TY - THES A1 - Munz, Eberhard T1 - Physiological and metabolical high-resolution MRI of plants T1 - Physiologische und metabolische hochaufgelöste Pflanzen-Magnetresonanzbildgebung N2 - The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied. For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets. The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content. Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds. Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined. Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants. As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. Jäger Jae17, which was performed under my supervision, they find great interest under biologists. The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously. This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods. N2 - Die nicht-invasive Bildgebungstechnik der Magnetresonanz ermöglicht es, funktionelle Prozesse in Pflanzen am lebenden Objekt zu untersuchen. Hierfür wurden im Rahmen dieser Arbeit verschiedene NMR-Bildgebungsmethoden weiterentwickelt und angewendet. Da Pflanzen ein magnetisch sehr inhomogenes Gewebe besitzen, bedingt durch Lufteinschlüsse und das Vorhandensein verschiedenster gelöster Stoffe im Pflanzengewebe, wurden daher hauptsächlich Spin-Echo-Methoden für die Bildgebung verwendet. Um das erste Eindringen des Wassers in den keimenden Raps-Samen bei gleichzeitiger Darstellung des lipid-reichen Gewebes mittels einer 3D-Visualisierung zu lokalisieren, wurde in Kapitel 5 die Technik der verschachtelten, chemisch selektiven Aufnahme von Wasser und Lipid im keimenden Samen verwendet. Durch Verwendung von hochausgelösten MR-Aufnahmen an gekeimten Samen konnte weiterhin in der lipid-reichen Aleuron-Schicht, die sich direkt unter der Samenschale befindet, ein gezielt angelegter Einlass für das Wasser verortet werden. Die in der Biologie lange Zeit verbreitete Diskussion, ob es einen solchen Einlass gibt oder der keimende Samen das Wasser eher wie ein Schwamm von allen Seiten aufsaugt, konnte hierdurch, zumindest für den Raps-Samen, eindeutig beantwortet werden. Weiterhin konnte durch die hoch-aufgelösten Aufnahmen das vaskuläre Gewebe in den Raps-Samen segmentiert und in 3D veranschaulicht werden, es zeigte sich eine mehrfach verzweigte Struktur, die bereits im Samen angelegt ist. Das Wasser folgt hierbei dem vaskulären Gewebe und erweckt hierdurch den Samen schrittweise zum Leben. Dieses Wieder-Erwachen konnte ebenfalls durch die invasive Bildgebung mittels eines Sauerstoff-Sensors nachverfolgt werden. Im nun erwachten Samen selbst beginnt der Lipid-Abbau, anders als zunächst angenommen, nicht in den lipid-haltigen Kotyledonen sondern im von der Samen-Entwicklung verbliebenden Endosperm und in der den Keimling vormals schützenden Aleuron-Schicht. In dieser konnte der Abbau an gekeimten Samen durch hochaufgelöste MR-Aufnahmen nachgewiesen werden. Die in Kapitel 6 vorgeschlagene Methode liefert ein weiteres Merkmal zur Phenotypisiserung von Samen und lipidhaltigen Pflanzenbestandteilen im Allgemeinen. Die Darstellung der Bestandteile ungesättigter Fettsäuren in Pflanzensamen und -Früchten konnte durch gezielte Verwendung von chemisch selektiven Bildgebungstechniken erreicht werden. Durch die Anwendung einer CSI-Sequenz konnten die Fettsäurebestandteile in Oliven in einer 2D-Schicht lokalisiert werden. In Verbindung mit einem jeweils angepassten CHESS-Vorsättigungsmodul Haa85 wurde die hochaufgelöste 3D-Darstellung von gesättigten und ungesättigten Fettsäurebestandteilen in unterschiedlichen Samen erreicht. Rückschlüsse über das Entwicklungsstadium sowie die Sorte der verwendeten Samen können aus den Verhältnis-Karten, die aus den jeweiligen Datensätzen berechnet wurden, gezogen werden. Dass in diesem Fall die Aufbewahrungsmethode zu keiner Degradation der Fettsäurezusammensetzung geführt hat, konnte weiterhin am Beispiel von zwei Sojasamen mit unterschiedlicher Lagerdauer gezeigt werden. Zusätzliche strukturelle Informationen aus dem Inneren trockener Samen sind nun mittels MRT zugänglich. In dieser Arbeit konnte durch die UTE-Sequenz die Bildgebung von Getreidesamen deutlich vorangebracht werden. Die bisherigen Darstellungen der Lipid-Verteilung, aufgenommen mit einer Spin-Echo Sequenz, waren zwar für die Betrachtung des Lipid-Gehalts stets ausreichend, Defekte im stärkehaltigen Endosperm oder Unterschiede in der Stärke-Konzentration innerhalb des Samen blieben mit dieser Technik jedoch stets verborgen. Im direkten Vergleich der mit der bisherigen Technik (Spin-Echo) und der UTE-Bildgebung aufgenommenen Datensätze konnte der Vorteil der Datenaufnahme mit UTE gezeigt werden. Durch die Untersuchung der möglichen Samenbestandteile (Stärke, Proteine, Zucker) in Reinform konnten die zum Signal beitragen Bestandteile als gebundenes Wasser (Restfeuchte) und Stärke identifiziert werden. Die Verwendung bi-exponentiellen Fits and die Messdaten ermöglichte es im Gersten-Samen, zwei zum Signal beitragende Komponenten in getrennten Karten bezüglich ihrer Magnetisierung und Relaxationszeit zu trennen. Der Vergleich mit histologischen Färbungen bestätigte die bisherigen Ergebnisse, somit kann diese Technik zur selektiven Darstellung von Stärke in trockenen Samen verwendet werden. Rückschlüsse auf das Transportverhalten in Pflanzen können durch die in Kapitel 8 vorgestellte Technik gezogen werden. Die zugehörigen Transportgeschwindigkeiten im lebenden Pflanzenobjekt können nun, selbst im Bereich von wenigen $\mu$m/h, bestimmt werden. Diese wurden anhand von berechneten Konzentrationen eines von der Pflanze aufgenommenen MR-Kontrastmittels sowohl in longitudinaler Richtung, also entlang des Leitgewebebündels, als auch in horizontaler Richtung, also aus dem Leitbündel heraus, abgeschätzt werden; Letztere Geschwindigkeit liegt deutlich unter dem Wert der freien Diffusionsgeschwindigkeit des Kontrastmittels. Hierfür wurden durch Anpassung einer dynamischen Kontrast-erhöhenden Bildgebungstechnik (DCE-Imaging, Tof91) die Aufnahmedauer einer für die weiteren Berechnungen benötigen T1-Karte deutlich reduziert. Mittels dieser Karten konnten die lokalen Konzentrationen des Kontrastmittels in Pflanzenstängeln und Schoten der Rapspflanze bestimmt werden. Zahlreiche Fragen in der Pflanzenforschung können nur durch nicht-invasive Techniken wie MRT beantwortet werden. Deswegen wurden, neben den experimentellen Ergebnissen, die mittels dieser Arbeit erreicht wurden, auch weitere NMR Methoden für die Untersuchung von Pflanzen getestet und zur Verfügung gestellt. Als Beispiel seien hier die Untersuchungen zur Bildgebung von magnetischen Austauschprozessen genannt, welche eine Vorarbeit zur möglichen Übertragung con CEST-Experimenten (Chemical Exchange Saturation Transfer) auf das Modell Pflanze liefern. Die Ergebnisse sind in der Bachelor-Arbeit von A. Jäger \cite{jaeger17}, an deren Durchführung ich als Betreuer maßgeblich beteiligt war, dargestellt und finden großes Interesse bei Biologen. Von besonderer Wichtigkeit sind auch die Entwicklungen neuer Technologien, die die Möglichkeiten zur Untersuchung von lebenden Organismen erweitern können. Deswegen habe ich zu der Entwicklung der bislang unveröffentlichten Methode RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]) beigetragen. Durch das Rephasieren der transferierten Magnetisierung können Eigenschaften, die bislang in chemischen "`Austausch"'-Experimenten nicht zur Verfügung stehen, ausgenutzt werden. Mit dieser Methode wird ein positiver Kontrast erzeugt, sie ist deshalb nicht zwingend auf ein Referenz-Experiment angewiesen. Weiterhin kann die Bildphase, welche in klassichen CEST-Experimenten keine Information über die ausgetauschten Protonen enthält, zur eindeutigen Identifizierung mehrerer parallel angeregter Substanzen verwendet werden. KW - Kernspintomografie KW - Pflanzen KW - Pflanzenbildgebung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172518 ER - TY - THES A1 - Kartäusch, Ralf T1 - Spektroskopische Flussmessung an Pflanzen mittels mobilem Magnetresonanztomographen T1 - Spectroscopic flow measurements in plants using a mobile magnetic resonance system N2 - The main objective of this dissertation was the development of a flow sensor which is specialized on flow measurements of plants. Hence, an accessible mobile magnet and the receiver/transfer hardware have been developed. Additionally, software to control the MR-console has been written. The AC-method was advanced to acquire slow flow profiles. This enables acquiring flow in plants. Additionally, in cooperation with the working group “Lipid Motobolism” of the IPK-Gatersleben studies have been carried out to measure the influence of the ear of wheat on the water transport mechanism. Furthermore, a new technique based on the Bloch-Siegert-effect has been developed which reduces the influence of eddy currents. This simplifies flow measurements that suffer heavily from eddy currents. Hardware development An accessible mobile magnet with a field strength of 0.42 T has been build. The field homogeneity is 0.5 ppm in 1 cm³. In comparison to the existing closed magnet system at the chair EP5 this is an improvement of a factor 40. Those enhancements have been achieved by an adjusted design of the magnet which has been optimized by computer simulations. The implementation of ferrite pole shoes reduced the eddy currents by a factor 7 in comparison to the usually used iron pole shoes. Therefore, phase sensitive flow measurements using fast switching magnet field gradients could be carried out. A foldable coil has been refined to achieve an accessible receiver system. This coil has been used as a transmit/receiver unit. Furthermore, the SNR of measurements in thin plant stalks was enhanced by a constructed system that could be directly wrapped around the stalk. Additionally, two systems to reduce noise in plant measurements have been developed. Those systems can reduce the noise by a factor 92. This was necessary because the longish plant stems guides electric noise from outside of the case into the receiver coil. Both noise reduction systems, the electromagnetic shielding and the common mode rejection, removed the noise to the same level. Flow measurement In the present work a refinement of the AC-method [36] enabled for the first time acquiring quantitative flow profiles. Hence, it was possible to measure slow velocity in the range of 200 µm/s. The precondition was the replacement of the sinusoidal gradient profile by a trapezoid gradient shape. Those allowed increasing the slew rate of the gradients and therefore shorten the total duration of the ramp which finally allows higher encoding strengths. Additionally, due to intervals without applied gradients, more efficient RF-pulses can be used and more data points can be acquired in an echo. The measured flow profiles correlated to the simulation results. The accurate flow profiles have been achieved by a new evaluation technique and a phase correction mechanism. The newly developed extension to imaging enabled spatially encoded spectral flow measurements. Therefore, the location of xylem and phloem can be spatially separated. In the measurement of the black alder this becomes apparent. Here the shape of dicotyledonous plants, which is described in chapter 5.1, is visible. Additionally, due to the spatial separation of the flow directions (up/down) qualitative flow measurements are possible. In pixels where opposite flow directions can spatially be resolved the difference between the left and the right side of the flow spectra yields the total flow without static water. Due to the phase corrections technique in combination with the automatically frequency calibration, long term flow measurements were possible. Therefore, the response of plants on influences like changes in the illumination have been observed in measurements over a duration of nine days. Here flow changes below 200 µm/s can be detected. Bloch-Siegert phase encoding In this work a new spatial phase encoding technique (BS-SET) using a B1-gradient in combination with far off-resonant radio frequency pulses has been demonstrated. Based on the Bloch-Siegert Shift an eddy current free B1-gradient was used to encode images and apply flow encoding. The BS-gradient induces a phase shift which depends on B1² using a constant gradient. Therefore, adapted reconstructions have been developed that provide undistorted images using this nonlinear encoding. Alternatively, a B1-gradient has been developed where the profile of the B1-field follows a square root shape. This supplies a linear phase encoding removing the need for an adapted reconstruction and enables using this technique for flow encoding. N2 - Das Ziel der Promotion war die Entwicklung eines Flusssensors mit dem Fokus auf Flussmessungen an Pflanzen. Dazu musste zunächst die Hardware in Form eines räumlich zugänglichen Magneten und einer Sende- und Empfangseinheit entworfen werden. Um die MR-Konsole ansteuern zu können, musste eine Software entwickelt werden. Die AC-Methode wurde für Flussmessungen mit niedrigen Geschwindigkeiten angepasst und die entsprechende Theorie dazu erweitert. Mit dieser weiterentwickelten AC-Methode wurde die Flussmessung an Pflanzen demonstriert. Dafür wurden im Rahmen einer Kooperation mit der Arbeitsgruppe „Lipid Motobolism“ der IPK-Gatersleben Flussstudien an Weizenpflanzen durchgeführt. Darüber hinaus wurde in dieser Arbeit eine neue Technik zur Wirbelstromvermeidung bei Permanentmagneten entwickelt, um Problemen mit diesen bei Flussmessungen entgegenzuwirken. Sensorbau Es wurde ein zugänglicher, mobiler Magnet mit einer Feldstärke von 0,42 T gebaut. Die Feldhomogenität beträgt 0,5 ppm in 1 cm³. Im Vergleich zu dem am Lehrstuhl der EP5 bestehenden, geschlossenen, mobilen Magnetsystem erreicht das in dieser Arbeit gebaute System ein 40fach homogeneres Magnetfeld. Erzielt wurden diese Verbesserungen durch ein spezielles Design, welches durch Computersimulationen sukzessiv optimiert wurde. Durch angepasste Polschuhe konnte darüber hinaus die Induktion von Wirbelströmen im Mittel um einen Faktor 7 reduziert werden, wodurch phasensensitive Flussmessungen ermöglicht wurden. Um die Zugänglichkeit zu dem Innenraum der HF-Spulen zu gewährleisten, wurde eine Klappspule weiterentwickelt und als Sende- und Empfangseinheit für den Tomographen gebaut. Ferner wurde ein System gebaut, dass direkt um die Pflanze gewickelt werden kann und sich somit für besonders dünne Pflanzenstängel eignet. Weiterhin wurden zwei Systeme zur Rauschunterdrückung für die Messungen an Pflanzen entwickelt. Dadurch konnte das Rauschen um einen Faktor 92 gesenkt werden. Dies war notwendig, weil die länglichen Pflanzen durch ihre Ausdehnung über das Gehäuse hinweg ein Rauschen in die Empfangsspule induziert haben. Die beiden Rauschunterdrückungssysteme, die elektrische Schirmung und die Gleichtaktunterdrückung, entfernten das Rauschen dabei gleichermaßen. Flussmessung Die im Rahmen der Arbeit erfolgte Weiterentwicklung der AC-Methode [102] erlaubte es erstmals mit der Methode quantitative Flussprofile aufzunehmen. In Folge dessen war es außerdem möglich Geschwindigkeiten unter 200 µm/s zu messen. Die Vorrausetzung dafür war die Implementierung von trapezförmigen Gradienten, welche kürzere Rampzeiten und eine stärkere Kodierung zulassen. Dadurch sind außerdem Intervalle ohne Gradienten realisierbar, die effizientere Refokussierungspulse und die Aufnahme mehrerer Datenpunkte ermöglichen. Die zu erwartenden und simulierten Flussprofile entsprachen den gemessenen Profilen durch die Verwendung einer neuen Auswertungstechnik. Die neu entwickelte Erweiterung zur Bildgebung ermöglicht die ortsaufgelöste, spektroskopische Flussmessung und so können die Bereiche von Xylem und Phloem voneinander getrennt werden. Dies wurde durch Messungen einer Schwarzerle gezeigt, bei der die im Abschnitt 5.1 beschriebene Struktur dikotyler Pflanzen aufgelöst werden konnte. Zusätzlich können qualitativ genauere Aussagen über die Flussgeschwindigkeit getroffen werden. Bei Messungen an Pflanzen konnte mit der optimierten AC-Methode die Flussänderungen aufgrund äußerer Einflüsse, wie der Beleuchtung, beobachtet werden. Langzeitmessungen über 9 Tage zeigten einen der Beleuchtung folgenden Flussverlauf - auch bei sehr geringen mittleren Flussänderungen von unter 200 µm/s. Bloch-Siegert Phasenkodierung Um eine Phasenkodierung ohne die Induktion von Wirbelströmen zu erhalten, wurde im Rahmen der Arbeit die ortsabhängige Phasenkodierung mittels B1-Gradienten entwickelt. Diese Technik basiert auf HF-Wechselfeldern und benutzt den sogenannten BS-Shift um einen B1-feldabhängigen Frequenzshift zu induzieren. Zwei Rekonstruktionstechniken wurden entwickelt, um die Rekonstruktion von entzerrten Bildern zu ermöglichen. Dies war notwendig, da die Kodierung mittels BS-Shift von B1² abhängt. Infolgedessen wird bei der Verwendung von konstanten HF-Gradienten eine vom Quadrat des Ortes abhängige Phasenkodierung induziert. Als Alternative zu diesem Verfahren wurde ein Gradient entwickelt, der einen wurzelförmigen Feldverlauf hat und somit die lineare Kodierung ohne angepasste Rekonstruktionstechniken ermöglicht. KW - Kernspintomografie KW - Wassertransport KW - Spektroskopische Flussmessung KW - AC Gradients KW - Pflanzen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125820 ER -