TY - JOUR A1 - Fehrholz, Markus A1 - Seidenspinner, Silvia A1 - Kunzmann, Steffen T1 - Expression of surfactant protein B is dependent on cell density in H441 lung epithelial cells JF - PLoS ONE N2 - Background Expression of surfactant protein (SP)-B, which assures the structural stability of the pulmonary surfactant film, is influenced by various stimuli, including glucocorticoids; however, the role that cell-cell contact plays in SP-B transcription remains unknown. The aim of the current study was to investigate the impact of cell-cell contact on SP-B mRNA and mature SP-B expression in the lung epithelial cell line H441. Methods Different quantities of H441 cells per growth area were either left untreated or incubated with dexamethasone. The expression of SP-B, SP-B transcription factors, and tight junction proteins were determined by qPCR and immunoblotting. The influence of cell density on SP-B mRNA stability was investigated using the transcription inhibitor actinomycin D. Results SP-B mRNA and mature SP-B expression levels were significantly elevated in untreated and dexamethasone-treated H441 cells with increasing cell density. High cell density as a sole stimulus was found to barely have an impact on SP-B transcription factor and tight junction mRNA levels, while its stimulatory ability on SP-B mRNA expression could be mimicked using SP-B-negative cells. SP-B mRNA stability was significantly increased in high-density cells, but not by dexamethasone alone. Conclusion SP-B expression in H441 cells is dependent on cell-cell contact, which increases mRNA stability and thereby potentiates the glucocorticoid-mediated induction of transcription. Loss of cell integrity might contribute to reduced SP-B secretion in damaged lung cells via downregulation of SP-B transcription. Cell density-mediated effects should thus receive greater attention in future cell culture-based research. KW - messenger RNA KW - surfactants KW - epithelial cells KW - transcription factors KW - gene expression KW - tight junctions KW - adenocarcinoma of the lung KW - immunoblotting Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158291 VL - 12 IS - 9 ER - TY - JOUR A1 - Hampe, Irene A. I. A1 - Friedman, Justin A1 - Edgerton, Mira A1 - Morschhäuser, Joachim T1 - An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses JF - PLoS Pathogens N2 - The opportunistic fungal pathogen Candida albicans frequently produces genetically altered variants to adapt to environmental changes and new host niches in the course of its life-long association with the human host. Gain-of-function mutations in zinc cluster transcription factors, which result in the constitutive upregulation of their target genes, are a common cause of acquired resistance to the widely used antifungal drug fluconazole, especially during long-term therapy of oropharyngeal candidiasis. In this study, we investigated if C. albicans also can develop resistance to the antimicrobial peptide histatin 5, which is secreted in the saliva of humans to protect the oral mucosa from pathogenic microbes. As histatin 5 has been shown to be transported out of C. albicans cells by the Flu1 efflux pump, we screened a library of C. albicans strains that contain artificially activated forms of all zinc cluster transcription factors of this fungus for increased FLU1 expression. We found that a hyperactive Mrr1, which confers fluconazole resistance by upregulating the multidrug efflux pump MDR1 and other genes, also causes FLU1 overexpression. Similarly to the artificially activated Mrr1, naturally occurring gain-of-function mutations in this transcription factor also caused FLU1 upregulation and increased histatin 5 resistance. Surprisingly, however, Mrr1-mediated histatin 5 resistance was mainly caused by the upregulation of MDR1 instead of FLU1, revealing a previously unrecognized function of the Mdr1 efflux pump. Fluconazole-resistant clinical C. albicans isolates with different Mrr1 gain-of-function mutations were less efficiently killed by histatin 5, and this phenotype was reverted when MRR1 was deleted. Therefore, antimycotic therapy can promote the evolution of strains that, as a consequence of drug resistance mutations, simultaneously have acquired increased resistance against an innate host defense mechanism and are thereby better adapted to certain host niches. KW - antimicrobial resistance KW - transcriptional control KW - Candida albicans KW - transcription factors KW - mutation KW - hyperexpression techniques KW - antifungals KW - point mutation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158883 VL - 13 IS - 9 ER -