TY - THES A1 - Schäfer, Nadine T1 - Eine vergleichende biophysikalische Analyse von Hitze- und Trockentoleranzstrategien der Wüstenpflanze Phoenix dactylifera und Nutzpflanzen der gemäßigten Klimazonen T1 - A comparative biophysical analysis of heat and drought tolerance strategies of the desert plant Phoenix dactylifera and crops of temperate climates N2 - Der Klimawandel geht einher mit einem Anstieg der globalen Durchschnittstemperatur und einem dadurch induzierten Wassermangel. Diese beiden abiotischen Stressfaktoren führen zu einer Reduzierung der landwirtschaftlichen Erträge und Biomassen von Kulturpflanzen. Daher ist eine Anpassung der betroffenen Pflanzenarten an das sich ändernde Klima erforderlich, um die landwirtschaftliche Produktivität in Zukunft aufrechtzuerhalten. Gegenwärtig ist unser Wissen über Strategien zur Toleranz gegenüber abiotischem Stress sowie über Genom- und Transkriptionsinformationen auf wenige Modellorganismen von Angiospermen beschränkt, so dass diese Informationen die Basis für die Forschung an Trockenheit und Hitzestress darstellen. Die Untersuchung der Stressadaption innerhalb und zwischen verschiedenen Pflanzengattungen ist von besonderer Relevanz. Vor diesem Hintergrund habe ich im Rahmen meiner Doktorarbeit die Überlebensstrategie der extremophilen Wüstenpflanze Phoenix dactylifera (Dattelpalme) im Vergleich zu zwei Mesophilen, der Kulturpflanze Hordeum vulgare (Gerste) und der Modellpflanze Arabidopsis thaliana, untersucht. Dattelpalmen sind nicht sukkulente Wüstenpflanzen, die auch unter extremen Trocken- und Hitzebedingungen in den Wüsten der Arabischen Halbinsel wachsen und ertragreich Früchte produzieren. In Phoenix dactylifera ist bislang weder die Molekularbiologie und –physiologie der Schließzellen, vor allem der Anionenkanäle, verstanden, noch wurde der Hitzeschutz ihrer Zuckertransportproteine untersucht. Um die stomatäre Reaktion auf das Trockenstresshormon ABA (Abscisinsäure) zu verstehen, klonierten wir die Hauptkomponenten des schnellen ABA-Signalwegs von Schließzellen und analysierten den Öffnungsmechanismus der Anionenkanäle aus der Dattelpalme und der Gerste vergleichend zu dem Anionenkanal aus Arabidopsis im heterologen Expressionssystem der Xenopus Oozyten. Beide monokotyledonen Pflanzenarten (Gerste und Dattelpalme) besitzen stomatäre Komplexe, die aus Schließzellen und Nebenzellen bestehen. Dies unterscheidet die Monokotyledonen von den Dikotyledonen, die normalerweise Stomakomplexe aufweisen, die nur aus einem Paar Schließzellen gebildet werden. Interessanterweise schlossen sich Dattelpalmen- und Gerstenstomata als Reaktion auf das Trockenstresshormon ABA nur in Gegenwart von extrazellulärem Nitrat. Der heterolog-exprimierte Anionenkanal PdSLAC1 wird durch die ABA-Kinase PdOST1 aktiviert und diese Aktivierung wird durch die Koexpression der PP2C-Phosphatase ABI1 gehemmt. Daher wird PdSLAC1 wie seine Orthologen aus Gerste und Arabidopsis durch ein ABA-abhängiges Phosphorylierungs-/Dephosphorylierungsnetzwerk gesteuert. PdOST1 aktivierte den Anionenkanal PdSLAC1 jedoch nur in Gegenwart von extrazellulärem Nitrat - eine elektrische Eigenschaft, die PdSLAC1 mit HvSLAC1 der Gerste gemein hat, sich jedoch von AtSLAC1 unterscheidet. Angesichts der Tatsache, dass in Gegenwart von Nitrat ABA den Stomaschluss verstärkt und beschleunigt, deuten unsere Ergebnisse darauf hin, dass bei Dattelpalmen und Gerste Nitrat als Ligand zum Öffnen von SLAC1 benötigt wird. Dies initiiert die Depolarisation der Schließzellen und leitet schließlich den Stomaschluss ein, um den Wasserverlust der Pflanzen unter Trockenstressbedingungen zu minimieren. Um die monokotyledone spezifische Nitratabhängigkeit von SLAC1 zu verstehen, führten wir ortsgerichtete Mutagenesestudien auf Basis eines 3D-Modells durch, welche zudem vergleichende Studien an Chimären von Monokotylen- und Dikotylen-SLAC1 Anionenkanälen umfassten. Unsere Struktur-Funktions-Forschung identifizierte zwei Aminosäurenreste auf der Transmembrandomäne 3 (TMD3), die eine wesentliche Rolle bei der Nitrat-abhängigen Regulierung von SLAC1 Anionenkanälen monokotyledoner Pflanzen spielen. Die phylogenetische Analyse ergab schließlich, dass während der Evolution die für Monokotlyedonen spezifische Nitrat-abhängige Regulierung erst nach der Trennung in Monokotyledonen und Dikotyledonen auftrat. Durch die Nitrat-sensitive Regulierung von SLAC1 Anionenkanälen beruht der schnelle Stomaschluss von Monokotyledonen auf dem Zusammenspiel des Trockenstresshormons ABA und dem Stickstoffhaushalt der Pflanze. Da der ABA-Signalweg von Arabidopsis umfassend untersucht wurde, könnte die Entdeckung des monokotyledonen spezifischen Nitrat-abhängigen Motivs in TMD3 nun als Stellschraube zur Verbesserung der Züchtungsprogramme dikotyledoner Nutzpflanzen dienen. Wüstenpflanzen leiden nicht nur unter Trockenheit, sondern auch unter extremem Hitzestress. Wir konnten zeigen, dass hitzebelastete Dattelpalmen große Mengen der flüchtigen Kohlenwasserstoffverbindung Isopren (2-Methyl-1,3-Butadien) produzieren und emittieren. Durch die vorübergehende Freisetzung von Isopren kann die Pflanze die Photosynthese auch bei extremen Temperaturen betreiben. Es ist jedoch nicht bekannt, ob und wie Isopren in Hitzeperioden auch Transportprozesse durch biologische Membranen schützt. Um den Einfluss von Isopren auf den Transmembrantransport zu untersuchen, identifizierten und klonierten wir den Protonen-gekoppelten Saccharosetransporter 1 (PdSUT1) der Dattelpalme und verglichen seine elektrischen Eigenschaften mit ZmSUT1 (Zea mays Sucrose Transporter 1) im heterologen Expressionssystem der Xenopus Oozyten. Interessanterweise waren das elektrische Verhalten, die kinetischen Eigenschaften und die Temperaturabhängigkeit beider Transporter ähnlich. Die Anwendung von Isopren veränderte jedoch massiv die Affinität von ZmSUT1 zu seinem Substrat Saccharose, während die Affinität des Transporters der Dattelpalme nur schwach beeinflusst wurde. Es wird angenommen, dass die Membranfluidität unter Hitzestress erniedrigt ist, welches durch Interkalierung von Isopren mit den Fettsäureketten biologischer Membrane einhergeht. Dies und die Unempfindlichkeit von PdSUT1 gegenüber Isopren deuten darauf hin, dass der Saccharosetransporter PdSUT1 aus der Wüstenpflanze auch bei hohen Temperaturen Saccharose mit hoher Affinität transportiert. Zukünftige Studien müssen nun klären, ob der flüchtige Kohlenwasserstoff Isopren einen direkten Einfluss auf den Transporter selbst hat oder Isopren in die Membran integriert und damit indirekt die Eigenschaften von Transportproteinen beeinflusst. Unabhängig von der Wirkungsweise von Isopren sollte nicht unerwähnt bleiben, dass PdSUT1 gegenüber Isopren weniger empfindlich ist als sein Ortholog ZmSUT1 aus Mais. Dies kann auf eine Anpassung des Saccharosetransporters an die extremen Hitzeperioden und die damit einhergehende Isoprenemission von Dattelpalmen zurückzuführen sein. N2 - Low water availability and heat stress present major barriers to achievíng high biomass and full yield potential in crops. Global climate change is accompanied by a subtle increase in the severity of these abiotic stresses. Thus, the adaptation of crop species to the changing climate is required in order to sustain agricultural productivity in the future. Currently, our knowledge of plant strategies for abiotic stress tolerance as well as genomic and transcriptional information is limited to a few model angiosperms, providing a starting point for the understanding of responses to drought and/or heat stress, within and across species. In the framework of my PhD thesis, we followed a different strategy to learn about abiotic stress tolerance: we studied the survival strategy of the extremophilic desert plant Phoenix dactylifera (date palm) in comparison to the crop Hordeum vulgare (barley) and the model plant Arabidopsis thaliana, both from temperate zones. Date palms grow and produce fruits even under extreme drought and heat conditions in the deserts of the Arabian Peninsula. Neither the molecular biology and physiology of guard cells nor the heat protection of transport protein mediated sugar and ion transport processes have been studied so far in this non-succulent desert plant, Phoenix dactylifera. To understand the stomatal response to the water stress phytohormone ABA (abscisic acid), we cloned the major components for guard cell fast abscisic acid signaling and analysed the anion channel opening mechanism of the date palm side by side with barley and Arabidopsis in Xenopus oocytes. Both monocot plant species (barley and date palm) possess stomatal complexes consisting of guard cells and subsidiary cells. This distinguishes monocot species from dicots, which usually exhibit stomatal complexes formed by a pair of guard cells only. Interestingly, date palm and barley stomata closed in response to the drought stress hormone ABA only in the presence of extracellular nitrate. Heterologously expressed Phoenix SLAC1-type anion channel PdSLAC1 is activated by the ABA kinase PdOST1 and this activation is inhibited by the coexpression of PP2C phosphatase ABI1 – thus like its counterparts from barley and Arabidopsis, PdSLAC1 is controlled by an ABA-dependent phosphorylation/dephosphorylation network. However, PdOST1 did activate the desert plant anion channel PdSLAC1 only in the presence of extracellular nitrate – an electrical property that PdSLAC1 shares with the barley SLAC1 but distinguishes both monocot SLAC1 channels from AtSLAC1. Given that, in the presence of nitrate, ABA enhanced and accelerated stomatal closure, our findings indicate that the guard cell osmotic motor driving stomatal closure in date palm and barley uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and finally stomatal closure to prevent plant wilting under drought stress conditions. To understand the monocot-specific SLAC1 nitrate dependency, we performed a 3D-model- based site-directed mutagenesis study including chimeric channels between monocot and dicot SLAC1 anion channels. Our structure-function research identified two residues on transmembrane domain 3 (TMD3) that play an essential role in nitrate-dependent gating of monocot SLAC1-type anion channels. Phylogenetic analysis finally revealed that during evolution the monocot specific nitrate-dependent gating was established after the split between monocots and dicots. Thus, the success of monocot species may in part rely on the integration of drought signals (ABA) and the nitrogen nutrition status of the plant via nitrate-sensitive gating of SLAC1 anion channels. Since the Arabidopsis ABA-signaling pathway has been extensively studied, the discovery of the monocot-specific nitrate dependent motif on TMD3 could now serve as a set screw to improve the breeding programs of dicot agricultural crops. Desert plants not only suffer from drought but also from extreme heat stress. We could show that heat-stressed date palms produce and emit high amounts of the volatile hydrocarbon compound isoprene (2-Methyl-1,3-Butadien). The temporary release of isoprene allows the plant to perform photosynthesis even under extreme temperatures. However, it is not known whether and how isoprene also protects transport processes across biological membranes in periods of heat. To study the influence of isoprene on transmembrane transport, we identified and cloned the date palm proton-coupled sucrose transporter 1 (PdSUT1) and compared its electrical properties with ZmSUT1 (Zea mays Sucrose Transporter 1) in the heterologous expression system of Xenopus oocytes. Interestingly, the electrical behavior, the kinetic properties and the temperature dependence of both carriers were similar. However, the response to isoprene application massively altered the affinity of ZmSUT1 to its substrate sucrose while the affinity of the date palm transporter was only weakly affected. The intercalation of isoprene with the fatty acid chains of biological membranes is believed to decrease the membrane fluidity under heat stress. This and the insensitivity of PdSUT1 towards isoprene may indicate that the desert plant sucrose transporter PdSUT1 transports sucrose with high affinity even at high temperatures. Future studies must now clarify whether the volatile hydrocarbon isoprene has a direct influence on the carrier itself or isoprene integrates into the membrane and thus indirectly influences the properties of transport proteins. Regardless of the mode of action of isoprene, it remains to be noted that PdSUT1 is less sensitive to isoprene than its orthologue from maize. This may be an adaptation of the sucrose carrier to the extreme heat periods and the accompanying isoprene emission from date palms. KW - Dattelpalme KW - Gerste KW - Elektrophysiologie KW - Hitzestress KW - Schließzelle KW - Anionenkanal KW - Zuckertransporter KW - SLAC1 KW - SUT1 KW - Signaltransduktion KW - ZmSUT1 KW - Phoenix dactylifera KW - Hordeum vulgare KW - Zea mays Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186491 ER - TY - THES A1 - Hürter, Anna-Lena T1 - Funktion von Anionenkanälen bei der Entwicklung der Wurzelknöllchen- und Arbuskulären Mykorrhiza-Symbiose in \(Medicago\) \(truncatula\) T1 - Role of \(Medicago\) \(truncatula\) anion channels in the development of Arbuscular Mycorrhiza and Root Nodule Symbiosis N2 - Bei der arbuskulären Myorrhiza-Symbiose (AM) und der Wurzelknöllchen-Symbiose (RNS) handelt es sich um symbiotische Interaktionen, die einen großen Vorteil für Pflanzenwachstum und kultivierung mit sich bringen. Während bei der AM Pilze die Pflanze mit verschiedenen Nährstoffen aus dem Boden versorgen, stellen die in den Wurzelknöllchen lokalisierten Rhizobien der Pflanze fixierte Stickstoffverbindungen zur Verfügung. Folglich ist es von großem Interesse, die Entwicklung dieser Symbiosen im Detail zu verstehen. Für die Erkennung der arbuskulären Mykorrhiza-Pilze und der Stickstoff-fixierenden Rhizobien durch die Pflanze sind lösliche symbiotische Signalmoleküle essentiell, die zu der Gruppe der Lipochitinoligosaccharide (LCOs) gehören. Während der Entwicklung der AM und der RNS erkennen die Pflanzenwurzeln diese LCOs über Lysin-Motiv-Rezeptor-ähnliche Kinasen der Plasmamembran. Eine der ersten Antworten der Wurzelzellen auf Nod-LCOs ist eine Depolarisierung des Membranpotentials. An dieser Antwort sind mit großer Wahrscheinlichkeit Anionenkanäle der Plasmamembran beteiligt, da sie auch bei Depolarisierungen als Antwort auf andere Stimuli bzw. Stressantworten involviert sind. In Arabidopsis stellt die S-Typ-Familie eine bedeutende Gruppe von Anionenkanälen dar, die von Calcium-abhängigen Kinasen (CPKs) aktiviert werden. Da Nod-LCOs repetitive Veränderungen des zytosolischen Calcium-Levels induzieren, wurde in dieser Arbeit die Hypothese aufgestellt, dass Calcium-Signale CPKs aktivieren. CPKs sorgen im Gegenzug für die Stimulation von S-Typ-Anionenkanälen in Wurzelzellen. Die Änderungen des Membranpotentials in M. truncatula-Wurzelhaarzellen als Antwort auf Nod- und Myc-LCOs wurden mittels intrazellulärer Mikroelektroden analysiert. Es wurde gezeigt, dass Nod-LCOs in M. truncatula-Wurzelhaarzellen eine Depolarisierung des Membranpotentials induzieren. Doch Wurzelhaarzellen reagieren nicht nur auf Nod-LCOs. So konnte in dieser Studie zum ersten Mal eine Depolarisierung als Antwort auf sulfatisierte Myc-LCOs nachgewiesen werden. Eine zweite Gruppe von Myc-LCOs, denen die Sulfatgruppe fehlt, löste keine Reaktion des Membranpotentials aus. Diese Daten deuten darauf hin, dass Wurzelhaarzellen für die Erkennung von sulfatisierten LCOs von symbiotischen Pilzen und Bakterien dasselbe Perzeptionssystem nutzen. Diese Schlussfolgerung wird von Experimenten unterstützt, in denen vor der Stimulation durch Nod-LCOs ein sulfatisierter Myc-LCO hinzugegeben wurde. Diese sukzessive Zugabe von zwei Stimuli führte zu einer einzigen Depolarisierung. Die sulfatisierten Myc-LCOs unterdrückten die Antwort des Membranpotentials auf Nod-LCOs. Die Beziehung zwischen Nod-LCO-induzierten zytosolischen Calcium-Signalen und Änderungen des Membranpotentials wurde mit einer Kombination aus intrazellulären Mikroelektroden und Imaging eines Calcium-sensitiven Fluoreszenzfarbstoffs analysiert. In Messungen der zytosolischen Calcium-Konzentration wurde keine transiente Zunahme innerhalb der ersten vier Minuten nach der Applikation der Nod-LCOs beobachtet. Die durch Nod-LCOs induzierten Depolarisierungen traten früher auf und erreichten ihr Maximum normalerweise nach drei Minuten. Demnach geht die Depolarisierung des Membranpotentials den zytosolischen Calcium-Signalen voraus. Diese Beobachtung wurde von simultanen Messungen beider Antworten bestätigt. Um der Möglichkeit einer Beteiligung von S-Typ-Anionenkanälen an der LCO-abhängigen Depolarisierung nachzugehen, wurden zwei in den Wurzeln exprimierte M. truncatula-Orthologe der AtSLAC1-Anionenkanal-Familie identifiziert. Die klonierten Anionenkanäle, MtSLAC1, MtSLAH2-3A und MtSLAH2-3B zeigten bei der Untersuchung in Xenopus-Oozyten die typischen Charakteristika von S-Typ-Anionenkanälen. So konnte gezeigt werden, dass MtSLAH2-3A und MtSLAH2-3B eine Proteinkinase sowie externes Nitrat zur Aktivierung benötigen. Außerdem zeichnen sie sich durch eine sehr viel höhere Permeabilität für Nitrat im Vergleich zu Chlorid aus. Ähnlich wie bei AtSLAH3 macht eine Koexpression mit AtSLAH1 genau wie eine intrazelluläre Azidifikation MtSLAH2-3A und MtSLAH2-3B zu Anionenkanälen, die unabhängig von externem Nitrat und einer Phosphorylierung durch eine Proteinkinase aktiv sind. Weil S-Typ-Anionenkanäle eine hohe Permeabilität für Nitrat aufweisen, wurde der Einfluss von Änderungen der extrazellulären Anionenkonzentration auf die Nod-LCO-induzierte Depolarisierung analysiert. Es stellte sich heraus, dass eine Verringerung der extrazellulären Nitratkonzentration die Antwort beschleunigt. Eine Erhöhung der extrazellulären Chlorid- und Sulfatkonzentration hingegen führte zu einer Verstärkung der Depolarisierung. Diese Beobachtung spricht dafür, dass andere Anionenkanal-Typen wie ALMT-Kanäle an der Depolarisierung des Membranpotentials durch LCOs beteiligt sind. Die Daten dieser Arbeit zeigen eine Abhängigkeit der Nod-LCO-induzierten Änderungen des Membranpotentials vom M. truncatula-Genotyp. Neben Nod-LCOs lösen auch sulfatisierte Myc-LCOs eine Depolarisierung des Membranpotentials aus. Vermutlich werden sulfatisierte Nod- und Myc-LCOs von demselben Rezeptorsystem erkannt. Die Nod-LCO-induzierte Depolarisierung ist unabhängig von Änderungen des zytosolischen Calcium-Levels. Folglich sind in die Depolarisierung keine S-Typ-Anionenkanäle involviert, die ausschließlich durch Calcium-abhängige Protein-Kinasen aktiviert werden. Interessanterweise lassen sich die MtSLAH2-3-Anionenkanäle aus M. truncatula im Gegensatz zu AtSLAH3 von Calcium-unabhängigen SnRK2/OST1-Proteinkinasen aktivieren. Dies ermöglicht die Aktivierung der MtSLAH2-3-Anionenkanäle in Abwesenheit eines Calcium-Signals. In weiterführenden Studien sollten die Genexpressionsprofile von Calcium-unabhängigen Proteinkinasen wie SnRK2 und S-Typ-Anionenkanälen aus M. truncatula sowie deren Interaktionen untersucht werden. So könnte eine Aussage darüber getroffen werden, ob diese Proteinkinasen die Anionenkanäle MtSLAH2-3 Nod-LCO-spezifisch aktivieren. Außerdem wäre es von großem Interesse, verschiedene M. truncatula-Mutanten zu untersuchen, denen Gene für MtSLAH2-3A, MtSLAH2-3B und R-Typ-Anionenkanäle fehlen. Diese Experimente könnten zur Identifizierung von Genen führen, die an der frühen Entwicklung der Symbiose beteiligt sind und erklären, warum nur eine kleine Gruppe von Pflanzen dazu in der Lage ist, eine RNS einzugehen, während die AM im Pflanzenreich weit verbreitet ist. N2 - Arbuscular Mycorrhiza (AM) and Root Nodule Symbiosis (RNS) are symbiotic interactions with a high benefit for plant growth and crop production. In the soil, AM fungi supply the plant with a broad range of nutrients, whereas the rhizobium bacteria in the root nodules provide fixed nitrogen sources. Thus, it is of great interest to understand the developmental process of these symbiotic interactions. For recognition of AM fungi and nitrogen-fixing bacteria by plants, diffusible symbiotic signals are essential, which belong to the group of lipochitinoligosaccharides (LCOs). During the development of AM and RNS, plant roots sense these LCOs with pairs of lysin motiv domain receptor-like kinases that are located in the plasma membrane. One of the earliest Nod-LCO-triggered responses of root cells represents the depolarization of the plasma membrane. It is likely that plasma membrane anion channels are essential for this reaction, as these channels are required for depolarization in response to a number of other stimuli/stress responses. In Arabidopsis, the S-type family is a prominent group of anion channels that are activated by calcium-dependent Protein Kinases (CPKs). As Nod-LCOs can trigger repetitive elevations of the cytosolic calcium level, we hypothesized that calcium signals activate CPKs, which in turn stimulate S-type anion channels in root cells. The membrane potential changes of M. truncatula root hair cells in response to Nod- and Myc-LCOs were analyzed by using intracellular micro electrodes. In accordance with previous studies in M. sativa, Nod-LCOs evoked a membrane depolarization in root hairs cells of M. truncatula. Root hair cells not only were sensitive to Nod-LCOs, but for the first time a depolarization response was also shown in response to sulphated Myc-LCOs. However, a second group of Myc-LCO-signals, which lack the sulfate group, did not initiate any reaction of the membrane potential. These data thus suggest that root hair cells use the same perception system to sense sulfated LCOs of symbiotic fungi and bacteria. This conclusion was supported by experiments in which a sulfated Myc-LCO was applied, prior to stimulation with Nod LCOs. This successive application of two stimuli resulted only in a single transient depolarization, as sulfated Myc-LCOs repressed plasma membrane responses to Nod-LCOs. The relations between Nod-LCO-induced cytosolic calcium signals and membrane potential changes were studied with a combination of intracellular micro electrodes and calcium sensitive reporter dye imaging. In measurements of the cytosolic calcium concentration the first transient increase was not observed within four minutes after application of Nod-LCOs. Nod-LCO-induced depolarizations occurred earlier and normally peaked after three minutes. In contrast to current models as well as the initial hypothesis of this project, the membrane depolarization thus precedes the cytosolic calcium signals, which was confirmed by simultaneous measurement of both responses. As S-type anion channels are good candidates for the induction of the LCO-dependent depolarization, we indentified two root-expressed M. truncatula orthologues of AtSLAC1-family. The cloned S-type anion channels, MtSLAC1, MtSLAH2-3A and MtSLAH2-3B showed typical characteristics of S-type anion channels, when studied in Xenopus oocytes. Thereby we could show that both M. truncatula anion channels, MtSLAH2-3A and MtSLAH2-3B, need a protein kinase and external nitrate for activation. They are characterized by a much higher permeability for nitrate compared to chloride. Similarly, to AtSLAH3 coexpression with AtSLAH1 or intracellular acidification rendered MtSLAH2-3A/B independent from phosphorylation via protein kinases and external nitrate. Because S-type anion channels show a high permeability for nitrate, we tested the influence of changes in the extracellular anion concentration on the Nod-LCO induced depolarization. It turned out that the response was accelerated when the concentration gradient for nitrate was decreased. However, increasing the extracellular chloride and sulfate concentrations also enhanced the magnitude of the depolarization, which indicates that other types of anion channels, such as ALMT channels may contribute to the LCO-triggered depolarization of root hairs. The data generated in this project show that the Nod-LCO induced membrane potential change is strongly dependent on the genotype of M. truncatula. This early response in the recognition of symbiotic microorganisms is also induced by sulfated Myc-LCOs, which seem to be perceived via the same receptor system as Nod-LCOs. In contrast to our expectations, the depolarization response to Nod-LCOs is independent of changes in the cytosolic calcium level. Consequently, S-type anion channels, activated solely by calcium-dependent protein kinases are not involved in this response. Interestingly, in contrast to the Arabidopsis SLAH3, the SLAH2-3s from M. truncatula are activated via calcium-independent SnRK2/OST1-like kinases which would allow the activation of the channels even in the absence of calcium transients. Thus, in future studies the expression profile and interaction of calcium-independent protein kinases like SnRK2s and S-type anion channels in M. truncatula should be determined to investigate whether these proteins are capable of activating MtSLAH2-3A/B in a Nod-LCO-specific manner. Moreover, the further analysis of M. truncatula mutants that lack MtSLAH2-3A/B as well as M. truncatula R-type anion channels will be of great interest. These experiments can thus lead to the identification of genes that are involved in early symbiosis-related events, which may explain why only a small group of plants is able to develop root nodules, whereas the interaction with mycorrhiza is found for a large variety of plant species. KW - Schneckenklee KW - Wurzelknöllchen KW - Mykorrhiza KW - Depolarisation KW - Membranpotential KW - Wurzelknöllchensymbiose KW - Arbuscular Mycorrhiza KW - S-Typ-Anionenkanäle KW - Membrandepolarisierung KW - Calcium-Oszillationen KW - Root Nodule Symbiosis KW - S-Type-Anionchannels KW - Membrane depolarisation KW - calcium oscillations KW - Anionentranslokator KW - VA-Mykorrhiza KW - Arbuskuläre Mykorrhiza KW - Anionenkanal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158419 ER - TY - THES A1 - Imes, Dennis T1 - Aufklärung der molekularen Struktur und Funktion des R-Typ Anionenkanals QUAC1 in Schließzellen T1 - Molecular structure and function analyses of the R-type anion channel QUAC1 in guard cells N2 - Zum Gasaustausch mit Ihrer Umgebung besitzen höhere Pflanzen stomatäre Komplexe. Die Turgor-getrieben Atmungsöffnungen in der Epidermis der Blätter werden von zwei Schließzellen umsäumt. Um bei Trockenheit einen exzessiven Verlust von Wasser zu verhindern, synthetisieren/importieren Schließzellen das Stresshormon ABA (Abszisinsäure), das über eine schnelle ABA-Signalkaskade plasmamembrangebundene Ionenkanäle steuert. Dabei wird der Stomaschluss durch die Aktivität von R-(rapid) und S-(slow)Typ Anionenkanälen initiiert. Obwohl die R- und S-Typ Anionenströme in Schließzellen seit Jahrzehnten bekannt waren, konnte erst kürzlich das Gen identifiziert werden, das für den S-Typ Anionenkanal (SLAC1, Slow activating Anion Channel 1) kodiert. Daraufhin wurde schnell der Zusammenhang zwischen dem Stresshormon ABA, der ABA-Signalkette und der Aktivität des SLAC1 Anionenkanals im heterologen Expressionssystem der X. laevis Oozyten als auch in Schließzellprotoplasten aufgeklärt. Es konnte gezeigt werden, dass ABA durch einen zytosolischen Rezeptor/Phosphatasekomplex (RCAR1/ABI1) erkannt wird und die Aktivität von kalziumabhängigen Kinasen (CPK-Familie) sowie kalziumunabhängigen Kinasen der SnRK2-Familie (OST1) steuert. In Anwesenheit von ABA phosphorylieren diese Kinasen SLAC1 und sorgen so für die Aktivierung von Anionenströmen und damit für die Initiierung des Stomaschlusses. Die genetische Herkunft der ABA-induzierten R-Typ Ströme in Schließzellen war zu Beginn der vorliegenden Arbeit noch nicht bekannt. R-Typ Ströme zeichnen sich durch eine strikte Spannungsabhängigkeit und sehr schnellen Aktivierungs- sowie Deaktivierungskinetiken aus. Die Charakterisierung von Verlustmutanten des Schließzell-exprimierten Gens ALMT12 (Aluminium-aktivierter Malattransporter 12) konnte in Zusammenarbeit mit der Arbeitsgruppe Martinoia (Zürich) erste Hinweise auf die Beteiligung dieses Gens an der Stomabewegung demonstrieren. Anschließende Patch-Clamp Untersuchungen an Schließzellprotoplasten aus Wildtyppflanzen und ALMT12-Verlustmutanten zeigten, dass ALMT12 für die Malat-aktivierte R-Typ Anionenstromkomponente verantwortlich ist. Deshalb wurde der Anionenkanal QUAC1 (Quickly activating Anion Channel 1) benannt - in Anlehnung an die Benennung des Anionenkanals SLAC1. Mit der Identifizierung von QUAC1 in planta war es nun meine Aufgabe, die elektrischen Eigenschaften von ALMT12/QUAC1 und dessen Aktivitätskontrolle durch die ABA-Signalkaskade im heterologen Expressionssystem der Xenopus Oozyten zu untersuchen. Protein-Protein Interaktionsstudien mit der Hilfe der Bimolekularen Fluoreszenz-Technik, sowie die Beobachtung von markant erhöhten QUAC1 Anionenströmen in Anwesenheit der SnRK2 Kinase OST1 und den Calcium-abhängigen Kinasen CPK2 und CPK20, ließen den Schluss zu, dass QUAC1, ebenso wie SLAC1, unter der Kontrolle des schnellen ABA-Signalwegs steht. Eine zusätzliche Expression des negativen Regulators ABI1 unterdrückte die aktivierenden Eigenschaften der QUAC1-aktivierenden Kinasen, was die Hypothese der Koregulation von S- und R-Typ Anionenkanälen durch die gleiche ABA-Signalkaskade weiter unterstützt. Zur weiteren Aufklärung der elektrischen Eigenschaften von QUAC1 wurden tiefgreifende elektrophysiologische Untersuchungen mit der Zwei-Elektroden-Spannungsklemmen Technik durchgeführt. Durch die Wahl von geschickten Spannungsprotokollen konnte sowohl die schnelle Aktivierungskinetik als auch die schnelle Deaktivierungskinetik von QUAC1 bestimmt und quantifiziert werden. Diese Stromantworten waren sehr ähnlich zu den R-Typ Strömen, die man von Patch-Clamp Untersuchungen an Schließzellprotoplasten kannte, was ein weiteres Indiz dafür war, dass es sich bei QUAC1 tatsächlich um eine Komponente des R-Typ Kanals aus Schließzellen handelt. Weiterführende Untersuchungen bezüglich der Spannungsabhängigkeit und der Selektivität von QUAC1 charakterisierten das Protein als einen Depolarisations-aktivierten Anionenkanal mit einer starken Präferenz für Dicarbonsäuren wie Malat und Fumarat. Zudem konnte auch eine Leitfähigkeit für Sulfat und Chlorid nachgewiesen werden. Interessanterweise erwies sich Malat nicht nur als ein permeierendes Ion, sondern auch als ein regulierendes Ion, welches das spannungsabhängige Schalten von QUAC1 maßgeblich beeinflusst. Extrazelluläres Malat verschob die Offenwahrscheinlichkeit von QUAC1 sehr stark zu negativeren Membranspannungen, so dass der Anionenkanal bereits bei typischen Ruhespannungen von Schließzellen (ca. -150 mV) aktiviert werden konnte. Eine Beladung von QUAC1-exprimierender Oozyten mit Malat bewirkte zum einen höhere Anioneneffluxströme, aber auch eine Verschiebung der spannungsabhängigen Offenwahrscheinlichkeit zu negativeren Membranpotentialen. Struktur-Funktionsanalysen sollten die umstrittene Topologie von ALMT-ähnlichen Proteinen beleuchten und die molekulare Herkunft der Phosphorylierungsaktivierung aufzeigen, sowie die Malatabhängigkeit und die starke Spannungsabhängigkeit von QUAC1 aufklären. Es zeigte sich jedoch schnell, dass Punktmutationen und Deletionen im C-Terminus von QUAC1 sehr häufig zu nicht-funktionellen Mutanten führten. Diese Tatsache weist darauf hin, dass es sich um einen hoch-strukturierten und funktionell sehr wichtigen Bereich des Anionenkanals handelt. Auch die Topologie des Anionenkanalproteins wird in der Literatur kontrovers diskutiert. Sowohl die Lage des N- und C-Terminus (extrazellulär oder intrazellulär), als auch die Anzahl der membrandurchspannenden Domänen war nicht abschließend geklärt. Deshalb wurde in einem Fluoreszenz-basiertem Ansatz die Lage der Termini bestimmt. Im Rahmen meiner Arbeit konnte somit eindeutig gezeigt werden, dass sich beide Termini im Zytosol der Zelle befinden. Auf Grundlage von Modellen aus der Literatur und meiner Topologiebestimmungen konnte schließlich ein erweitertes Modell zur Struktur von QUAC1 entwickelt werden. Dieses Modell kann in Zukunft als Ausgangspunkt für weiterführende Struktur-Funktionsanalysen dienen. Diese Arbeit hat somit gezeigt, dass das Gen QUAC1 tatsächlich eine Komponente der R-Typ Ströme in Schließzellen kodiert. Ebenso wie SLAC1 steht der Malat-induzierte Anionenkanal QUAC1 unter der Kontrolle der schnellen ABA-Signalkaskade. In Zukunft bleibt zu klären, welche weiteren Gene für die R-Typ Kanalproteine in Schließzellen kodieren und welche strukturelle Grundlage für die besonderen Eigenschaften von QUAC1 hinsichtlich seiner schnellen Kinetiken, seiner Selektivität und Aktivierbarkeit durch Malat. N2 - Higher plants are able to exchange gases with their environment. This gas exchange is accomplished by the stomatal complex, which consist of two tugor-driven guard cells (GC) that surround a pore in the epidermis. Under drought conditions, guard cells produce and import the plant stress hormone abscisic acid (ABA). ABA is able to activate plasma membrane localized ion channels via the fast ABA-signal cascade, which leads to a closure of the stoma and thus minimizes the loss of water. The stomatal closure is initialized by the R-(rapid) and S-(slow) type anion channels. Although R- and S-type anion channels in guard cells have been known for over a decade, the gene which decodes the S-type anion channel SLAC1 (Slow activating Anion Channel 1) has only recently been identified. Consequently, the relationship between the plant hormone ABA, the ABA-signal-transduction-chain, and the activity of SLAC1 could be clarified in rapid succession in the heterologous expression system of X. laevis oocytes as well as in GC-protoplasts. It could be shown that ABA is recognized by a cytosolic receptor/phosphatase complex (RCAR/ABI1). This complex in turn regulates the activity of calcium dependent kinases of the CPK-family as well as the calcium independent kinases of the SnRK2-family (OST1). In the presence of ABA, these kinases activate SLAC1 by phosphorylation, and by this activate anion currents across the plasma membrane, ultimately leading to closure of the stomates. The genetic origin of the ABA induced R-type currents in guard cells was unknown at the beginning of this thesis. R-type currents are characterized by strong voltage-dependent behavior and fast activation- and deactivation-kinetics. In cooperation with the workgroup of Martinoia (Zürich), knock-out plants missing the guard cell gen ALMT12 (Aluminum activated Malate Transporter 12) were characterized. This work delivered the first hints that ALMT12 is involved in the stomatal movement. Subsequent patch-clamp studies on GC-protoplasts from WT and ALMT12 knock-out mutants revealed that ALMT12 is responsible for the malate-activated component of the R-type anion currents. Therefore, the anion-channel was named QUAC1 (Quick activating Anion Channel) in dependence on the naming of SLAC1. With the identification of QUAC1 in planta it was my duty to research the electrical properties of ALMT12/QUAC1 as well as the activation by the ABA-signal-transduction-chain in the heterologous expression system of X. laevis oocytes. Protein-protein interaction studies via bimolecular fluorescence complementation (BIFC) as well as significantly higher QUAC1 anion currents in the presence of the SnRK2 kinase OST1 and the calcium-dependent-kinases CPK2 and CPK20 led to the conclusion that QUAC1 is under the control of the fast ABA signaling pathway, as it was shown before for SLAC1. Furthermore expression of the negative regulator ABI1 inhibited the activating properties of the QUAC1-activating kinases. These findings support further the hypotheses of the simultaneous regulation of S- and R-type anion channels by the ABA-signaling pathway. To further elucidate the electrical properties of QUAC1, electrophysiological investigations were performed with the two-electrode-voltage-clamp technique (TEVC). In this way, the fast activation and deactivation of QUAC1 could be identified and quantified by carefully chosen voltage-clamp protocols. These current responses of QUAC1 closely resembled the R-type currents known from former patch-clamp studies from GC-protoplasts. This further supported the conclusion that QUAC1 is indeed a component of the R-type channels of guard cells. Additional investigations of the voltage-dependence and selectivity of QUAC1 characterized the protein as a depolarization-activated anion channel with strong preference for bicarbonate acids like malate and fumarate. Furthermore, a conductance for sulfate and chloride could also be shown. Interestingly, malate was not only able to permeate the channel, it was also able to alter the voltage-dependence of QUAC1. External malate strongly shifted the open probability of QUAC1 to negative membrane voltages. By this shift the anion channel could be activated at typical guard cell membrane potentials (approx. 150 mV). Loading of QUAC1 expressing oocytes with malate produced enhanced anion efflux currents and shift the voltage-dependent open probability to negative membrane potentials. Structure function analysis were performed to clarify the controversial topology of ALMT like proteins and the molecular origin of the phosphorylation activation. Furthermore, this should elucidate the origin of the malate dependence and the strong voltage dependence of QUAC1. It soon became evident that point mutations and deletions in the C-terminus of QUAC1 very often lead to nonfunctional mutants. This points toward a highly structured and functionally important region of the anion channel. In addition, the topology of the anion-channel-protein is controversially debated in literature. Neither the position of the C- and N-terminus (intra- or extracellular) nor the number of transmembrane domains has been conclusively established. Due to this, the position of the C- and N-termini were localized by a fluorescence based experiment. As part of this work, it could be shown explicitly that both termini reside in the cytosol of the cell. Based on models from the literature and my own topology studies, an enhanced structure model for QUAC1 could be generated. This model will serve as a starting point for future structure function analysis. This work has thus shown that the gene QUAC1 indeed encodes a component of the R-type currents in guard cells. Like SLAC1, the malate-induced anion channel QUAC1 is under the control of the fast ABA-signal-cascade. Future works must establish which further genes encode R-type channel proteins and which structural attributes are responsible for the special traits of QUAC1: its fast kinetics, its selectivity and its activation by malate. KW - Ackerschmalwand KW - Schließzelle KW - Anionentranslokator KW - Abscisinsäure KW - Struktur KW - Funktion KW - R-Typ KW - Anionenkanal KW - QUAC1 KW - TEVC Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136860 ER - TY - THES A1 - Demir, Fatih T1 - Lipid rafts in Arabidopsis thaliana leaves T1 - Lipid Rafts in Arabidopsis thaliana Blättern N2 - Arabidopsis thaliana (A.th.) mesophyll cells play a pivotal role in the regulation of the drought stress response. The signaling & transport components involved in drought stress regulation within lipid rafts of the plasma membrane were investigated by DRM isolation from highly purified plasma membranes. Detergent treatment with Brij-98 and Triton X-100 resulted in a total of 246 DRM proteins which were identified by nano HPLC-MS/MS. The majority of these proteins could be isolated by Triton X-100 treatment (78.5 %) which remains the ”golden” standard for the isolation of DRMs. Comparing in-gel and in-solution digestion approaches disclosed additional protein identifications for each method but the in-gel approach clearly delivered the majority of the identified proteins (81.8 %). Functionally, a clear bias on signaling proteins was visible – almost 1/3 of the detected DRM proteins belonged to the group of kinases, phosphatases and other signaling proteins. Especially leucine-rich repeat receptor-like protein kinases and calcium-dependent protein kinases were present in Brij-98 & Triton X-100 DRMs, for instance the calcium-dependent protein kinase CPK21. Another prominent member of DRMs was the protein phosphatase 2C 56, ABI1, which is a key regulator of the ABA-mediated drought stress response in A.th. The lipid raft localization of the identified DRM proteins was confirmed by sterol-depletion with the chemical drug MCD. Proteins which depend upon a sterol-rich environment are depleted from DRMs by MCD application. Especially signaling proteins exhibited a strong sterol-dependency. They represented the vast majority (41.5 %) among the Triton X-100 DRM proteins which were no longer detected following MCD treatment. AtRem 1.2 & 1.3 could be shown to be sterol-dependent in mesophyll cells as well as two CPKs (CPK10 & CPK21) and the protein phosphatase ABI1. AtRem 1.2 & 1.3 could be proven to represent ideal plant lipid raft marker proteins due to their strong presence in Triton X-100 DRMs and dependency upon a sterol-rich environment. When fluorescence labeled AtRem 1.2 & 1.3 were transiently expressed in A.th. leaves, they localized to small, patchy structures at the plasma membrane. CPK21 was an intrinsic member of Triton X-100 DRMs and displayed extreme susceptibility to sterol-depletion by MCD in immunological and proteomic assays. Calcium-dependent protein kinases (CPKs) have already been studied to be involved in drought stress regulation, for instance at the regulation of S-type anion channels in guard cells. Hence, further transient expression studies with the anion channel SLAH3, protein kinase CPK21 and its counterpart, protein phosphatase ABI1 were performed in Nicotiana benthamiana. Transient co-expression of CPK21 and the anion channel SLAH3, a highly mesophyll- specific homologue of the guard cell anion channel SLAC1, resulted in a combined, sterol-dependent localization of both proteins in DRMs. Supplementary co-expression of the counterpart protein phosphatase ABI1 induced dislocation of SLAH3 from DRMs, probably by inactivation of the protein kinase CPK21. CPK21 is known to regulate the anion channel SLAH3 by phosphorylation. ABI1 dephosphorylates CPK21 thus leading to deactivation and dislocation of SLAH3 from DRMs. All this regulative events are taking place in DRMs of A.th. mesophyll cells. This study presents the first evidence for a lipid raft-resident protein complex combining signaling and transport functions in A.th. Future perspectives for lipid raft research might target investigations on the lipid raft localization of candidate DRM proteins under presence of abiotic and biotic stress factors. For instance, which alterations in the DRM protein composition are detectable upon exogenous application of the plant hormone ABA? Quantitative proteomics approaches will surely increase our knowledge of the post-transcriptional regulation of gene activity under drought stress conditions. N2 - Mesophyllzellen spielen eine sehr wichtige Rolle bei der Regulierung der Trockenstress-Antwort in der Pflanze Arabidopsis thaliana (A.th.). Um die an der Trockenstress-Antwort beteiligten Signaltransduktions- und Transportproteine zu identifizieren, die sich in Lipid Rafts der pflanzlichen Plasmamembran befinden, wurden Detergent-Resistant Membranes (DRMs) aus hochreinen Arabidopsis Plasmamembran-Präparationen isoliert. Behandlung dieser hochreinen Plasmamembran mit den Detergentien Brij-98 und Triton X-100 führte zur Identifikation von 246 DRM Proteinen, die mittels der nano HPLC-MS/MS Technologie detektiert wurden. Hierbei war festzustellen, dass das Detergens Triton X-100 eindeutig den Standard für die Isolierung von DRMs darstellt. Die große Mehrheit (78,5 %) der identifizierten DRM Proteine konnte nämlich mit Triton X-100 aufgereinigt werden. Vergleichende Anwendung verschiedener Verdaumethoden (In-Gel & In-Lösung Verdau) zeigte auf, dass jede Methode einen unterschiedlichen Pool an Proteinen identifiziert. Das Gros der analysierten Proteine (81,8 %) konnte jedoch auch alleine durch In-Gel Verdau ermittelt werden. Unter den identifizierten DRM Proteinen stellten Proteine, die an der Signaltransduktion beteiligt sind, fast 1/3 dar. Diese Proteingruppe wurde hauptsächlich durch Kinasen und Phosphatasen vertreten. Insbesondere Leucin-reiche rezeptor-artige and Calcium-abhängige Proteinkinasen waren in Brij-98 & Triton X-100 DRMs zu beobachten, z.B. die Calcium-abhängige Proteinkinase CPK21. Ebenso in Triton X-100 DRMs wurde die Proteinphosphatase 2C 56 (ABI1) lokalisiert, die eine zentrale Rolle bei der ABA-vermittelten Antwort auf Trockenstress in A.th. inne hat. Zur Bestätigung der Lipid Raft Lokalisation der identifizierten DRM Proteine wurden Sterole aus der Plasmamembran mittels der Chemikalie Methyl-ß-D-cyclodextrin entfernt. Besonders Proteine, die an der Signalweiterleitung beteiligt sind, zeigten eine starke Abhängigkeit von der Präsenz der Sterole. Sie waren besonders betroffen: 41,5 % der Proteine, die nach MCD Behandlung nicht mehr in DRMs identifiziert wurden, gehörten zur Gruppe der Signaltransduktionsproteine. Beispiele waren sowohl die Calcium-abhängigen Proteinkinasen CPK10 & CPK21, als auch die Proteinphosphatase ABI1. Die A.th. Remorine AtRem 1.2 & 1.3 stellen ideale Kandidaten für pflanzliche Lipid Raft Markerproteine dar, da beide sowohl ziemlich stark in Triton X-100 DRMs vertreten, als auch im besonderen Maße auf die Präsenz von Sterolen in DRMs angewiesen sind. Fluoreszenzmarkierte AtRem 1.2 & 1.3 Fusionskonstrukte lokalisierten bei transienter Expression in A.th. Blättern in kleinen, punktförmigen Strukturen an der Plasmamembran. Diese Strukturen zeigten frappierende Ähnlichkeit zu bereits bekannten Mustern von Lipid Raft Proteinen in Hefen und Säugetieren. CPK21 stellte ein besonderes Mitglied der Triton X-100 DRMs dar, welches ebenfalls stark auf die Präsenz von Sterolen in DRMs angewiesen war. Dies konnte durch immunologische and massenspektrometrische Experimente nachgewiesen werden. Calcium-abhängige Proteinkinasen (CPKs) sind an der Regulierung der Trockenstress-Antwort in Pflanzen beteiligt, z.B. bei der Aktivierung von S-typ Anionenkanälen in Schließzellen von A.th. Aufgrund dieser Beteiligung an der Trockenstress-Antwort, wurden transiente Co-Expressionsstudien des Anionenkanals SLAH3, der Proteinkinase CPK21 und ihrem Gegenspieler, der Proteinphosphatase ABI1 in Nicotiana benthamiana Blättern durchgeführt. Transiente Co-Expression von CPK21 und SLAH3, einem zum schließzell-spezifischen Anionenkanal SLAC1 homologen Protein in Mesophyllzellen, resultierte in einer sterol-abhängigen Co-Lokalisation beider Proteine in DRMs. Zusätzliche Gabe vom Gegenspieler ABI1 führte zum Verschwinden von SLAH3 aus DRMs, was möglicherweise auf die Inaktivierung der Proteinkinase CPK21 durch ABI1 zurückzuführen ist. Für CPK21 konnte schon aufgezeigt werden, dass es den Anionenkanal SLAH3 durch Phosphorylierung aktiviert. ABI1 hingegen dephosphoryliert die Proteinkinase CPK21 und führt zur Deaktivierung vom Anionenkanal SLAH3, welcher dann auch nicht mehr in DRMs lokalisierbar ist. Diese streng regulierten Prozesse im Rahmen der Trockenstress-Antwort spielen sich in DRMs von A.th. Mesophyllzellen ab. Die vorliegende Arbeit ist der erste Bericht eines Lipid Raft-lokalisierten Proteinkomplexes, der Signalweiterleitung und Transportprozesse in Arabidopsis Lipid Rafts vereint. Zukünftige Lipid Raft Studien könnten sich mit der Lokalisation von putativen DRM Proteinen nach Anwendung von abiotischen und biotischen Stressfaktoren befassen. So könnte man sich die Frage stellen, inwiefern sich die Proteinzusammensetzung in DRMs von der Zugabe des pflanzlichen Hormons Abscisinsäure (ABA) beeinflussen läßt. Insbesondere quantitative Proteomstudien werden in Zukunft mit Sicherheit unser Wissen über die posttranskriptionelle Regulation der Genaktivität bei Trockenstress erweitern. KW - Ackerschmalwand KW - Abscisinsäure KW - Plasmamembran KW - Stressreaktion KW - Mesophyll KW - ABA KW - DRMs KW - Membrandomänen KW - Trockenstress KW - Anionenkanal KW - Biomembran KW - Blatt KW - Membran KW - ABA KW - DRMs KW - Membrane domains KW - Drought stress KW - Anion channel Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53223 ER -