TY - THES A1 - Trabel, Mirko T1 - Growth and Characterization of Epitaxial Manganese Silicide Thin Films T1 - Wachstum und Charakterisierung dünner epitaktischer MnSi Schichten N2 - This thesis describes the growth and characterization of epitaxial MnSi thin films on Si substrates. The interest in this material system stems from the rich magnetic phase diagram resulting from the noncentrosymmetric B20 crystal structure. Here neighboring spins prefer a tilted relative arrangement in contrast to ferro- and antiferromagnets, which leads to a helical ground state where crystal and spin helix chirality are linked [IEM+85]. This link makes the characterization and control of the crystal chirality the main goal of this thesis. After a brief description of the material properties and applied methods, the thesis itself is divided into four main parts. In the first part the advancement of the MBE growth process of MnSi on Si\((111)\) substrate as well as the fundamental structural characterization are described. Here the improvement of the substrate interface by an adjusted substrate preparation process is demonstrated, which is the basis for well ordered flat MnSi layers. On this foundation the influence of Mn/Si flux ratio and substrate temperature on the MnSi layer growth is investigated via XRD and clear boundaries to identify the optimal growth conditions are determined. The nonstoichiometric phases outside of this optimal growth window are identified as HMS and Mn\(_5\)Si\(_3\). Additionally, a regime at high substrate temperatures and low Mn flux is discovered, where MnSi islands are growing incorporated in a Si layer, which could be interesting for further investigations as a size confinement can change the magnetic phase diagram [DBS+18]. XRD measurements demonstrate the homogeneity of the grown MnSi layers over most of the 3 inch wafer diameter and a small \(\omega\)-FWHM of about 0.02° demonstrates the high quality of the layers. XRD and TEM measurements also show that relaxation of the layers happens via misfit dislocations at the interface to the substrate. The second part of the thesis is concerned with the crystal chirality. Here azimuthal \(\phi\)-scans of asymmetric XRD reflections reveal twin domains with a \(\pm\)30° rotation to the substrate. These twin domains seem to consist of left and right-handed MnSi, which are connected by a mirror operation at the \((\bar{1}10)\) plane. For some of the asymmetric XRD reflections this results in different intensities for the different twin domains, which reveals that one of the domains is rotated +30° and the other is rotated -30°. From XRD and TEM measurements an equal volume fraction of both domains is deduced. Different mechanisms to suppress these twin domains are investigated and successfully achieved with the growth on chiral Si surfaces, namely Si\((321)\) and Si\((531)\). Azimuthal \(\phi\)-scans of asymmetric XRD reflections demonstrate a suppression of up to 92%. The successful twin suppression is an important step in the use of MnSi for the proposed spintronics applications with skyrmions as information carriers, as discussed in the introduction. Because of this achievement, the third part of the thesis on the magnetic properties of the MnSi thin films is not only concerned with the principal behavior, but also with the difference between twinned and twin suppressed layers. Magnetometry measurements are used to demonstrate, that the MnSi layers behave principally as expected from the literature. The analysis of saturation and residual magnetization hints to the twin suppression on Si\((321)\) and Si\((531)\) substrates and further investigations with more samples can complete this picture. For comparable layers on Si\((111)\), Si\((321)\) and Si\((531)\) the Curie-Weiss temperature is identical within 1 K and the critical field within 0.1 T. Temperature dependent magnetoresistivity measurements also demonstrate the expected \(T^2\) behavior not only on Si\((111)\) but also on Si\((321)\) substrates. This demonstrates the successful growth of MnSi on Si\((321)\) and Si\((531)\) substrates. The latter measurements also reveal a residual resistivity of less then half for MnSi on Si\((321)\) in comparison to Si\((111)\). This can be explained with the reduced number of domain boundaries demonstrating the successful suppression of one of the twin domains. The homogeneity of the residual resistivity as well as the charge carrier density over a wide area of the Si\((111)\) wafer is also demonstrated with these measurements as well as Hall effect measurements. The fourth part shows the AMR and PHE of MnSi depending on the angle between in plane current and magnetic field direction with respect to the crystal direction. This was proposed as a tool to identify skyrmions [YKT+15]. The influence of the higher C\(_{3\mathrm{v}}\) symmetry of the twinned system instead of the C\(_3\) symmetry of a B20 single crystal is demonstrated. The difference could serve as a useful additional tool to prove the twin suppression on the chiral substrates. But this is only possible for rotations with specific symmetry surfaces and not for the studied unsymmetrical Si\((321)\) surface. Measurements for MnSi layers on Si\((111)\) above the critical magnetic field demonstrate the attenuation of AMR and PHE parameters for increasing resistivity, as expected from literature [WC67]. Even if a direct comparison to the parameters on Si\((321)\) is not possible, the higher values of the parameters on Si\((321)\) can be explained considering the reduced charge carrier scattering from domain boundaries. Below the critical magnetic field, which would be the region where a skyrmion lattice could be expected, magnetic hysteresis complicates the analysis. Only one phase transition at the critical magnetic field can be clearly observed, which leaves the existence of a skyrmion lattice in thin epitaxial MnSi layers open. The best method to solve this question seems to be a more direct approach in the form of Lorentz-TEM, which was also successfully used to visualize the skyrmion lattice for thin plates of bulk MnSi [TYY+12]. For the detection of in plane skyrmions, lamellas would have to be prepared for a side view, which seems in principle possible. The demonstrated successful twin suppression for MnSi on Si\((321)\) and Si\((531)\) substrates may also be applied to other material systems. Suppressing the twinning in FeGe on Si\((111)\) would lead to a single chirality skyrmion lattice near room temperature [HC12]. This could bring the application of skyrmions as information carriers in spintronics within reach. Glossary: MBE Molecular Beam Epitaxy XRD X-Ray Diffraction HMS Higher Manganese Silicide FWHM Full Width Half Maximum TEM Tunneling Electron Microscopy AMR Anisotropic MagnetoResistance PHE Planar Hall Effect Bibliography: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012. N2 - Diese Arbeit befasst sich mit dem Wachstum und der Charakterisierung dünner epitaktischer MnSi Schichten auf Si Substraten. Das Interesse an diesem Materialsystem liegt insbesondere im reichhaltigen magnetischen Phasendiagramm begründet, welches aus der nicht zentrosymmetrischen B20 Kristallstruktur des MnSi resultiert. Im Gegensatz zu Ferro- oder Antiferromagneten bevorzugen benachbarte Spins sich unter einem Winkel zueinander auszurichten, was zu einem helikalen Grundzustand führt in dem die Händigkeit von Kristallstruktur und Spin-Helix aneinander gekoppelt sind [IEM+85]. Diese Kopplung macht die Charakterisierung und Kontrolle der Händigkeit der Kristallstruktur zum Hauptziel dieser Arbeit. Nach einer kurzen Beschreibung der Materialeigenschaften und der angewendeten Methoden ist die Arbeit selbst in vier Hauptteile aufgeteilt. Im ersten Teil ist sowohl die Verbesserung des Molekularstrahlepitaxie-Wachstumsprozesses von MnSi auf Si\((111)\) Substrat, als auch die grundlegende strukturelle Charakterisierung beschrieben. Hierbei ist die Verbesserung der Substratgrenzfläche mit Hilfe eines angepassten Vorbereitungsprozesses erläutert, welche die Basis für glatte, geordnete dünne MnSi Schichten bildet. Auf dieser Basis ist der Einfluss des Mn/Si Fluss-Verhältnisses sowie der Substrattemperatur mittels Röntgenbeugung dargestellt und ein optimales Wachstumsfenster identifiziert. Die nicht stöchiometrischen Phasen außerhalb dieses Wachstumsfensters sind MnSi\(_{1.75-x}\) (HMS) sowie Mn\(_5\)Si\(_3\). Zusätzlich tritt bei hohen Substrattemperaturen und niedrigem Mn Fluss eine Phase auf, in der MnSi Inseln, eingebettet in eine Si Schicht, wachsen. Diese könnten von weiterführendem Interesse sein, da die Größenbeschränkung das magnetische Phasendiagramm beeinflussen kann [DBS+18]. Röntgenbeugungsmessungen zeigen die Homogenität der gewachsenen MnSi Schichten über einen Großteil des 3\ Zoll Wafer Durchmessers sowie die hohe Qualität mittels einer kleinen \(\omega\)-Halbwertsbreite von ungefähr 0.02°. Röntgenbeugungs- und Transmissionselektronenmikroskopiemessungen zeigen außerdem, dass die MnSi Dünnschichten mittels Fehlversetzungen an der Grenzfläche zwischen Dünnschicht und Substrat relaxieren. Der zweite Teil befasst sich mit der Händigkeit der Kristallstruktur. Azimutale \(\phi\)-Messungen asymmetrischer Röntgenbeugungsreflexe zeigen Kristallzwillingsdomänen welche \(\pm\)30° zum Substrat rotiert sind. Die Kristallzwillingsdomänen lassen sich vermutlich als rechts- und links-händiges MnSi identifizieren, welche durch eine Spiegelung an der \((\bar{1}10)\) Ebene verbunden sind. Anhand der unterschiedlichen Intensität mancher Reflexe für unterschiedliche Händigkeit wird außerdem gezeigt, dass eine der Domänen um +30° und die andere Domäne um -30° rotiert ist. Mithilfe der Röntgenbeugung und Transmissionselektronenmikroskopie wird außerdem der gleiche Volumenanteil der Kristallzwillinge demonstriert. Verschieden Mechanismen zur Unterdrückung dieser Kristallzwillingsdomänen werden untersucht und die erfolgreiche Unterdrückung gelang mit Hilfe des Wachstums auf chiralen Si Substraten, nämlich Si\((321)\) und Si\((531)\) Substraten. Hier ist mit azimutalen \(\phi\)-Messungen der asymmetrischen Röntgenbeugungsreflexen eine Unterdrückung von bis zu 92% demonstriert. Die erfolgreiche Unterdrückung der Kristallzwillingsdomänen ist ein wichtiger Schritt zur vorgeschlagenen Nutzung von MnSi in Spintronik-Anwendungen, wie in der Einleitung erläutert. Aufgrund dessen befasst sich der dritte Teil nicht nur mit den magnetischen Eigenschaften der dünnen MnSi Schichten, sondern auch damit, wie die Unterschiede für Schichten mit Kristallzwillingsdomänen und mit deren Unterdrückung sind. Im ersten Abschnitt ist anhand von Magnetometriemessungen gezeigt, dass sich die MnSi Dünnschichten prinzipiell so verhalten, wie es aus der Literatur zu erwarten ist. Das Verhalten von Sättigungs- und Restmagnetisierung deutet auf die Unterdrückung der Kristallzwillingsdomänen auf Si\((321)\) und Si\((531)\) Substraten hin, wobei das Gesamtbild mittels einer erweiterten Probenserie vervollständigt werden kann. Für vergleichbare MnSi Dünnschichten auf Si\((111)\), Si\((321)\) und Si\((531)\) ist die Curie-Weiss Temperatur innerhalb von 1 K und das kritische Magnetfeld innerhalb von 0.1 T identisch. Die Temperaturabhängigkeit des Magnetowiderstands zeigt das zu erwartende \(T^2\) Verhalten nicht nur auf Si\((111)\), sondern auch auf Si\((321)\). Dies zeigt das erfolgreiche Wachstum von MnSi auf Si\((321)\) und Si\((531)\). Die letzteren Messungen ergeben außerdem einen Restwiderstand von weniger als der Hälfte für MnSi auf Si\((321)\) im Vergleich zu Si\((111)\). Dies kann durch die geringere Anzahl an Domänengrenzen erklärt werden und zeigt die erfolgreiche Unterdrückung einer Kristallzwillingsdomäne. Mit Hilfe der Restwiderstände und Hall-Messungen ist die Homogenität des Restwiderstandes und der Ladungsträgerdichte über einen großen Bereich des Wafers gezeigt. Im vierten Teil werden der Anisotrope Magnetwiderstand und der Planare Hall Effekt für MnSi abhängig von den Winkeln von Stromrichtung und Magnetfeld im Bezug auf die Kristallrichtung untersucht. Dies wurde als Werkzeug zur Identifikation der Skyrmionenphase vorgeschlagen [YKT+15]. Der Einfluss der höheren C\(_{3\mathrm{v}}\) Symmetrie des Kristallzwillingssystems und nicht der C\(_3\) Symmetrie des B20 Einzelkristalls ist gezeigt Der Unterschied könnte ein nützliches zusätzliches Werkzeug für die Demonstration der Kristallzwillingsunterdrückung sein. Dies ist allerdings nur für die Rotation mit spezifischen symmetrischen Oberflächen möglich und nicht für die untersuchte unsymmetrische Si\((321)\) Oberfläche. Messungen von MnSi Dünnschichten auf Si\((111)\) oberhalb des kritischen Magnetfeldes zeigen die Abnahme der Anisotropie-Parameter für den Anisotropen Magnetwiderstand und den Planaren Hall-Effekt für steigenden Widerstand, wie aus der Literatur zu erwarten [WC67]. Auch wenn ein direkter Vergleich zu den Parametern für Dünnschichten auf Si\((321)\) nicht möglich ist, können die größeren Parameterwerte bei Si\((321)\) mit der reduzierten Streuung an Domänengrenzen erklärt werden. Die Analyse unterhalb des kritischen Magnetfeldes, der Bereich in dem eine mögliche Skyrmionenphase zu erwarten wäre, wird durch magnetische Hysterese verkompliziert. Nur ein Phasenübergang beim kritischen Magnetfeld kann deutlich gezeigt werden. Damit bleibt die Frage zur Existenz der Skyrmionen in den MnSi Dünnschichten weiter offen. Die beste Möglichkeit diese Frage zu klären wäre ein direkterer Ansatz in Form von Lorentz-Transmissionselektronenmikroskopie, welche schon erfolgreich genutzt wurde um das Skyrmionengitter in dünnen Platten aus Volumenkristall MnSi zu visualisieren [TYY+12]. Für die Detektion von Skyrmionen in der Schichtebene müssten Lamellen für eine Seitenansicht präpariert werden, was prinzipiell möglich erscheint. Die gezeigte erfolgreiche Unterdrückung von einem der Kristallzwillinge für MnSi Schichten auf Si\((321)\) und Si\((531)\) sollte außerdem auf andere Materialsysteme übertragbar sein. Die Kristallzwillingsbildung in FeGe auf Si\((111)\) zu unterdrücken würde zu einem Skyrmionengitter mit einer einzigen Händigkeit bei annähernd Raumtemperatur führen [HC12]. Dies könnte Skyrmionen als Informationsträger in der Spintronik in greifbare Nähe bringen. Bibliographie: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012. KW - Molekularstrahlepitaxie KW - Mangansilicide KW - Magnetische Eigenschaft KW - MnSi KW - Epitaxy KW - XRD KW - Twin Domains KW - Twin Suppression KW - Magnetometry KW - Magnetoresistance KW - Anisotropic Magnetoresistance KW - Röntgendiffraktometrie KW - Zwillingsbildung KW - Magnetismus KW - Magnetowiderstand Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184720 ER - TY - THES A1 - Gold, Stefan T1 - Winkel- und Temperaturabhängigkeit der magnetokristallinen Anisotropieenergie und der mikroskopischen magnetischen Momente des ferromagnetischen Halbmetalls CrO2 T1 - Angle- and temperature dependence of the magnetocrystalline anisotropy energy and the microscopic magnetic moments of the ferromagnetic half metal CrO2 N2 - Im Rahmen dieser Arbeit wurden die magnetischen Eigenschaften des Halbmetalls CrO2 untersucht. CrO2 hat in den letzten Jahren erneut ein sehr starkes Interesse erfahren. Der Grund hierfür liegt darin, dass dieses Material, aufgrund seiner theoretisch vorhergesagten und inzwischen nachgewiesenen Spinpolarisation von nahezu 100 % an der Fermikante und seiner metastabilen Eigenschaften, ein stark diskutierter Kandidat für Spintronic-Anwendungen wie den Quantencomputer ist. Die Möglichkeit der Spininjektion ist für CrO2 gegeben und in der Zwischenzeit auch erfolgreich umgesetzt worden. Die Untersuchungen zielten auf eine Erklärung für die intrinsischen Eigenschaften wie magnetokristalline Anisotropie, magnetischer Dipolterm und dem eigentlich gequenchten Bahnmoment. Die Untersuchungen fanden an den Cr L2,3 und an der O K Kante statt. Insbesondere für die Auswertung an den Cr L2,3-Kanten war es notwendig, mit einer neuartigen Auswertemethodik sämtliche aufgenommenen Daten zu analysieren, da eine herkömmliche Summenregelauswertung leider nicht durchgeführt werden konnte. Der Grund hierfür lag in der zu geringen L2,3-Aufspaltung des leichten 3d-Übergangmetalls Cr. Mit Hilfe der so genannten Momentenanalyse war es nun möglich, die überlappenden Strukturen voneinander zu separieren, und darüber hinaus auch verschiedene Anteile der Bandstruktur verschiedenen spektralen Beiträgen zuzuordnen. Die Ergebnisse an CrO2 zeigten eine sehr starke Abhängigkeit des magnetischen Bahnmomentes, der Summe von Spin und magnetischem Dipolterm sowie der magnetokristallinen Anisotropieenergie vom Winkel zwischen den rutilen a- und c-Achsen. Noch mehr als das Gesamtbahnmoment zeigen zwei, mit Hilfe der Momentenanalyse separierbare, spektrale Beiträge starke Änderungen der einzelnen Bahnmomente. Dieses unerwartete und ausgeprägte Verhalten konnte mittels eines Vergleichs mit den Sauerstoff K-Kanten XMCD-Daten bestätigt werden, was auf eine sehr starke Hybridisierung der beiden Zustände schließen lässt. Die Trennung der stark anisotropen Summe von Spin-Moment und TZ-Term über die Summenregel für den magnetischen Dipolterm liefert eine Größenordnung des TZ-Terms, wie er bis zu diesem Zeitpunkt nicht vorgefunden wurde. Ein Vergleich der magnetokristallinen Anisotropieenergie, gewonnen durch die Messung von elementspezifischen Hysteresekurven mit Hilfe des XMCD-Effektes, mit dem Brunomodell, das eine magnetisch leichte Richtung für die Achse mit dem größten Bahnmoment vorhersagt, kommt zu keinem positiven Ergebnis. Erst die von G. van der Laan aufgezeigte Erweiterung, in der auch der TZ-Term mit aufgenommen ist, liefert für das System CrO2 ein quantitativ übereinstimmendes Ergebnis der MAE mit den gemessenen experimentellen Momenten. Erwähnenswert in diesem Zusammenhang ist die Tatsache, dass das Bahnmoment und der magnetische Dipolterm unterschiedliche leichte Richtungen bevorzugen und beide Anteile fast gleich groß sind, wobei der magnetische Dipolterm die Überhand hat. In einem zweiten Teil der Arbeit wurde nun auch eine Temperaturabhängigkeit untersucht. Ziel war es, Aussagen über die Entstehung von Bahnmomenten, Dipolterm und MAE in Abhängigkeit des vorliegenden Spinmomentes zu gewinnen und diese mit vorhandenen theoretischen Modellen zu vergleichen. Das gemessene Spinmoment wurde mit SQUID-Daten verglichen und zeigte eine qualitative Übereinstimmung. Die extrahierten Bahnmomente zeigten wie der magnetische Dipolterm ein identisches Temperaturverhalten wie das Spinmoment. Dies ist ein Beweis, dass beide Momente in einem solchen System nur durch eine Kopplung mit dem Spinmoment entstehen und durch dieses verursacht sind. Im Weiteren konnte auch eine quadratische Abhängigkeit der MAE vom Spinmoment nachgewiesen werden. Dieses von G. van der Laan und in Vorarbeiten von P. Bruno vorhergesagte Verhalten konnte erstmalig in dieser Arbeit verifiziert werden. Zusammenfassend lässt sich sagen, dass in dieser Arbeit das ungewöhnliche magnetische Verhalten, insbesondere die Winkelabhängigkeit der magnetischen Momente, durch die Kombination von XAS- und XMCD-Spektroskopie, mit der Verwendung der Momentenanalyse sowie der Untersuchung durch elementspezifische Hystereskurven, ein geschlossenes Bild des Probensystems CrO2 aufgezeigt werden konnte. Das Gesamtbild, das sich ergeben hat, zeigt ganz deutlich auf, dass eine Bandstrukturbeschreibung das gefundene Verhalten erklären kann. Die allgemein vorherrschende, und sicherlich im ersten Moment deutlich intuitivere Vorstellung, dass man im Falle von CrO2 eine Art ionische Bindung hätte, mit einer d2-Konfiguration und erwarteten 2 µB magnetischem Moment am Cr-Platz kann insbesondere die Temperaturabhängigkeit der Anisotropieenergie nicht erklären. Auch in diesem Zusammenhang liefert das Bandmodell eine sehr gute Beschreibung. N2 - In this work, the magnetic properties of the half metal CrO2 were analyzed. CrO2 has attracted a very strong interest due to its theoretical predicted and meantime proven spin polarization of near 100 % at the Fermi-edge, which makes it a strong candidate for a spintronic device or quantum computing. Even a spin injection is possible for CrO2 and has been shown in literature. The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L2,3- and the O K-edge. Especially for the analysis at the Cr L2,3-edges it was necessary to work with a completely new analysis method, because a “normal” sum rule analysis was not possible. The reason for that is the very small L2,3-exchange energy for the light 3d-transition metal CrO2. By the use of the so called moment analysis it is possible to separate the two transitions from each other and even more to address different features of the XMCD-spectra to different parts of the CrO2-band structure. The idea of this new analysis method for XMCD-spectra is the opportunity to fit spectral forms and analyze these with the use of the ground state moments. With this method, one can draw conclusions, even if there is a spectral overlap between L2 and L3 edges like for CrO2. The results for CrO2 show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. This unexpected and pronounced behaviour was approved by a comparison with the O K-edge XMCD spectra, indicating a strong hybridisation of both states. The strong anisotropy of the O K-edge XAS spectra give comparable results to literature. The quantitative analysis of the strong anisotropic sum of spin moment and TZ-term by the use of the magnetic dipole sum rule results in an order of magnitude, which was not found up to now. The comparison of the magnetocrystalline anisotropy energy with the Bruno model, has a negative result. Taking into account the TZ.term, the extension discussed by G. van der Laan, CrO2 shows a good and qualitative agreement between MAE and the measured magnetic moments. Mentionable in this context is the fact, that orbital moment and TZ-term prefer different easy axis. They nearly cancel out each other, but TZ-term is a bit stronger. This might be the reason why CrO2 changes its magnetic easy axis for thin films, because due to the reduction of nearest neighbours and the therefore enhanced orbital moment in thin films, this unstable disequilibrium is distorted. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The measured spin moment was first of all compared with SQUID data. It shows a qualitative agreement, but it shows not the quantitative same behaviour. This was attributed to two reasons, the element specifity of the XMCD effect and its surface sensitivity. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. This is a clear proof, that both, orbital moment and TZ-term, are generated by a coupling to the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. This was predicted by Bruno and van der Laan and could be proven for the first time. Recapitulating one can say, that in this work the unusual magnetic behaviour, especially the angle dependence of the magnetic moments, was shown a conclusive description of CrO2 by the combination of XAS and XMCD together with the new moment analysis and the use of element specific hysteresis loops. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. This proves the model of G. van der Laan, even verified by the temperature dependence for a wide temperature range. A strong Cr – O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L2,3 and the XMCD effect at O – K edge. The general view shows clearly, that a band structure description can explain the measured dependencies. The intuitional and widely common belief of an ionic binding for CrO2, two electrons at the Cr with a magnetic moment of 2 µB, cannot elucidate especially the temperature dependence of the MAE, which is again good represented by a band structure description. KW - Chromoxid KW - Magnetische Eigenschaft KW - Magnetismus KW - XMCD KW - CrO2 KW - Anisotropieenergie KW - Halbmetall KW - magnetism KW - XMCD KW - CrO2 KW - anisotropy energy KW - half metal Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20141 ER -