und Lungen befallen. Es sind zwei unterschiedliche Verbreitungsarten von metastasierenden Tumorzellen beschrieben. Zum einen kann eine Migration über Lymphgefäße erfolgen, ein Prozess der als lymphatische Metastasierung bezeichnet wird. Zum anderen können Tumorzellen über das Blutsystem im Körper zirkulieren: die hämatogene Metastasierung. In dieser Arbeit wurde die lymphatische Metastasierung der humanen Prostatakarzinomzellline PC-3 im Detail analysiert und Teilaspekte der hämatogenen Verteilung untersucht. Ausgangspunkt der Untersuchungen bildete die Vergrößerung lumbaler und renaler Lymphknoten in PC-3-Tumor-tragenden Mäusen 60 Tage nach der Implantation von PC-3-Zellen. Es wurde daraufhin der zeitliche Verlauf der Vergrößerung untersucht und festgestellt, dass sowohl das Volumen als auch die Anzahl vergrößerter Lymphknoten von Woche zu Woche nach Implantation der PC-3-Tumore zunehmen. Anschließend wurden alle vergrößerten Lymphknoten bezüglich des Vorhandenseins von metastasierenden humanen PC-3-Zellen in den Mäusen untersucht. Dies geschah mit Hilfe einer RT-PCR unter Verwendung von Primern für humanes β-Aktin. Sechs Wochen nach Implantation konnten in 90 % der vergrößerten Lymphknoten PC-3-Zellen nachgewiesen werden. Weiterhin wurde durch lentivirale Transduktion das Gen für das rot fluoreszierende Protein (RFP) in die PC-3-Zellen inseriert, wodurch eine Visualisierung dieser Zellen in der Maus ermöglicht wurde. Es konnten metastasierende PC-3-RFP-Zellen in lumbalen und renalen Lymphknoten PC-3-RFP-Tumor-tragender Mäuse nachgewiesen werden. Ebenso konnte mittels RFP gezeigt werden, dass die Lymphknotenmetastasierung in Abhängigkeit von der Lokalisation des PC-3-RFP-Tumors erfolgt. Es kam zur Metastasierung jener Lymphknoten, in deren Einzugsgebiet sich der PC-3-Tumor befand. Es wurde eine PC-3-RFP-Zellmigration zwischen lumbalen und renalen Lymphknotenmetastasen nachgewiesen und bei immunhistologischen Untersuchungen stellte sich heraus, dass PC-3-RFP-Zellen tatsächlich in lymphatischen Bahnen zwischen lumbalen und renalen Lymphknotenmetastasen migrieren. Außerdem wurde gezeigt, dass es von Woche zu Woche nach Implantation von PC-3-Zellen zu einer Zunahme der Anzahl von Lymphgefäßen in PC-3-Tumoren kommt. Die Zunahme der Lymphgefäßdichte korrelierte hierbei positiv mit der Bildung von Lymphknotenmetastasen. Es konnten weiterhin neben Lymphknotenmetastasen hämatogene Mikrometastasen in den Lungen PC-3-RFP-Tumor-tragender Mäuse beobachtet werden. Da die Haupttodesursache von Prostatakarzinompatienten in der Bildung von Metastasen liegt, ist es von herausragender Bedeutung eine effektive Therapie gegen lymphatische und hämatogene Metastasen zu entwickeln. Aus diesem Grund erlangt die onkolytische Virustherapie große Bedeutung. Deshalb wurde als zweiter Aspekt in dieser Arbeit der Einfluss des onkolytischen Vaccinia-Virus GLV-1h68 auf den Prozess der PC-3-Zellmetastasierung untersucht. Dabei konnte zunächst gezeigt werden, dass GLV-1h68 in der Lage ist, erfolgreich sowohl migrierende PC-3-Zellen als auch metastasierende PC-3-Zellen in Lymphknoten zu kolonisieren. In der Folge wurde deshalb ein möglicher Metastasen-inhibierender Effekt von GLV-1h68 untersucht. Hierbei stellte sich heraus, dass GLV-1h68 drei Wochen nach intravenöser Injektion eine signifikante Reduktion der Anzahl der für PC-3-Zellen positiven Lymphknoten bewirkt. Des Weiteren konnte ein inhibierender Effekt von GLV-1h68 auf die im Blut zirkulierenden PC-3-Zellen und auf hämatogene Metastasen in den Lungen beobachtet werden. Durch intravenöse Injektion von GLV-1h68 in PC-3-RFP-Tumor-tragenden Mäusen konnte gezeigt werden, dass es zu einer präferentiellen Virus-Kolonisierung der Lymphknotenmetastasen im Vergleich zu den Tumoren kommt. Auch nach intraperitonealer und intratumoraler Injektion von GLV-1h68 konnte eine präferentielle Virus-Kolonisierung der Lymphknotenmetastasen gezeigt werden. Darüber hinaus wurden die Lymph- und Blutgefäße von PC-3-Tumoren und Lymphknotenmetastasen analysiert. Hierbei wurde gezeigt, dass es sieben Tage nach intravenöser Injektion von GLV-1h68 zu einer signifikanten Abnahme von beiden Gefäßarten kam. Es wurde in dieser Arbeit somit gezeigt, dass GLV-1h68 in der Lage ist, sowohl lymphatische als auch hämatogene Metastasen der Prostatakarzinomzelllinie PC-3 erfolgreich zu eliminieren. Folglich dürften onkolytische Vaccinia-Viren ein vielversprechendes Therapeutikum für die Behandlung des fortgeschrittenen Prostatakarzinoms darstellen. N2 - Every year about 11,000 men in Germany are dying because of prostate carcinoma. Thus, prostate carcinoma represents the second leading cause of cancer related death in men. Since the prostate carcinoma usually proceeds asymptomatically the diagnosis is often made when metastases have already formed. Human prostate cancer usually spreads to lymph nodes, bones and lungs. There are two ways for tumor cells to migrate to other parts of the body: through lymphatic vessels, a process called lymphatic metastasis, or through the blood system, the hematogenous metastasis. In this thesis the lymphatic metastasis of the human prostate carcinoma cell line PC-3 was analyzed in detail while the hematogenous spread was only partially investigated. The initial point of these investigations was the enlargement of lumbar und renal lymph nodes in PC-3 tumor-bearing mice 60 days post implantation of PC-3 cells. Thereafter the time course of the enlargement was assessed. It turned out that the volume as well as the number of enlarged lymph nodes increased from week to week post implantation of PC-3 tumors. Subsequently, all enlarged lymph nodes were tested for the presence of human PC-3 cells in mice. This was done with the help of an RT-PCR using primers for human β-actin. Six weeks post implantation 90% of all enlarged lymph nodes were positive for PC-3 cells. Furthermore, the gene of the red fluorescent protein (RFP) was inserted into PC-3 cells via lentiviral transduction. By using fluorescence microscopy PC-3-RFP cells could be detected in lumbar and renal lymph nodes of PC-3-RFP tumor-bearing mice. With the help of RFP it could also be shown that lymph node metastases depend on the PC-3 tumor location. Metastases occurred in draining lymph nodes next to the tumor. Moreover, a PC-3-RFP cell migration between lumbar and renal lymph node metastases was shown. In the following immunohistochemical analysis it was proven that PC-3-RFP cells are indeed migrating in lymphatic vessels between these lumbar and renal lymph node metastases. Additionally, an increasing number of lymphatic vessels in PC-3 tumors was shown from week to week post implantation of PC-3 cells. This enhancement positively correlates with the formation of lymph node metastases. Besides lymph node metastases hematogenous micro metastases in the lungs of PC-3-RFP-tumor-bearing mice could be detected, too. The major cause of death in prostate cancer patients is the formation of metastases. Therefore, the development of effective therapies for lymphatic and hematogenous metastases is of major importance. One of the most promising novel cancer therapies for humans is oncolytic virotherapy. According to that, the second aspect of this thesis was to investigate the influence of the oncolytic vaccinia virus GLV-1h68 on the process of PC-3 cell metastasis. Thereby, it was initially shown that GLV-1h68 can efficiently colonize both migrating PC-3 cells and metastasized PC-3 cells in the lymph nodes. Ensuing, a possible metastasis inhibiting effect of GLV-1h68 was analyzed. It was shown that GLV-1h68 reduces the volume and the number of enlarged lymph nodes in PC-3 tumor-bearing mice three weeks after intravenous injection. It could also be shown that GLV-1h68 significantly reduces the number of lymph nodes that are positive for PC-3 cells. Additionally, GLV-1h68 has an inhibiting effect on PC-3 cells that are circulating in the blood of PC-3 tumor-bearing mice and on hematogenous metastases of the lungs. In analysing the intravenous injection of GLV-1h68 in PC-3-RFP tumor-bearing mice it turned out that there is a preferential viral colonisation of lymph node metastases compared to the tumors. At early points after injection renal lymph node metastases were colonized more thoroughly by GLV-1h68 than lumbar ones. The same preferential viral colonisation of lymph node metastases was shown upon intraperitoneal und intratumoral viral injection. Further, lymphatic and blood vessels of PC-3 tumors and lymph node metastases were analyzed. There was a significant reduction of lymphatic and blood vessels seven days post intravenous injection of GLV-1h68. This could explain the effect of GLV-1h68 on the reduction of the number of lymph node metastases, because the supply of nutrients as well as of oxygen is reduced due to the decrease of blood vessel density. Also, migration of PC-3 cells is minimized upon the reduction of lymphatic vessels. Thus, it was shown that GLV-1h68 has a great potential in eliminating lymphatic and hematogenous metastases of the human prostate carcinoma PC-3. Therefore, oncolytic vaccinia viruses apparently represent promising therapeutic agents for the treatment of advanced human prostate carcinoma. KW - Prostatakrebs KW - Metastase KW - Vaccinia-Virus KW - Metastasen KW - onkolytische Virustherapy KW - metatsases KW - oncolytic virotherapy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56421 ER - TY - THES A1 - Cook, Vanessa Janine T1 - Protection of healthy tissues from infection with systemically administered vaccinia virus strains T1 - Schutz gesunder Gewebe vor Infektion systemisch verabreichter Vaccinia-Virus Stämme N2 - Oncolytic virotherapy using recombinant vaccinia virus strains is a promising approach for the treatment of cancer. To further improve the safety of oncolytic vaccinia viruses, the cellular microRNA machinery can be applied as the host’s own security mechanism to avoid unwanted viral replication in healthy tissues. MicroRNAs are a class of small single-stranded RNAs which due to their ability to mediate post-transcriptional gene-silencing, play a crucial role in almost every regulatory process in cellular metabolism. Different cancers display unique microRNA expression patterns, showing significant up- or downregulation of endogenously expressed microRNAs. Furthermore, the behavior of cancer cells can be altered by either adding microRNAs known to inhibit cancer cell spread and proliferation or suppressing cancer promoting microRNAs (oncomirs) making microRNAs promising targets for cancer gene therapy. The cell’s own RNAi machinery can also be utilized to control viral replication due to the virus dependence on the host cell replication machinery, a process controlled by microRNAs. GLV-1h68 is a replication-competent recombinant oncolytic vaccinia virus constructed and generated by Genelux Corp., San Diego, CA, USA which carries insertions of three reporter gene cassettes for detection and attenuation purposes and is currently being evaluated for cancer treatment in clinical trials. Though there are hardly any side effects found in GLV-1h68 mediated oncolytic therapy an increased tropism for replication exclusively in cancer cells is desirable. Therefore it was investigated whether or not further cancer cell specificity of a recombinant vaccinia virus strain could be obtained without compromising its oncolytic activity using microRNA interference. Let-7a is a well characterized microRNA known to be expressed in high levels in healthy tissues and strongly downregulated in most cancers. To control vaccinia virus replication rates, four copies of the mature human microRNA let-7a target sequence were cloned behind the stop codon in the 3’end of the vaccinia virus D4R gene, using a GLV-1h68 derivative, GLV-1h190, as parental strain yielding the new recombinant virus strain GLV-1h250. The D4R gene belongs to the group of early transcribed vaccinia genes and encodes an essential enzyme, uracil DNA glycosylase, which catalyzes the removal of uracil residues from double-stranded DNA. A defect in D4R prevents vaccinia virus from entering into the intermediate and late phase of replication, leading to an aborted virus replication. After expression of the microRNA target sequence from the vaccinia virus genome, the endogenously expressed microRNA-let-7a should recognize its target structure within the viral mRNA transcript, thereby binding and degrading the viral mRNA which should lead to a strong inhibition of the virus replication in healthy cells. GLV-1h250 replication rates in cancerous A549 lung adenocarcinoma cells, which show a strong down-regulation of microRNA let-7a, was comparable to the replication rates of its parental strain GLV-1h190 and the control strain GLV-1h68. In contrast, GLV-1h250 displayed a 10-fold decrease in viral replication in non-cancerous ERC cells when compared to GLV-1h190 and GLV-1h68. In A549 tumor bearing nude mice GLV-1h250 replicated exclusively in the tumorous tissue and resulted in efficient tumor regression without adverse effects leading to the conclusion that GLV-1h250 replicates preferentially in cancerous cells and tissues, which display low endogenous let-7a expression levels. N2 - Die onkolytische Virotherapie mit rekombinanten Vaccinia Virusstämmen stellt einen vielversprechenden Ansatz zur Behandlung von Krebs dar. Um die Sicherheit von onkolytischen Vaccinia Viren zu erhöhen wird die zelluläre MikroRNA Maschinerie als körpereigener Abwehrmechanismus genutzt um ungewollte virale Replikation in gesundem Gewebe zu verhindern MikroRNAs sind kurze, einzelsträngige RNA-Moleküle die aufgrund Ihrer Fähigkeit des Posttranscriptional Gene Silencing (RNA Interferenz) eine entscheidende Rolle in fast jedem regulativen Prozess im Zellmetabolismus spielen. Diverse Arten von Krebs zeigen spezifische MicroRNA-Expressionsmuster, welche sich als signifikante „Up“-oder „Down“-Regulation der Expression dieser microRNA(s) darstellt. Weiterhin kann das Verhalten von Krebszellen verändert werden, entweder durch Wiedereinbringen von in bestimmten Krebsarten „down“-regulierten MikroRNAs oder durch Unterdrückung der Expression von MikroRNAs, die als krebsfördernd gelten (Oncomirs). Die RNA-Interferenz Maschinerie der Zelle kann des Weiteren auch als Replikationskontrolle z.B. von Viren genutzt werden, da Viren für Ihre eigene Vermehrung auf die Replikationsmaschinerie der Zelle angewiesen sind, ein Prozess welcher von MikroRNAs kontrolliert wird. GLV-1h68 ist ein replikationskompetentes Vaccinia Virus, konstruiert und hergestellt von Genelux Corp., San Diego, CA, USA, welches drei verschiedene Reportergene enthält, welche zu Erkennungs- und Attenuierungszwecken genutzt werden. Obwohl eine Behandlung mit GLV-1h68 kaum Nebenwirkungen zeigt, wäre eine Replikation des Virus ausschliesslich in Krebszellen wünschenswert. Aufgrund dessen wurde versucht ein rekombinantes Vaccinia Virus zu generieren welches, unter Zuhilfenahme der RNA Interferenzmaschinerie der Zelle, ohne Einbusse seiner onkolytischen Fähigkeit ausschliesslich in Krebszellen repliziert. Let-7a ist eine gut charakterisierte MikroRNA die eine hohe Expression in gesunden Geweben und eine starke „Down“-Regulation in Krebszellen zeigt. Um die Replikation von Vaccinia zu kontrollieren wurden 4 Komplementärsequenzwiederholungen der humanen microRNAlet- 7a der 3‘-UTR des Vaccinia Virus D4R-Gens folgend kloniert, wobei GLV-1h190, ein GLV-1h68 Derivat, als parentaler Virusstamm verwendet wurde. D4R gehört zu der Gruppe der frühen Gene von Vaccinia und kodiert ein essentielles Enzym, Uracil- DNA-Glykosylase, welches das Entfernen von Uracilresten aus doppelsträngiger DNA katalysiert. Ein Defekt im D4R Gen verhindert den Eintritt von Vaccinia Viren in die intermediäre und späte Phase der Replikation, was zu einem Abbruch der viralen Replication führt. Nach der Expression der MikroRNA-komplementären Sequenzen durch das Virusgenom sollte die zellulär exprimierte let-7a MikroRNA Ihre Zielstruktur auf der viralen mRNA erkennen und diese degradieren. Dies sollte eine starke Hemmung der viralen Replikation in gesunden Zellen zur Folge haben.GLV-1h250 zeigte keine Beeinträchtigung in der Replikationsrate nach Infektion von A549 Lungenkarzinomzellen, welche eine starke „Down“-Regulation von MikroRNA let-7a aufweisen, im Vergleich zu dem parentalen Virus GLV-1h190 und dem Kontrollvirus GLV-1h68. Im Kontrast dazu zeigte GLV-1h250 eine 10-fache Verringerung in der Replikationsrate nach Infektion der Nicht-Krebszellline ERC im Vergleich zu Virus GLV-1h190 und GLV-1h68. In A549 Lungenkarzinom-tragende Nacktmäusen replizierte GLV-1h250 ausschliesslich im Tumorgewebe und zeigte effiziente Tumorregression ohne Nebenwirkungen im Vergleich zu den Virus Stämmen GLV-1h190 und GLV-1h68. Dies führt zur Vermutung, dass GLV-1h250 bevorzugt in Tumorzellen und –Geweben repliziert, welche geringe let-7a Konzentrationen aufweisen. KW - Vaccinia-Virus KW - Krebs KW - Therapie KW - vaccinia virus KW - microRNA KW - oncolytic virotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69654 ER - TY - THES A1 - Schäfer, Simon T1 - Wirkung der Vaccinia-viral kodierten Proteine Relaxin 1 und Matrixmetalloproteinase 9 auf die extrazelluläre Matrix und die virale Ausbreitung im Tumorgewebe T1 - Effect of the Vaccina virus-encoded proteins relaxin 1 and matrix metalloproteinase 9 on the extracellular matrix and viral spreading within the tumor tissue N2 - Die heute in der Krebstherapie vorherrschenden konventionellen Therapiemethoden weisen Defizite bezüglich ihrer Wirksamkeit auf und rufen oftmals gravierende Nebenwirkungen hervor. Eine Alternative für die Behandlung von Tumoren ist der Einsatz onkolytischer Viren. Um einen erfolgreichen klinischen Einsatz onkolytischer Viren zu ermöglichen, ist eine Verstärkung von deren Wirksamkeit durch die Insertion therapeutischer Gene wünschenswert. Im Rahmen der vorliegenden Arbeit sollte der Abbau von Proteinen der extrazellulären Matrix durch die Insertion des Relaxin- oder Matrixmetalloproteinase 9-Gens (MMP-9) in das Vaccinia-Virus Genom erreicht und dadurch die Virusausbreitung im Tumorgewebe erleichtert werden. Hierfür wurden die rekombinanten Vaccinia-Viren GLV-1h169, codierend für das Hormon Relaxin und GLV-1h255, codierend für das Enzym MMP-9, eingesetzt. Es wurde analysiert, ob die Expression dieser Proteine zu einem Abbau von Matrixproteinen führt, dies die Virusausbreitung erleichtert und die Lyse infizierter Tumorzellen gegenüber dem parentalen Virus GLV-1h68 verstärkt. GLV-1h169 wurde in DU145-, PC3- und C33A-Tumor-tragende Mäuse injiziert und die Wirkung des viral-codierten Relaxins auf die extrazelluläre Matrix und die virale Ausbreitung im Tumorgewebe analysiert. In Zellkultur-Experimenten wurde ermittelt, dass die Insertion des Relaxin-Gens in das GLV-1h169-Genom das Replikationsverhalten in DU145-Zellen gegenüber dem des parentalen Virus GLV-1h68 nicht negativ beeinflusst. In DU145-, PC3- und C33A-Tumorschnitten konnte eine Expression von Relaxin in GLV-1h169-infizierten Bereichen nachgewiesen werden. Die Expression von Relaxin soll durch die Aktivierung des Relaxin-Signalweges zur Translation von MMP-9 führen. Das Enzym wird von infizierten Zellen sezerniert und spaltet Proteine der extrazellulären Matrix. Der Gehalt der MMP-9 Substrate Collagen IV und Laminin in GLV-1h169 behandelten DU145- und C33A-Tumoren wurde analysiert und mit jenem in GLV-1h68- und PBS- behandelten Tumoren verglichen. In Virus-behandelten DU145-Tumoren zeigte sich im Vergleich mit PBS-behandelten Tumoren ein signifikant verringerter Collagen IV- und Laminingehalt. Weiterhin war der Collagen IV-Gehalt in GLV-1h169 infizierten Tumoren signifikant niedriger als in GLV-1h68 infizierten. Dies führte jedoch nicht zu einer Erhöhung des Virustiters und nicht zu einer verbesserten Virusausbreitung. GLV-1h68- und GLV-1h169-infizierte Tumore zeigten gegenüber PBS-behandelten Tumoren eine starke Regression. Die GLV-1h169-vermittelte Relaxin-Expression führte jedoch nicht zu einer weiteren Verstärkung der Tumorregression. In Virus-behandelten C33A-Tumoren wurde eine signifikante Erhöhung des Collagen IV- und Laminingehalts gegenüber PBS-behandelten Tumoren nachgewiesen. Dies könnte durch eine Virus-induzierte Inflammationsreaktion hervorgerufen werden, die eine Fibroblasten-vermittelte Collagenablagerung nach sich zieht. Das MMP-9 Expressionsle-vel war in Virus-behandelten Tumoren gegenüber PBS-behandelten signifikant erhöht, jedoch bewirkte die GLV-1h169-vermittelte Expression von Relaxin keine zusätzliche MMP-9 Expression. In Tumorrandbereichen erfolgte eine Expression von Relaxin und MMP-9, im Tumorinneren jedoch nur eine Expression von Relaxin. Hingegen wurde eine Korrelation zwischen der MMP-9-Expression und der Präsenz MHC II-positiver Zellen beobachtet. Diese Zellen migrieren von außen in das Tumorgewebe und exprimieren dort MMP-9. Bei der Analyse der Virustiter und –ausbreitung im Tumorgewebe zeigten sich keine signifikanten Unterschiede zwischen GLV-1h68- und GLV-1h169-injizierten Tieren. Die Injektion von beiden onkolytischen Viren in C33A-Tumor-tragende Mäuse führte zu einer starken Tumorregression. Diese wurde jedoch nicht durch die GLV-1h169-vermittelte Relaxin-Expression beeinflusst. Da die Aktivierung des Relaxin-Signalweges zu einer Expression des vascular endothelial growth factors (VEGF) führen kann, welcher die Angiogenese stimuliert, wurde die Blutgefäßdichte in C33A-Tumoren ermittelt. Die Expression von Relaxin führte nicht zu einer erhöhten Blutgefäßdichte. Die Basalmembran von Blutgefäßen enthält Collagen IV, deshalb wurde untersucht, ob die Relaxin-Expression eine erhöhte Permeabilität der Gefäße bewirkt. In den Virus-behandelten Tumoren zeigte sich eine gegenüber PBS-behandelten Tumoren signifikant erhöhte Gefäß-Permeabilität, jedoch bewirkte die Expression von Relaxin keine weitere Erhöhung der Gefäß-Permeabilität... N2 - The currently dominating conventional cancer therapy methods are facing limitations regarding their efficacy and often cause severe side effects. An alternative for the treatment of tumors is the use of oncolytic viruses. To ensure a successful clinical application of oncolytic viruses, an enhanced efficacy by the insertion of therapeutic genes is desirable. In the scope of this thesis, a degradation of extracellular matrix proteins should be achieved by the insertion of the relaxin or matrix metalloproteinase 9 gene into the vaccinia virus genome, facilitating increased viral spreading in the tumor tissue. To this end, the recombinant vaccinia viruses GLV-1h169, encoding the hormone relaxin and GLV-1h255, encoding the enzyme MMP-9 were used. It was analyzed whether the expression of these proteins causes a degradation of matrix proteins and leads to an increased viral spreading and an enhanced lysis of infected tumor cells, when compared to the parental virus GLV-1h68. DU145, PC3 and C33A tumor-bearing mice, respectively, were injected with GLV-1h169 and the effect of virus-encoded relaxin on the extracellular matrix and viral spreading inside the tumor mass was analyzed. Tissue culture experiments confirmed that the inser-tion of the relaxin gene into the GLV-1h169 genome does not negatively influence the virus replication in DU145 cells when compared to that of the parental virus GLV-1h68. An expression of relaxin in GLV-1h169-infected tumor areas in DU145, PC3 and C33A tumor sections was shown. The expression of relaxin should activate the relaxin pathway, inducing the translation of MMP-9. The enzyme is secreted by infected cells and cleaves proteins of the extracellular matrix. The content of the MMP-9 substrates collagen IV and laminin in GLV-1h169-treated DU145 and C33A tumors was analyzed and compared to that of GLV-1h68- and PBS-treated tumors. Virus-treated tumors showed a significantly lower collagen IV and laminin content than those treated with PBS. Furthermore, the collagen IV content in GLV-1h169-treated tumors was significantly lower than in those treated with GLV-1h68. This did not lead to higher virus titers or to an enhanced virus spreading. Compared to PBS-treated tumors, those infected with GLV-1h68 or GLV-1h169 regressed significantly. The GLV-1h169-mediated relaxin expression did not further enhance tumor regression. Virus-treated C33A tumors showed a significantly increased collagen IV and laminin con-tent compared to those treated with PBS. This could be due to a virus-induced inflamma-tion, leading to a fibroblast-mediated collagen deposition. The MMP-9 expression level in virus-treated tumors was significantly higher than in those treated with PBS. However, the GLV-1h169-mediated expression of relaxin did not further increase MMP-9 expression. In outer tumor areas relaxin and MMP-9 were expressed, in inner tumor areas only relaxin was expressed. In contrast, a correlation between the expression of MMP-9 and the presence of MHC II-positive cells was observed. These cells migrate from the outside into the tumor tissue where they express MMP-9. The analysis of virus titers and spreading inside the tumor mass revealed no significant differences between GLV-1h68- and GLV-1h169-injected mice. The injection of both oncolytic viruses led to a pronounced tumor regression, which was not further enhanced by the GLV-1h169-mediated expression of relaxin... KW - Relaxin KW - Vaccinia-Virus KW - Prostatakrebs KW - MMP-9 KW - Cervix-Karzinom KW - onkolytische Virustherapie KW - MMP-9 KW - Cervix carcinoma KW - oncolytic virotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69592 ER - TY - THES A1 - Reinboth, Jennifer T1 - Cellular Factors Contributing to Host Cell Permissiveness in Support of Oncolytic Vaccinia Virus Replication T1 - Beteiligung zellulärer Faktoren an der Permissivität von Wirtszellen in Unterstützung der onkolytischen Vaccinia Virus Replikation N2 - In initial experiments, the well characterized VACV strain GLV-1h68 and three wild-type LIVP isolates were utilized to analyze gene expression in a pair of autologous human melanoma cell lines (888-MEL and 1936 MEL) after infection. Microarray analyses, followed by sequential statistical approaches, characterized human genes whose transcription is affected specifically by VACV infection. In accordance with the literature, those genes were involved in broad cellular functions, such as cell death, protein synthesis and folding, as well as DNA replication, recombination, and repair. In parallel to host gene expression, viral gene expression was evaluated with help of customized VACV array platforms to get better insight over the interplay between VACV and its host. Our main focus was to compare host and viral early events, since virus genome replication occurs early after infection. We observed that viral transcripts segregated in a characteristic time-specific pattern, consistent with the three temporal expression classes of VACV genes, including a group of genes which could be classified as early-stage genes. In this work, comparison of VACV early replication and respective early gene transcription led to the identification of seven viral genes whose expression correlated strictly with replication. We considered the early expression of those seven genes to be representative for VACV replication and we therefore referred to them as viral replication indicators (VRIs). To explore the relationship between host cell transcription and viral replication, we correlated viral (VRI) and human early gene expression. Correlation analysis revealed a subset of 114 human transcripts whose early expression tightly correlated with early VRI expression and thus early viral replication. These 114 human molecules represented an involvement in broad cellular functions. We found at least six out of 114 correlates to be involved in protein ubiquitination or proteasomal function. Another molecule of interest was the serine-threonine protein kinase WNK lysine-deficient protein kinase 1 (WNK1). We discovered that WNK1 features differences on several molecular biological levels associated with permissiveness to VACV infection. In addition to that, a set of human genes was identified with possible predictive value for viral replication in an independent dataset. A further objective of this work was to explore baseline molecular biological variances associated with permissiveness which could help identifying cellular components that contribute to the formation of a permissive phenotype. Therefore, in a subsequent approach, we screened a set of 15 melanoma cell lines (15-MEL) regarding their permissiveness to GLV-1h68, evaluated by GFP expression levels, and classified the top four and lowest four cell lines into high and low permissive group, respectively. Baseline gene transcriptional data, comparing low and highly permissive group, suggest that differences between the two groups are at least in part due to variances in global cellular functions, such as cell cycle, cell growth and proliferation, as well as cell death and survival. We also observed differences in the ubiquitination pathway, which is consistent with our previous results and underlines the importance of this pathway in VACV replication and permissiveness. Moreover, baseline microRNA (miRNA) expression between low and highly permissive group was considered to provide valuable information regarding virus-host co-existence. In our data set, we identified six miRNAs that featured varying baseline expression between low and highly permissive group. Finally, copy number variations (CNVs) between low and highly permissive group were evaluated. In this study, when investigating differences in the chromosomal aberration patterns between low and highly permissive group, we observed frequent segmental amplifications within the low permissive group, whereas the same regions were mostly unchanged in the high group. Taken together, our results highlight a probable correlation between viral replication, early gene expression, and the respective host response and thus a possible involvement of human host factors in viral early replication. Furthermore, we revealed the importance of cellular baseline composition for permissiveness to VACV infection on different molecular biological levels, including mRNA expression, miRNA expression, as well as copy number variations. The characterization of human target genes that influence viral replication could help answering the question of host cell response to oncolytic virotherapy and provide important information for the development of novel recombinant vaccinia viruses with improved features to enhance replication rate and hence trigger therapeutic outcome. N2 - Die Replikationseffizienz von VACVs spielt eine maßgebliche Rolle für deren antitumorale Wirkung und onkolytische Effizienz. Ferner hängt die Permissivität einer Wirtszelle gegenüber der Behandlung mit onkolytischen VACVs maßgeblich von einer erfolgreichen viralen Replikation und Vermehrung ab. Darauf basierend, war der Fokus der vorliegenden Arbeit, zelluläre Eigenschaften zu erforschen, welche die VACV-Replikation beeinflussen und die Wirtszell-Permissivität gegenüber einer Behandlung mit VACV prognostizieren können. Für initiale Genexpressionsanalysen wurden zwei autologe, humane Melanom-Zelllinien (888-MEL und 1936 MEL), sowie der ausgiebig charakterisierte VACV-Stamm GLV-1h68 und drei wildtypische LIVP Isolate verwendet. Mit Hilfe von Microarray Analysen und einem sequenziellen statistischen Ansatz konnten humane Gene charakterisiert werden, deren Transkription eigens durch VACV-Infektion beeinflusst wird. Erwartungsgemäß zeigten diese Gene eine Anreicherung in globalen zellulären Signalwegen und Funktionen. Die frühe virale Gentranskription kann als repräsentative Bestimmungsgröße für virale Replikation betrachtet werden. Darauf basierend resultierte der Vergleich von früher VACV Replikation und entsprechender früher Gentranskription in der Identifikation von sieben viralen Genen, deren Expression und Replikation stark korrelierten. Aus diesem Grund wurde die frühe Expression der sieben VACV-Gene als kennzeichnend für virale Replikation angesehen und diese Gene als virale Replikations-Indikatoren (VRIs) definiert. Zur Aufklärung von Zusammenhängen zwischen Wirts-Transkription und viraler Replikation wurde die frühe virale VRI-Expression mit der frühen humanen Genexpression in Beziehung gesetzt. Mit Hilfe von Vergleichsanalysen wurden 114 humane Transkripte identifiziert, deren frühes Expressionsmuster eng mit demjenigen der VRIs korrelierte und dementsprechend ebenso mit der viralen Replikation. Von den 114 Korrelaten spielen mindestens sechs eine Rolle in der Protein-Ubiquitinierung oder in der proteasomalen Signalgebung. Ein weiteres Molekül, welches besonderes Interesse weckte, war die Serin-Threonin Proteinkinase WNK Lysin-defizientes Protein 1 (WNK1). Für WNK1 wurden Unterschiede, die mit der VACV-Infektions-Permissivität zusammenhängen, auf verschiedenen molekularbiologischen Ebenen nachgewiesen. Desweiten wurde in dieser Arbeit eine Anzahl humaner Gene identifiziert, welche virale Replikation in einem unabhängigen Datensatz prognostizieren konnten. Eine weitere Zielsetzung dieser Arbeit war es, molekularbiologische Unterschiede, welche mit Infektions-Permissivität von Zellen assoziiert sind, auf Basisebene zu ergründen. Diese könnten dabei helfen, zelluläre Komponenten zu identifizieren, welche einen so genannten permissiven Phänotyp kennzeichnen. Aus diesem Grund wurden in einem weiteren Versuchsansatz 15 Melanom-Zelllinien (15-MEL) bezüglich ihrer Permissivität gegenüber GLV-1h68 anhand von GFP Expression untersucht. Die vier Zelllinien mit der höchsten und diejenigen vier mit der niedrigsten Permissivität wurden je einer Gruppe zugeordnet (hochpermissive und niedrigpermissive Gruppe). Die Gruppen hoher und niedriger Permissivität wurden bezüglich ihrer Basislevel-Transkription verglichen. Unterschiedlich exprimierte Gene waren, zumindest zum Teil, in globale zelluläre Prozesse involviert. Darüber hinaus wurde microRNA (miRNA) Basislevel-Expression von hoch- und niedrigpermissiver Gruppe untersucht. In dieser Arbeit wurden sechs miRNAs identifiziert, deren Basislevel-Expression zwischen niedrig und hochpermissiver Gruppe differiert. Abschließend wurden Veränderungen der Kopienzahl von Genen (copy number variations, CNVs) im Vergleich zwischen niedrig- und hochpermissiver Gruppe untersucht. Betrachtung chromosomaler Veränderungen zeigte eine Anreicherung von Segment-Amplifikationen in der niedrigpermissiven Gruppe, während gleiche Abschnitte der hochpermissiven Gruppe größtenteils keine Veränderungen aufwiesen. Zusammenfassend konnte in dieser Arbeit eine mutmaßliche Korrelation zwischen viraler Replikation, früher Genexpression und der entsprechenden Wirtsantwort gezeigt werden und somit eine mögliche Beteiligung humaner Wirtsfaktoren an der viralen Replikation. Zusätzlich wurden wichtige Aspekte der Basiskomposition von Zellen für die Permissivität gegenüber VACV-Infektion auf verschiedenen molekularbiologischen Ebenen aufgedeckt, einschließlich mRNA-Expression, miRNA-Expression sowie Kopienzahl-Variationen. Die Charakterisierung humaner Zielgene, welche die virale Replikation beeinflussen, könnte dabei helfen, die Wirtszellantwort auf onkolytische Virotherapie aufzuklären und wichtige Informationen zu liefern für die Entwicklung neuartiger rekombinanter Vaccinia-Viren mit verbesserten Eigenschaften und verbesserter Replikationseffizienz und somit einem gesteigerten Therapieerfolg. KW - Vaccinia-Virus KW - Microarray KW - Melanom KW - onkolytische Virotherapie KW - Vaccinia Virus Replikation KW - vaccinia virus KW - microarray KW - malignant melanoma KW - oncolytic virotherapy KW - vaccinia virus replication KW - Onkolyse Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85392 ER - TY - THES A1 - Buckel, Lisa T1 - Evaluating the combination of oncolytic vaccinia virus and ionizing radiation in therapy of preclinical glioma models T1 - Evaluierung der Kombination von onkolytischem Vaccinia Virus und ionisierender Strahlung in vorklinischen Gliomamodellen N2 - Glioblastoma multiforme (GBM) represents the most aggressive form of malignant brain tumors and remains a therapeutically challenge. Intense research in the field has lead to the testing of oncolytic viruses to improve tumor control. Currently, a variety of different oncolytic viruses are being evaluated for their ability to be used in anti-cancer therapy and a few have entered clinical trials. Vaccinia virus, is one of the viruses being studied. GLV-1h68, an oncolytic vaccinia virus engineered by Genelux Corporation, was constructed by insertion of three gene cassettes, RUC-GFP fusion, β-galactosidase and β- glucuronidase into the genome of the LIVP strain. Since focal tumor radiotherapy is a mainstay for cancer treatment, including glioma therapy, it is of clinical relevance to assess how systemically administered oncolytic vaccinia virus could be combined with targeted ionizing radiation for therapeutic gain. In this work we show how focal ionizing radiation (IR) can be combined with multiple systemically delivered oncolytic vaccinia virus strains in murine models of human U-87 glioma. After initial experiments which confirmed that ionizing radiation does not damage viral DNA or alter viral tropism, animal studies were carried out to analyze the interaction of vaccinia virus and ionizing radiation in the in vivo setting. We found that irradiation of the tumor target, prior to systemic administration of oncolytic vaccinia virus GLV-1h68, increased viral replication within the U-87 xenografts as measured by viral reporter gene expression and viral titers. Importantly, while GLV-1h68 alone had minimal effect on U-87 tumor growth delay, IR enhanced GLV-1h68 replication, which translated to increased tumor growth delay and mouse survival in subcutaneous and orthotopic U-87 glioma murine models compared to monotherapy with IR or GLV-1h68. The ability of IR to enhance vaccinia replication was not restricted to the multi-mutated GLV-1h68, but was also seen with the less attenuated oncolytic vaccinia, LIVP 1.1.1. We have demonstrated that in animals treated with combination of ionizing radiation and LIVP 1.1.1 a strong pro-inflammatory tissue response was induced. When IR was given in a more clinically relevant fractionated scheme, we found oncolytic vaccinia virus replication also increased. This indicates that vaccinia virus could be incorporated into either larger hypo-fraction or more conventionally fractionated radiotherapy schemes. The ability of focal IR to mediate selective replication of systemically injected oncolytic vaccinia was demonstrated in a bilateral glioma model. In mice with bilateral U-87 tumors in both hindlimbs, systemically administered oncolytic vaccinia replicated preferentially in the focally irradiated tumor compared to the shielded non- irradiated tumor in the same mouse We demonstrated that tumor control could be further improved when fractionated focal ionizing radiation was combined with a vaccinia virus caring an anti-angiogenic payload targeting vascular endothelial growth factor (VEGF). Our studies showed that following ionizing radiation expression of VEGF is upregulated in U-87 glioma cells in culture. We further showed a concentration dependent increase in radioresistance of human endothelial cells in presence of VEGF. Interestingly, we found effects of vascular endothelial growth factor on endothelial cells were reversible by adding purified GLAF-1 to the cells. GLAF-1 is a single- chain antibody targeting human and murine VEGF and is expressed by oncolytic vaccinia virus GLV-109. In U-87 glioma xenograft murine models the combination of fractionated ionizing radiation with GLV-1h164, a vaccinia virus also targeting VEGF, resulted in the best volumetric tumor response and a drastic decrease in vascular endothelial growth factor. Histological analysis of embedded tumor sections 14 days after viral administration confirmed that blocking VEGF translated into a decrease in vessel number to 30% of vessel number found in control tumors in animals treated with GLV-164 and fractionated IR which was lower than for all other treatment groups. Our experiments with GLV-1h164 and fractionated radiotherapy have shown that in addition to ionizing radiation and viral induced tumor cell destruction we were able to effectively target the tumor vasculature. This was achieved by enhanced viral replication translating in increased levels of GLAF-2 disrupting tumor vessels as well as the radiosensitization of tumor vasculature to IR by blocking VEGF. Our preclinical results have important clinical implications of how focal radiotherapy can be combined with systemic oncolytic viral administration for highly aggressive, locally advanced tumors with the potential, by using a vaccinia virus targeting human vascular endothelial growth factor, to further increase tumor radiation sensitivity by engaging the vascular component in addition to cancer cells. N2 - Glioblastoma multiforme (GBM) verkörpert die aggressivste Form von bösartigen Gehirntumoren und seine Therapie gestaltet sich schwierig. Weitläufige Forschung hat dazu geführt, dass onkolytische Viren zur Verbesserung der Tumorbehandlung untersucht wurden. Gegenwärtig wird eine Vielzahl an verschiedenen onkolytischen Viren untersucht und einige wenige befinden sich bereits in klinischen Studien. Eines der Viren die untersucht werden, ist das Vaccinia-Virus. GLV-1h68, ein onkolytisches Vaccinia- Virus, wurde durch die Einfügung von drei Genkasseten, RUC-GFP Fusion, β- Galaktosidase und β- Glucuronidase in das Genom des LIVP Stammes hergestellt. Da fokale Bestrahlungstherapie aus der Behandlung von Krebs, nicht nur im Falle von Glioblastomen, nicht wegzudenken ist, ist es klinisch relevant, zu untersuchen, wie ein systemisch verabreichtes Vaccinia-Virus mit gezielter ionisierender Strahlung (IR) kombiniert werden könnte, um Therapiechancen zu verbesseren. In dieser Arbeit konnte gezeigt werden, wie gezielte IR mit verschiedenen sytemisch injizierten Vaccinia-Virus Stämmen in einem Mausmodell für humane U-87-Glioma kombiniert wurde. Nachdem einleitende Versuche bestätigten, dass IR die virale Erbinformation nicht beschädigt und auch nicht den viralen Tropismus verändert, wurden Tierstudien durchgeführt, die die Interaktion des Vaccinia-Virus mit Bestrahlungtherapie in vivo untersuchten. Wir konnten zeigen, dass eine vorherige Bestrahlung des Tumors, bevor das GLV-1h68-Virus systemisch injiziert wurde, eine erhöhte viraler Replikation im Tumor zur Folge hatte, wie wir durch gesteigerte virale Titer und Markergenexpression belegen konnten. Von wesentlicher Bedeutung ist, dass eine Verabreichung von ausschliesslich GLV-1h68 einen minimalen Einfluss auf das U-87 Tumorwachstum hatte, während die durch die Bestrahlung ausgelöste erhöhte Vermehrung von Virus im Tumor eine Verzögerung des Tumorwachstums sowie ein verlängertes Überleben von Mäusen mit U-87-Xenografts zur Folge hatte. Die Fähigkeit von IR virale Vermehrung zu erhöhen, wurde auch für das weniger attenuierte LIVP 1.1.1-Virus gezeigt. Wenn die Bestrahlung in einem klinisch relevanten fraktionierten Bestrahlungsschema verabreicht wurde, war virale Replikation ebenfalls erhöht. Dies verdeutlicht, dass das Vaccinia-Virus klinisch entweder in eine Bestrahlung mit einer einzelnen Dosis oder in eine konventionelle fraktionierte Bestrahlung integriert werden kann. Die Fähigkeit von fokaler IR, eine selektive Vermehrung von systemisch injizierten onkolytischen Vaccinia-Viren zu ermöglichen, wurde in einem bilateralen Gliomamausmodell bestätigt. In Mausen mit Tumoren an beiden Hinterbeinen, vermehrte sich das systemisch gespritzte Vaccinia-Virus bevorzugt im bestrahlten Tumor. Wir konnten zeigen, wie die Tumorkontrolle darüber hinaus weiter verbessert werden kann, wenn fraktionierte fokale Bestrahlung mit einem Vaccinia-Virus kombiniert wird, das eine anti-angiogenetische Ladung, die den vaskulaeren endothelialen Wachstumsfaktor (VEGF) inhibiert, exprimiert. Unsere Studien konnten zeigen, dass durch die Bestrahlung von U-87 Gliomazellen eine Hochregulation von VEGF-Expression ausgelöst wurde, die Radioresistenz von Endothelzellen konzentrationsabhängig induzierte. Wir konnten zeigen, dass die durch VEGF verursache Radioresistenz umkehrbar ist, wenn zusätzlich aufgereinigtes GLAF-1, einen Vaccinia Virus exprimierten Antikörper, zu den Zellen gegeben wurde. In einem Mausmodell zeigte die Kombination aus fraktionierter Bestrahlung und GLV-1h164, ein Vaccinia-Virus, das ebenfalls einen VEGF Antikörper mit Ähnlichkeit zu GLAF-1 exprimiert, resultierte in der stärksten volumetrischen Tumorantwort. Es wurde ebenfalls eine drastische Abnahme an VEGF im Tumor bereits 3 Tagen nach Virus- Injektion nachgewiesen. Histologische Analyse bestätigte, dass die Blockade von VEGF eine Erniedrigung der Anzahl von Tumorblutgefäßen, zu 30% von Kontrolltumoren, zur Folge hatte. Dieser Wert war niedriger als in allen anderen Behandlungsgruppen. Unsere Versuche mit fraktionierter Bestrahlung und GLV-1h164 konnten zeigen, dass zusätzlich zu der durch Virus und Bestrahlung ausgelösten Tumorzellzerstörung, eine effiziente Degeneration der Tumorblutgefäße möglich war. Dies wurde durch eine erhöhte Virus-Vermehrung als Folge der Bestrahlung, sowie durch Sensitiveren der tumoralen Endothelzellen durch Blockierung von VEGF-A erreicht. Die Ergebnisse, die in dieser Arbeit zeigen, wie fokale Bestrahlungstherapie mit systemisch verabreichten onkolytische Vaccinia-Viren für aggressive, fortgeschrittene Tumore kombiniert werden kann. Es ist denkbar, dass die Tumortherapie weiter verbessert werden kann, wenn ein Vaccinia-Virus benutzt wird, das sich zusätzlich gegen VEGF richtet, so werden zu den Krebszellen zusätzlich Tumorblutgefäße in die Therapie miteinbezogen, um die Sensitivität von Endothelzellen gegen Bestrahlung weiter zu erhöhen. KW - Gliom KW - Vaccinia-Virus KW - Strahlentherapie KW - Kombinationstherapie KW - onkolytische Virotherapie KW - Glioma KW - vaccinia virus KW - ionizing radiation KW - combination therapy KW - oncolytic virotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85309 ER - TY - THES A1 - Ehrig, Klaas T1 - Effects of stem cell transcription factor-expressing vaccinia viruses in oncolytic virotherapy T1 - Effekte von Stammzell-Transkriptionsfaktor exprimierenden Vaccinia Viren in onkolytischer Virotherapie N2 - Krebserkrankungen bleiben auch im Jahr 2012 die zweithäuftigste Todesursache in der industralisierten Welt. Zusätzlich hat die Etablierung der Krebsstammzell-Hypothese grundsätzliche Auswirkungen auf die Erfolgsaussichten konventioneller Krebstherapie, wie Chemotherapie oder Strahlentherapie. Deswegen ist es von gröβter Notwendigkeit, dass neue Ansätze zur Krebstherapie entwickelt werden, die den Ausgang der Behandlung verbessern und zu weniger Nebenwirkungen führen. Diverse vorklinische Studien haben gezeigt, dass die onkolytische Virotherapie mit Vaccinia-Viren ein potentes und gut tolerierbares neues Werkzeug in der Krebstherapie darstellt. Die Effizienz des Vaccinia-Virus als Therapeutikum allein oder in Kombination mit Strahlen- oder Chemotherapie wird aktuell in mehreren klinischen Studien der Phasen I & II getestet. Krebsstammzellen und Stammzellen teilen eine Vielzahl von Eigenschaften, wie die Fähigkeit zur Selbst-Erneuerung und Pluripotenz, Stilllegung der Zellproliferation, Resistenz gegen Medikamente oder Bestrahlung, die Expression von diversen Zelloberflächen-molekülen, die Aktivierung und Hemmung spezifischer Signaltransduktionswege oder die Expression von Stammzell-spezifischen Genen. In dieser Arbeit wurden zwei neue rekombinante Vaccinia-Viren entwickelt, welche die Stammzell-Transkriptionsfaktoren Nanog (GLV-1h205) und Oct4 (GLV-1h208) exprimieren, um tiefere Einblicke in die Rolle dieser Masterregulatoren in der Entstehung von Krebs und ihrem Einfluss auf die onkolytische Virotherapie zu gewinnen. Das Replikationspotential beider Virusstämme in menschlichen A549-Zellen und PC-3-Zellen wurde anhand von Replikations-Assays bestimmt. Die Expression der Virus-spezifischen Markergene Ruc-GFP und beta-Galaktosidase, wie auch die Expression der Transkriptionsfaktoren Nanog und Oct4 wurde mit Hilfe von RT-PCR, SDS-PAGE und Western blotting, sowie immunozytochemischen Experimenten nachgewiesen. Des Weiteren wurde der Einfluss einer GLV-1h205-Infektion von A549-Zellen auf den Zellzyklus untersucht. Zudem wurde die Bedeutung der Virus-vermittelten Transkriptionsfaktor-Expression auf die Behandlung von subkutanen A549-Tumoren in einem Xenograft-Modell untersucht. Zur Untersuchung, ob die beobachteten Vorteile in der Behandlung von Lungenadenokarzinomen in Mäusen mit GLV-1h205 Promoter- oder Transkriptionsfaktor-abhängig sind, wurde ein Kontroll-Virus (GLV-1h321) hergestellt, dass für eine unfunktionale Nanog-Mutante codiert. Mittels SDS-PAGE und Western blotting sowie Immunozytochemie wurde die Transgen-Expression analysiert. Ein weitere Aspekt dieser Arbeit war die Fragestellung, ob sich das onkolyische Vaccinia-Virus GLV-1h68 eignet, als neues und weniger invasives Therapeutikum effizient Darmkrebszellen zu infizieren um sich in ihnen zu replizieren und diese anschlieβend zu lysieren. Ein derartiger Therapieansatz würde besonders im Hinblick auf spät diagnostizierten, metastasierenden Darmkrebs eine interessante Behandlungsalternative darstellen. Virale Markergen-expression wurde anhand von Fluoreszenzmikroskopie und FACS-Analyse untersucht. Desweiteren wurde gezeigt, dass die einmalige Administration von GLV-1h68 in mindestens zwei verschiedenen Darmkrebszelllinien zu einer signifikanten Inhibierung des Tumorwachstums in vivo und zu signifikant verbessertem Überleben führt. Der Transkriptionsfaktor Klf4 wird zwar stark in ruhenden, ausdifferenzierten Zellen des Darmepithels exprimiert, ist hingegen bei Darmkrebs generell dramatisch herabreguliert. Die Expression von Klf4 führt zu einem Stop der Zellproliferation und inhibiert die Aktivität des Wnt-Signalweges, indem es im Zellkern an die Transaktivierungsdomäne von beta-Catenin bindet. Um die Behandlung von Darmkrebs mit Hilfe onkolytischer Virotherapie weiter zu verbessern, wurden verschiedene Vaccinia-Viren (GLV-1h290-292) erzeugt, die durch verschiedene Promoterstärken die Expression unterschiedlicher Mengen an Tumorsuppressor Klf4 vermitteln. Die anfängliche Charakterisierung der drei Virusstämme mittels Replikations-Assay, Zytotoxizitätstudien, SDS-PAGE und Western blotting, Immunozytochemie sowie die Analyse der Proteinfunktion mit Hilfe von qPCR- und ELISA-Analysen zur Bestimmung von zellulärem beta-Catenin, zeigten eine Promoter-abhängige Expression und Wirkung von Klf4. Für weitere Analysen wurde das Virus GLV-1h291 gewählt, welches nach Infektion die gröβte Menge an Klf4 produziert und zusätzlich durch die C-terminale Fusion einer TAT Transduktionsdomäne Membran-gängig gemacht (GLV-1h391). Die erhaltenen Befunde machen das Klf4-TAT-kodierende Vaccinia-Virus GLV-1h391 zu einem vielversprechenden Kandidaten für eine Behandlung von Darmkrebs beim Menschen. N2 - Cancer remains the second leading cause of death in the industrialized. The data from many different studies investigating the nature of cancer-initiating cells coined the description ‘cancer stem cells’ and has major implications on conventional cancer therapy. Thus, to improve the outcome of cancer treatment and to lower negative side effects, the development of novel therapeutic regimens is indispensable. It has been demonstrated in many preclinical studies that oncolytic virotherapy using vaccinia virus may provide a powerful and well-tolerable new tool in cancer therapy which is currently investigated in several clinical trials (Phase I & II) as stand-alone treatment or in combination with conventional cancer therapy. Cancer-initiating cells and stem cells share a variety of characteristics like the ability to self-renew, differentiation potential, quiescence, drug and radiation resistance, activation and inhibition of similar signaling pathways as well as expression of cell surface markers and stem cell-related genes. In this work, two new recombinant vaccinia viruses expressing the transcription factors Nanog (GLV-1h205) and Oct4 (GLV-1h208) were engineered to provide deeper insight of these stem cell master regulators in their significance of cancer-initiation and their impact on oncolytic virotherapy. Both viruses were analyzed for their replication potential in A549 and PC-3 human cancer cells. Marker gene expression was assessed by RT-PCR, SDS-PAGE and Western blotting, ELISA or immunocytochemistry.Furthermore, the effect of GLV-1h205 infection on the cell cycle in A549 cells was analyzed. Next, the effects of virus-mediated expression of stem cell transcription factors on therapeutic efficacy and survival rates in A549 xenograft mouse models was analyzed. A non-functional Nanog mutant-expressing virus strain (GLV-1h321) was engineered to analyze whether the observed therapeutic benefits were promoter- or payload-driven. Furthermore, this study analyzed the potential of GLV-1h68 to infect, replicate in, and lyse colorectal cancer cell lines to study whether oncolytic vaccinia viruses can be potential new and less invasive treatment regimens for late stage colorectal cancer. Marker gene expression was assessed by fluorescence microscopy and FACS. The transcription factor Klf4 is highly expressed in quiescent, terminally differentiated cells in the colonic epithelium whereas it is dramatically downregulated in colon cancers. Klf4 expression leads to cell growth arrest and inhibits Wnt signaling by binding to beta-catenin. To further improve the treatment of colorectal cancers, new recombinant vaccinia viruses (GLV-1h290-292) mediating the expression of differing amounts of the tumor suppressor Klf4 by using different promoter strengths were engineered. Initial characterization of recombinant vaccinia viruses expressing Klf4 by replication assay, cell viability assay, SDS-PAGE and Western blotting, immuncytochemistry and analysis of protein functionality by qPCR and ELISA analysis for cellular beta-catenin expression, demonstrated promoter strength-dependent expression of and impact of Klf4. To further boost the effects of tumor suppressor Klf4, a vaccinia virus strain expressing Klf4 with a C-terminal fusion of the TAT transduction domain (GLV-1h391) was engineered. Treatment of HT-29 non-responder tumors in vivo with GLV-1h291 and GLV-1h391 led to significant tumor growth inhibition and improved overall survival compared to GLV-1h68. This makes the Klf4-TAT expressing GLV-1h391 a promising candidate for the treatment of colorectal cancer in man. KW - Lungenkrebs KW - Darmkrebs KW - Vaccinia-Virus KW - Transkriptionsfaktor KW - Cancer KW - Vaccinia virus KW - oncolytic virotherapy KW - stem cells Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85139 ER - TY - JOUR A1 - Ehrig, Klaas A1 - Kilinc, Mehmet O. A1 - Chen, Nanhai G. A1 - Stritzker, Jochen A1 - Buckel, Lisa A1 - Zhang, Qian A1 - Szalay, Aladar A. T1 - Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68 JF - Journal of Translational Medicine N2 - Background: Despite availability of efficient treatment regimens for early stage colorectal cancer, treatment regimens for late stage colorectal cancer are generally not effective and thus need improvement. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) strains is a promising new strategy for therapy of a variety of human cancers. Methods: Oncolytic efficacy of replication-competent vaccinia virus GLV-1h68 was analyzed in both, cell cultures and subcutaneous xenograft tumor models. Results: In this study we demonstrated for the first time that the replication-competent recombinant VACV GLV-1h68 efficiently infected, replicated in, and subsequently lysed various human colorectal cancer lines (Colo 205, HCT-15, HCT-116, HT-29, and SW-620) derived from patients at all four stages of disease. Additionally, in tumor xenograft models in athymic nude mice, a single injection of intravenously administered GLV-1h68 significantly inhibited tumor growth of two different human colorectal cell line tumors (Duke’s type A-stage HCT-116 and Duke’s type C-stage SW-620), significantly improving survival compared to untreated mice. Expression of the viral marker gene ruc-gfp allowed for real-time analysis of the virus infection in cell cultures and in mice. GLV-1h68 treatment was well-tolerated in all animals and viral replication was confined to the tumor. GLV-1h68 treatment elicited a significant up-regulation of murine immune-related antigens like IFN-γ, IP-10, MCP-1, MCP-3, MCP-5, RANTES and TNF-γ and a greater infiltration of macrophages and NK cells in tumors as compared to untreated controls. Conclusion: The anti-tumor activity observed against colorectal cancer cells in these studies was a result of direct viral oncolysis by GLV-1h68 and inflammation-mediated innate immune responses. The therapeutic effects occurred in tumors regardless of the stage of disease from which the cells were derived. Thus, the recombinant vaccinia virus GLV-1h68 has the potential to treat colorectal cancers independently of the stage of progression. KW - oncolytic virotherapy KW - colorectal KW - vaccinia virus KW - cancer KW - metastasis Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129619 VL - 11 IS - 79 ER - TY - THES A1 - Gnamlin, Prisca T1 - Use of Tumor Vasculature for Successful Treatment of Carcinomas by Oncolytic Vaccinia Virus T1 - Die Tumorvasulatur in der erfolgreichen Therapie von Carcinomen durch onkolytische Vaccinia Viren N2 - Tumor-induced angiogenesis is of major interest for oncology research. Vascular endothelial growth factor (VEGF) is the most potent angiogenic factor characterized so far. VEGF blockade was shown to be sufficient for angiogenesis inhibition and subsequent tumor regression in several preclinical tumor models. Bevacizumab was the first treatment targeting specifically tumor-induced angiogenesis through VEGF blockade to be approved by the Food and Drugs Administration (FDA) for cancer treatment. However, after very promising results in preclinical evaluations, VEGF blockade did not show the expected success in patients. Some tumors became resistant to VEGF blockade. Several factors have been accounted responsible, the over-expression of other angiogenic factors, the noxious influence of VEFG blockade on normal tissues, the selection of hypoxia resistant neoplastic cells, the recruitment of hematopoietic progenitor cells and finally the transient nature of angiogenesis inhibition by VEGF blockade. The development of blocking agents against other angiogenic factors like placental growth factor (PlGF) and Angiopoietin-2 (Ang-2) allows the development of an anti-angiogenesis strategy adapted to the profile of the tumor. Oncolytic virotherapy uses the natural propensity of viruses to colonize tumors to treat cancer. The recombinant vaccinia virus GLV-1h68 was shown to infect, colonize and lyse several tumor types. Its descendant GLV-1h108, expressing an anti-VEGF antibody, was proved in previous studies to inhibit efficiently tumor induced angiogenesis. Additional VACVs expressing single chain antibodies (scAb) antibodies against PlGF and Ang-2 alone or in combination with anti VEGF scAb were designed. In this study, VACV-mediated anti-angiogenesis treatments have been evaluated in several preclinical tumor models. The efficiency of PlGF blockade, alone or in combination with VEGF, mediated by VACV has been established and confirmed. PlGF inhibition alone or with VEGF reduced tumor burden 5- and 2-folds more efficiently than the control virus, respectively. Ang-2 blockade efficiency for cancer treatment gave controversial results when tested in different laboratories. Here we demonstrated that unlike VEGF, the success of Ang-2 blockade is not only correlated to the strength of the blockade. A particular balance between Ang-2, VEGF and Ang-1 needs to be induced by the treatment to see a regression of the tumor and an improved survival. We saw that Ang-2 inhibition delayed tumor growth up to 3-folds compared to the control virus. These same viruses induced statistically significant tumor growth delays. This study unveiled the need to establish an angiogenic profile of the tumor to be treated as well as the necessity to better understand the synergic effects of VEGF and Ang-2. In addition angiogenesis inhibition by VACV-mediated PlGF and Ang-2 blockade was able to reduce the number of metastases and migrating tumor cells (even more efficiently than VEGF blockade). VACV colonization of tumor cells, in vitro, was limited by VEGF, when the use of the anti-VEGF VACV GLV-1h108 drastically improved the colonization efficiency up to 2-fold, 72 hours post-infection. These in vitro data were confirmed by in vivo analysis of tumors. Fourteen days post-treatment, the anti-VEGF virus GLV-1h108 was colonizing 78.8% of the tumors when GLV-1h68 colonization rate was 49.6%. These data confirmed the synergistic effect of VEGF blockade and VACV replication for tumor regression. Three of the tumor cell lines used to assess VACV-mediated angiogenesis inhibition were found, in certain conditions, to mimic either endothelial cell or pericyte functions, and participate directly to the vascular structure. The expression by these tumor cells of e-selectin, p-selectin, ICAM-1 and VCAM-1, normally expressed on activated endothelial cells, corroborates our findings. These proteins play an important role in immune cell recruitment, and there amount vary in presence of VEGF, PlGF and Ang-2, confirming the involvement of angiogenic factors in the immuno-modulatory abilities of tumors. In this study VACV-mediated angiogenesis blockade proved its potential as a therapeutic agent able to treat different tumor types and prevent resistance observed during bevacizumab treatment by acting on different factors. First, the expression of several antibodies by VACV would prevent another angiogenic factor to take over VEGF and stimulate angiogenesis. Then, the ability of VACV to infect tumor cells would prevent them to form blood vessel-like structures to sustain tumor growth, and the localized delivery of the antibody would decrease the risk of adverse effects. Next, the blockade of angiogenic factors would improve VACV replication and decrease the immune-modulatory effect of tumors. Finally the fact that angiogenesis blockade lasts until total regression of the tumor would prevent the recovery of the tumor-associated vasculature and the relapse of patients. N2 - Ein Hauptinteresse der onkologischen Forschung liegt auf dem Verständnis der Tumor-induzierten Angiogenese. Es wurde bereits festgestellt, dass die meisten Tumortypen eine abnorme Expression angiogener Faktoren zeigen. Der vascular endothelial growth factor (VEGF) wurde als der effektivste angiogene Faktor beschrieben. Es wurde gezeigt, dass die Hemmung des VEGF zur Inhibition der Angiogenese führt, das wiederum zu Tumorregression in vorklinischen Tumormodellen führte. Bevacizumab ist das erste FDA zugelassene Krebs-Therapeutikum, welches spezifisch auf die Tumor-induzierte Angiogenese durch VEGF-Inhibition abzielt. Der erwartete Erfolg durch VEGF-Hemmung konnte im Patienten allerdings nicht erzielt werden. Die Entwicklung von neuen Angiogenese hemmenden Stoffen wie gegen den placental growth factor (PIGF) oder Angiopoietin-2 (Ang-2), ermöglichen eine an das Tumor-Profil angepasste anti-angiogene Strategie. Die onkolytische Virustherapie die natürliche Eigenschaft der Viren Tumore zu kolonisieren. Das Vaccinia-Virus (VACV) gehört zur Familie der Poxviridae und wurde bereits lange Zeit als Vakzin zur Immunisierung gegen Pocken eingesetzt. Es konnte gezeigt werden, dass das rekombinante VACV GLV-1h68 effizient verschiedene Tumortypen infiziert, kolonisiert und lysiert. Das VACV GLV-1h108, welches auf der Basis des GLV-1h68 generiert wurde, kodiert einen anti-VEGF Antikörper. Dieses Virus ist in der Lage ist die Tumor-induzierte Angiogenese effizient zu inhibieren. Zusätzlich zu diesem VACV wurden weitere Konstrukte kloniert, welche für Antikörper gegen PIGF und Ang-2 kodieren. Zusätzlich wurden Virusstämme konstruiert, die gleichzeitig zwei Angiogenesefaktoren anzielen. Es wurde verschiedene VACV-vermittelte anti-Angiogenese Therapien in vorklinischen Tumormodellen wie Lungenadenokarzinome, KolonKarzinom, Melanom und Lungenadenokarzinome evaluiert. Die Effizienz der VACV-vermittelten Hemmung von PIGF und Ang-2, singulär oder in Kombination mit VEGF, wurde mit Tumor-Xenotransplantaten ermittelt. Die Inhibition von PlGF alleine oder in Kombination mit VEGF reduzierten die Tumorbelastung bis zu fünf, beziehungsweise zwei mal effizienter als GLV-1h68. Weiterhin wurde gezeigt, dass anders als VEGF, der Erfolg der Ang-2 Hemmung nicht nur mit der Stärke der Hemmung korreliert. Um Tumorregression sowie eine verbesserte Überlebensrate zu verursachen muss eine Balance zwischen Ang-2, VEGF und Ang-1 induziert werden. GLV-1h68 behandelte Tumore waren drei mal gröβer als Tumore, die mit den anti-Ang2 exprimierenden Viren behandelt wurden. Dieselben Virusstämme verursachten eine erhebliche Verspätung des Wachstums der Tumoren. Ausserdem hat diese Arbeit die Notwendigkeit enthüllt, ein angiogenes Profil des zu behandelnden Tumors zu etablieren sowie den Bedarf die synergistischen Effekte von VEGF und Ang-2 besser zu verstehen. Durch die Inhibition der Angiogenese durch VACV-verursachte PIGF und Ang-2 Hemmung wurde die Anzahl der Metastasen und der migrierenden Tumorzellen reduziert. Es wurde gezeigt, dass VEGF die VACV-Kolonisierung von Tumorzellen limitiert, da der Einsatz eines anti-VEGF VACV zu einer Verbesserung der Kolonisierung führt. In vivo Analysen bestätigten diese in vitro Daten. Nach vierzehn Tagen kolonisierte das anti-VEGF Virus 78,85% der Tumoren während die Kolonizationsquote des Kontrollviruses 49,64 % war. Dies resultierte in Tumorregression. Drei der getesteten Tumorzelllinien, in welchen die VACV-vermittelte Angiogenese-Inhibition untersucht wurde, waren in der Lage als Teil der Vaskulatur zu fungieren. Die Expression von Adhäsionsproteinen in diesen Tumorzellen untermauert die Ergebnisse. Weiterhin konnte ein unterschiedliches Expressionsmuster in Anwesenheit von VEGF, PIGF und Ang-2 festgestellt werden, wodurch die Beteiligung angiogener Faktoren bei den immunmodulatorischen Eigenschaften von Tumoren gezeigt werden konnte. In dieser Arbeit konnte gezeigt werden, dass eine VACV-vermittelte anti-angiogene Behandlung für verschiedene Tumorvarianten erfolgsversprechend ist. Die Möglichkeit verschiedene Antikörper gegen unterschiedliche angiogene Faktoren zu exprimieren würde verhindern, dass diese die Angiogenese stimulierende Wirkung des VEGF übernehmen. Die Eigenschaft von VACV Tumorzellen zu infizieren verhindert, dass diese Blutgefäß-ähnliche Strukturen bilden, welche das Tumorwachstum gewährleisten würde. Weiterhin würde die lokal begrenzte Antikörper-Freisetzung das Risiko von Nebenwirkungen senken. Die Inhibition angiogener Faktoren würde die VACV Replikationsrate steigern und den immunmodulatorischen Effekt der Tumore abschwächen. Letztlich würde die Hemmung der Angiogenese bis zur völligen Regression des Tumors aufrechterhalten, die Neubildung Tumor-assoziierter Vaskulatur verhindern und somit den Rückfall des Patienten. KW - Vaccinia-Virus KW - cancer KW - vaccinia virus KW - virotherapy KW - tumor vascularization KW - oncolytic virotherapy KW - Onkolyse KW - Angiogenese Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119019 ER -