TY - JOUR A1 - Kraft, Andreas A1 - Stangl, Johannes A1 - Krause, Ana-Maria A1 - Müller-Buschbaum, Klaus A1 - Beuerle, Florian T1 - Supramolecular frameworks based on [60]fullerene hexakisadducts JF - Beilstein Journal of Organic Chemistry N2 - [60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements. KW - chemistry KW - fullerenes KW - hexakisadducts KW - hydrogen bonding KW - porous materials KW - structure elucidation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171996 VL - 13 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Fluri, Felix T1 - Effects of fullerenols on mouse brain microvascular endothelial cells JF - International Journal of Molecular Sciences N2 - Fullerenols, water-soluble C60-fullerene derivatives, have been shown to exert neuroprotective effects in vitro and in vivo, most likely due to their capability to scavenge free radicals. However, little is known about the effects of fullerenols on the blood–brain barrier (BBB), especially on cerebral endothelial cells under inflammatory conditions. Here, we investigated whether the treatment of primary mouse brain microvascular endothelial cells with fullerenols impacts basal and inflammatory blood–brain barrier (BBB) properties in vitro. While fullerenols (1, 10, and 100 µg/mL) did not change transendothelial electrical resistance under basal and inflammatory conditions, 100 µg/mL of fullerenol significantly reduced erk1/2 activation and resulted in an activation of NFκB in an inflammatory milieu. Our findings suggest that fullerenols might counteract oxidative stress via the erk1/2 and NFκB pathways, and thus are able to protect microvascular endothelial cells under inflammatory conditions. KW - mouse brain microvascular endothelial cell cultur KW - adhesion molecules KW - fullerenes KW - blood-brain barrier KW - inflammation KW - tight junctions Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158072 SN - 1422-0067 VL - 18 IS - 8 ER -