TY - JOUR A1 - Shamim, Saquib A1 - Mahapatra, S. A1 - Scappucci, G. A1 - Klesse, W. M. A1 - Simmons, M. Y. A1 - Ghosh, Arindam T1 - Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si: P and Ge: P δ-layers JF - Scientific Reports N2 - We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3–2.5 × 10\(^{18}\)m\(^{−2}\)) at low temperatures (0.3–4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate. KW - two-dimensional materials KW - quantum information KW - electronic properties and materials Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170934 VL - 7 IS - 46670 ER - TY - JOUR A1 - Wurdack, Matthias A1 - Lundt, Nils A1 - Klaas, Martin A1 - Baumann, Vasilij A1 - Kavokin, Alexey V. A1 - Höfling, Sven A1 - Schneider, Christian T1 - Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe\(_{2}\) monolayer JF - Nature Communications N2 - Strong light matter coupling between excitons and microcavity photons, as described in the framework of cavity quantum electrodynamics, leads to the hybridization of light and matter excitations. The regime of collective strong coupling arises, when various excitations from different host media are strongly coupled to the same optical resonance. This leads to a well-controllable admixture of various matter components in three hybrid polariton modes. Here, we study a cavity device with four embedded GaAs quantum wells hosting excitons that are spectrally matched to the A-valley exciton resonance of a MoSe\(_{2}\) monolayer. The formation of hybrid polariton modes is evidenced in momentum resolved photoluminescence and reflectivity studies. We describe the energy and k-vector distribution of exciton-polaritons along the hybrid modes by a thermodynamic model, which yields a very good agreement with the experiment. KW - two-dimensional materials KW - microresonators KW - nanophotonics and plasmonics KW - cavity device KW - strong coupling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170480 VL - 8 IS - 259 ER -