TY - THES A1 - Sachs, Sönke T1 - Organische Halbleiter: Fundamentale Aspekte von Metallkontakten, hochgeordneten Schichten und deren Anwendung in Feldeffekttransistoren T1 - Organic semiconductors: Fundamental aspects of metal contacts, highly ordered films and the application in field effect transistors N2 - Eingebettet in ein Konzept zum Aufbau eines Hochleistungs-Feldeffekt-Transistors auf der Basis organischer Halbleiter (OFET), werden in der vorliegenden Dissertation fundamentale Aspekte des Aufbaus und der Funktion organischer Halbleiter-Bauelemente erforscht. Die Kenntnis, welche maximale Leistungsfähigkeit organische Halbleiter in OFETs prinzipiell erreichen können, ist von elementarem Interesse, sowohl um Transportmodelle zu verfeinern, als auch um Mechanismen und Optimierungsansätze zu finden, mit denen OFETs generell verbessert werden können. Es wird das Ziel verfolgt, sich der maximalen Leistungsfähigkeit eines gegebenen Materialsystems anzunähern. Aufwendige Präparationsstrategien werden für dieses Ziel bewusst in Kauf genommen, auch wenn deshalb vermutlich kein direkter Zugang zu Anwendungen eröffnet wird. An geeigneten Modellsystemen können einzelne wichtige Aspekte, wie die elektronische Struktur an Metallkontakten und im organischen Halbleitervolumen sowie das Wachstum von Schichten und Kristalliten organischer Halbleitermoleküle auf einkristallinen Isolatorsubstraten charakterisiert werden. Die Ergebnisse dieser grundlegenden Experimente fließen in den Aufbau des geplanten OFETs ein. Auf dem Weg zu einem funktionsfähigen Bauelement mit bestmöglichen Eigenschaften wurden wesentliche Fortschritte erzielt. Der erste Schwerpunkt dieser Arbeit ist die Untersuchung elektronischer Niveaus an Metallkontakt-Grenzflächen und im Volumen des Modellsystems PTCDA/Ag(111) mit Zwei-Photonen-Photoelektronenspektroskopie (2PPE). Die 2PPE-Spektren der PTCDA/Ag(111)-Grenzfläche sind dominiert durch einen unbesetzten, parallel zur Grenzfläche stark dispersiven Shockley-artigen Grenzflächenzustand (IS), der sich durch die Chemisorption der Moleküle auf der Ag(111)-Oberfläche bildet. Bei der Untersuchung von intramolekular angeregten elektronischen Zuständen von PTCDA mit 2PPE zeigen sich im Vergleich zum Untergrund der Spektren schwache Signale, die jedoch mit einer geeigneten Beschreibung des Untergrunds davon separiert werden können. Besonders interessant ist in diesem Zusammenhang das LUMO, das bei einer Anregung aus dem HOMO eine um 0,4 eV stärkere energetische Absenkung zeigt, als bei der Anregung aus dem HOMO-1. Dies kann durch die unterschiedlichen exzitonischen Zustände, die bei den Anregungen entstehen, erklärt werden. Neben den metallischen Kontakten ist die Grenzfläche zwischen organischem Halbleiter und Gate-Isolator entscheidend für die Leistungsfähigkeit eines OFETs. Am Beispiel des Wachstums von Diindenoperylen-Molekülen (DIP) auf einkristallinen Al2O3-Substraten wurde die morphologische und strukturelle Ausbildung von organischen Halbleiterschichten mit optischer Mikroskopie und Rasterkraftmikroskopie untersucht. Das Wachstum kann als stark anisotrop charakterisiert werden. Die – im Vergleich zu den Bindungsenergien mit dem Substrat – deutlich größeren Bindungsenergien innerhalb der DIP-(001)-Kristallebenen führen bei Substrattemperaturen von 440 K zu einem Wachstum von aufrecht stehenden Molekülen. Es zeigt sich, dass die während des Wachstums herrschende Substrattemperatur einen entscheidenden Einfluss auf die Morphologie der DIP-Schicht hat. So nimmt die Inselgröße von etwa 200 nm bei 350 K auf über 700 nm bei 450 K zu. Außerdem wird ein Ansteigen der Filmrauheit, besonders ab etwa 430 K, beobachtet, das auf den Übergang zu einem anderen Wachstumsmodus bei diesen Temperaturen hinweist. Bei etwas höheren Temperaturen von etwa 460 K wird das Wachstum von DIP-Kristalliten beobachtet. Dabei können – abhängig von den gewählten Präparationsparametern – drei unterschiedliche Kristallit-Typen unterschieden werden: „Mesa-Kristallite“ mit lateralen Abmessungen von mehreren Mikrometern, „Dendritische Kristallite“, die eine verzweigte Struktur aufweisen, die mithilfe der Wachstumskinetik erklärt werden kann und „Schichtkristallite“, deren Morphologie sich durch teilweise starke Krümmungen auszeichnet. Insgesamt zeigt sich, dass die Morphologie kristalliner Strukturen durch eine feine Balance der Präparationsparameter Substrattemperatur, Aufdampfrate, Substratmorphologie und Substratreinheit bestimmt wird, so dass kleine Änderungen dieser Parameter zu deutlich unterschiedlichen Kristallitformen führen. Schließlich wird das Konzept zum Aufbau eines Hochleistungs-OFET vorgestellt und in Details weiterentwickelt. Fortschritte werden in erster Linie bei der Präparation der Gate-Elektrode erzielt, die unter dem Al2O3-Substrat angebracht werden soll. Für die Ausdünnung des Substrats wird eine Bohrtechnik weiterentwickelt und mit einer nasschemischen Ätzmethode kombiniert, so dass Isolatorstärken von unter 10 µm erreicht werden können. Erste wenige OFETs wurden auf der Basis dieses Substrats präpariert, allerdings ohne dass die Bauteile Feldeffekte zeigten. Verbesserungsmöglichkeiten werden diskutiert. N2 - In this thesis, fundamental aspects of organic semiconductor devices are investigated and incorporated into the construction and optimization of an organic semiconductor field effect transistor (OFET). The knowledge about the maximal performance that organic semiconductors can obtain in OFETs in principle is of particular interest. It enables to refine transport models and to unravel mechanisms and optimization strategies to improve OFETs in general. In order to approach this "high end" of OFETs, elaborate steps to optimize the devices are taken, despite the fact that they might not be feasible in a direct application. Well-characterized model systems are selected to study fundamental properties of devices, in particular the electronic structure at molecule/metal contacts and in the organic semiconductor bulk, as well as the growth of organic semiconductor molecules on single crystalline insulator substrates. The realization of a high performance OFET is pursued by a comprehensive approach in order to optimize particularly the interfaces of the device. Considerable progress is made towards a working OFET with best possible properties. A primary focus of this work, the investigation of the electronic structure at molecule/metal contacts and in the molecular bulk of the model system PTCDA/Ag(111) is performed using two photon photoelectron spectroscopy (2PPE). 2PPE makes it possible to access occupied and unoccupied energy levels and study the dynamics of electronic excitations. The 2PPE spectra of the PTCDA/Ag(111) interface are dominated by an unoccupied and strongly dispersing Shockley-type interface state (IS) that develops due to the chemisorptive interaction of the PTCDA with the metal. Intramolecular excitations of PTCDA with 2PPE show a very small signal compared to the background of the spectra. However, with an appropriate description of the background it is possible to extract information about electronic states. Of special interest is the excitation of the lowest unoccupied molecular orbital (LUMO) that shows different energetic relaxation mechanisms, depending on the origin of excitation. In addition to the importance of the molecule/metal contacts, the performance of OFETs is determined to a large extend by the quality of the organic semiconductor/gate insulator interface where the charge carrier channel is established. For optimal performance, the first layer of molecules should be free of defects and impurities. The morphology and structure of a molecular layer are investigated for diindenoperylene (DIP) molecules, adsorbed on a single crystalline Al2O3 substrate, by atomic force microscopy and optical microscopy. The growth of these molecules is determined by the binding energies, which are strongly anisotropic within the molecular film structure and between molecules and substrate. These anisotropies stimulate the growth of upright standing molecules at substrate temperatures of about 440 K. Dependent on the substrate temperature during growth, the morphology shows grains with lateral dimensions of about 200 nm at 350 K which increase up to 700 nm at 450 K. This change in morphology is accompanied by an increase of roughness, indicating a change of the growth mode, at higher temperatures. At slightly higher temperatures of about 460 K, the growth of crystallites is observed. Depending on the particular preparation parameters, three different types of crystallites develop: mesa crystallites with lateral dimensions up to several microns, dendritic crystallites, characterized by kinetic growth processes, and layered crystallites, that are bent in three dimensions. The morphologies can be explained by the strong anisotropy of the bonding strengths within the DIP crystal structure. To obtain a specific morphology, a subtle balance of the preparation parameters has to be found. Possibilities to utilize the grown crystallites in OFETs are discussed and the mesa type is found to be the most promising. The comprehensive concept for the development of a high performance OFET is introduced and refined in details. Improvements are made especially in the construction of the gate electrode that will be attached beneath the Al2O3 substrate. To thin out the substrate, a drilling technique is improved and combined with wet chemical etching, resulting in gate insulator thicknesses below 10 µm. On the basis of this preparatory work few first OFETs were built. However, no field effect could be measured. As a first step towards the electrical characterization of DIP-OFETs, OFETs based on Silicon-oxide were successfully prepared and characterized. Moreover, present challenges and possible improvements towards a high performance OFET are discussed. KW - Organischer Halbleiter KW - Feldeffekttransistor KW - Diindenoperylen KW - Saphir KW - Ag(111) KW - Zwei-Photonen-Photoelektronenspektroskopie KW - Kraftmikroskopie KW - Photoelektronenspektroskopie KW - Organic Semiconductors KW - 2 Photon Photoemission KW - Thin Films KW - Field Effect Transistor KW - Atomic Force Microscopy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48684 ER - TY - THES A1 - Mahapatra, Suddhasatta T1 - Formation and Properties of Epitaxial CdSe/ZnSe Quantum Dots : Conventional Molecular Beam Epitaxy and Related Techniques T1 - Bildung und Eigenschaften Epitaxischer CdSe/ZnSe-Quantenpunkte : Molekularstrahlepitaxie und Verwandte Methoden N2 - Albeit of high technological import, epitaxial self-assembly of CdSe/ZnSe QDs is non-trivial and still not clearly understood. The origin and attributes of these QDs are significantly different from those of their III-V and group-IV counterparts. For III-V and group-IV heterosystems, QD-formation is assigned to the Stranski Krastanow (SK) transition, wherein elastic relaxation of misfit strain leads to the formation of coherent three-dimensional (3D) islands, from a supercritically strained two-dimensional (2D) epilayer. Unfortunately, this phenomenon is inconspicuous for the CdSe/ZnSe heterosystem. Well-defined 3D islands are not readily formed in conventional molecular beam epitaxial (MBE) growth of CdSe on ZnSe. Consequently, several alternative approaches have been adopted to induce/enhance formation of QDs. This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. It is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. The surface of the CdSe layer represents a rough 2D layer, characterized by a dense array of shallow (<1nm) abutting mounds. In capped samples, the CdSe deposit forms an inhomogeneous CdZnSe quantum well (QW)-like structure. This ternary QW consists of local Cd-rich inclusions, which confine excitons three-dimensionally, and act as QDs. The density of such QDs is very high (~ 1012 cm-2). The QDs defined by the composition inhomogeneities of the CdZnSe QW presumably originate from the shallow mounds of the uncapped CdSe surface. By a technique wherein a CdSe layer is grown at a low temperature (TG = 230 °C) and subsequently annealed at a significantly higher temperature (TA =310 °C), tiny but distinct 3D islands are formed. In this work, the mechanism underlying the formation of these islands is reported. While the CdSe deposit forms a quasi-two-dimensional (quasi-2D) layer at TG = 230 °C, subsequent annealing at TA = 310 °C results in a thermally activated “up-climb” of adatoms onto two-dimensional clusters (or precursors) and concomitant nucleation of 3D islands. The areal density of QDs, achieved by this technique, is at least a decade lower than that typical for conventional MBE growth. It is demonstrated that further reduction is possible by delaying the temperature ramp-up to TA. In the second technique, formation of distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (TD = 230 °C). Albeit the self-assembled islands are large, they are severely truncated during subsequent capping with ZnSe, presumably due to segregation of Cd and Zn-alloying of the islands. The segregation phenomenon is analyzed in this work and correlated to the optical properties of the QDs. Additionally, very distinct vertical correlation of QDs in QD-superlattices, wherein the first QD-layer is grown by this technique and the subsequent ones by migration enhanced epitaxy (MEE), is reported. The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. This leads not only to large alteration of the morphological and optical attributes of the QDs, but also to formation of unique self-assembled island-patterns. Oriented dashes, straight and buckled chains of islands, and aligned island-pairs are formed, depending on the thickness of the Te-cap layer. The islands are partially alloyed with Te and emit luminescence at very low energies (down to 1.7 eV at room temperature). The Te cap layer undergoes (poly)crystallization during temperature ramp-up (from room temperature to TD) for desorption. Here, it is shown that the self-assembled patterns of the island-ensembles are determined by the pattern of the grain boundaries of the polycrystalline Te layer. Based on an understanding of the mechanism of pattern formation, a simple and “clean” method for controlled positioning of individual QDs and QD-based extended nanostructures, is proposed in this work. The studies carried out in the framework of this thesis provide not only a deeper insight into the microscopic processes governing the heteroepitaxial self-assembly of CdSe/ZnSe(001) QDs, but also concrete approaches to achieve, optimize, and control several technologically-important features of QD-ensembles. Reduction and control of QD-areal-density, pronounced vertical correlation of distinctly-defined QDs in QD-superlattices, and self-assembly of QD-based extended structures, as demonstrated in this work, might turn out to be beneficial for envisioned applications in information-, and communication-technologies. N2 - Trotz ihrer großen technologischen Bedeutung ist die epitaktische Selbstorganisation von CdSe/ZnSe QDs noch immer nicht vollständig verstanden. Die Ursachen und Merkmale dieser QDs unterscheiden sich deutlich von ihren III-V- und IV-IV-Gegenstücken. Für III-V- und IV-IV-Heterosysteme wird die QD-Formation dem Stranski-Krastanow-(SK)-Übergang zugeordnet, bei dem, ausgehend von einer hochverspannten zweidimensionalen (2D) Epitaxieschicht, die elastische Relaxation von durch Gitterfehlanpassung hervorgerufener Verspannung zur Formation von dreidimensionalen (3D) Inseln führt. Im Falle des CdSe/ZnSe-Heterosystems ist es unklar, ob das SK-Modell die Formation von QDs zutreffend beschreibt. Beim Wachstum durch Molekularstrahlepitaxie (engl.: molecular beam epitaxy, MBE) von CdSe auf ZnSe kommt es nicht zur Bildung von 3D-Inseln, wie es für die meisten III-V- und IV-IV-Heterosysteme charakteristisch ist. Infolgedessen wurden mehrere alternative Herangehensweisen eingesetzt, um die Formation der QDs anzuregen bzw. zu verbessern. Diese Doktorarbeit beschreibt die systematische Untersuchung dreier solcher alternativer Ansätze im Zusammenspiel mit konventioneller MBE. Der Schwerpunkt liegt auf dem Formationsmechanismus der QDs und Optimierung ihrer morphologischen und optischen Eigenschaften. Beim MBE-Wachstum von CdSe auf ZnSe findet keine Bildung ausgeprägter, dreidimensionaler Inseln statt. Die Oberfläche der CdSe-Schicht stellt eine rauhe 2D-Schicht dar, gekennzeichnet durch eine dichte Anordung flacher, aneinander angrenzender Hügel. In bedeckten Proben bildet die CdSe-Ablagerung eine inhomogene CdZnSe-quantentrog-ähnliche (engl.: quantum well, QW) Struktur . Dieser ternäre QW enthält lokale Cd-reiche Einschlüsse, die die Bewegung von Exzitonen in drei Dimensionen einschränken und als QDs fungieren. Die Dichte solcher QDs ist sehr hoch (~ 1012 cm-2). Diese durch die Inhomogenität des CdZnSe-QW definierten QDs haben ihren Ursprung in den flachen Hügeln der unbedeckten CdSe-Oberfläche. Mit einer Methode, bei der man eine CdSe-Schicht bei niedriger Temperatur (TG = 230 °C) wachsen lässt und anschießend bei höherer Temperatur (TA = 310 °C) tempert, kommt es zur Bildung winziger, aber ausgeprägter, 3D-Inseln. In dieser Arbeit wird der Mechanismus, der der Bildung dieser Inseln zugrunde liegt, beschrieben. Während die CdSe-Ablagerung eine quasi-zweidimensionale (quasi-2D) Schicht bei TG = 230 °C bildet, führt das darauf folgende Tempern bei TA = 310 °C zu einem thermisch aktivierten „up-climb“ von Adatomen auf zweidimensionale Cluster (oder Vorgänger, engl.: precursor), bei gleichzeitiger Nukleation von 3D-Inseln. Die Flächendichte von QDs, die mit dieser Methode erreicht werden kann, ist mindestens eine Größenordung geringer als es für konventionelles MBE-Wachstum typisch ist. Eine weitere Verringerung ist möglich, indem der Temperaturanstieg auf TA verzögert wird. In einer zweiten Variante wird die Bildung großer und ausgeprägter Inseln durch Aufbringen einer amorphen Selenschicht (α-Se) auf eine 2D-CdSe-Epischicht bei Raumtemperatur und anschließender Desorption bei höherer Temperatur (TD = 230 °C) demonstriert. Obwohl die selbstorganisierten Inseln groß sind, werden sie durch nachträgliches Bedecken mit ZnSe stark abgeflacht, was durch Segregation von Cd und Legieren der Inseln mit Zn hervorgerufen wird. Das Segregationsphänomen sowie sein Zusammenhang mit den optischen Eigenschaften der QDs wird in dieser Arbeit untersucht. Weiterhin wird vertikale Korrelation von QDs in QD-Übergittern beschrieben, in welchen die erste QD-Schicht mit dieser Methode wachsen gelassen wurde. Darauf folgende Schichten werden duch „migration enhanced epitaxy“ (MEE) aufgebracht. Die Prozessschritte der dritten Variante sind denen der eben beschriebenen sehr ähnlich. Die einzige Abwandlung besteht in der Substitution von Selen mit Tellur als bedeckendes Material. Diese Variation führt nicht nur zu beträchtlicher Veränderung der morphologischen und optischen Eigenschaften der QDs, sondern auch zur Bildung einzigartiger Muster von selbstorganisierten Inseln. Abhängig von der Dicke der Tellurbedeckung kommt es zur Bildung orientierter „dashes“, gerader und gebogener Ketten von Inseln und ausgerichteter Inselpaare. Die Inseln sind teilwese mit Tellur legiert und strahlen Lumineszenz in einem sehr niedrigen Energiebereich ab (bis hinunter zu 1,7 eV bei Raumtemperatur). Im Gegensatz zur α-Se-Bedeckung kommt es in der Te-Schicht während der Temperaturerhöhung (von Raumtemperatur zu TD) zur Polykristallisierung. Es wird gezeigt, dass die selbstorganisierten Muster der Inseln durch die Verteilung der Korngrenzen der polykristallinen Te-Schicht bestimmt werden. Basierend auf dem Verständnis des Mechanismus der Musterbildung wird hier eine einfache und „saubere“ Methode für die kontrollierte Positionierung individueller QDs und QD-basierter, ausgedehnter Nanostrukturen vorgeschlagen. KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Quantenpunkt KW - Würzburg / Sonderforschungsbereich II-VI-Halbleiter KW - Kraftmikroskopie KW - Selbstorganisation KW - Nanostructures KW - Self-organization KW - Molecular beam Epitaxy KW - CdSe KW - ZnSe KW - AFM KW - Luminescence Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32831 ER -