TY - THES A1 - Wirsing, Sara T1 - Computational Spectroscopic Studies with Focus on Organic Semiconductor Systems T1 - Theoretisch-spektroskopische Untersuchungen mit Fokus auf organische Halbleitersysteme N2 - This work presents excited state investigations on several systems with respect to experimental spectroscopic work. The majority of projects covers the temporal evolution of excitations in thin films of organic semiconductor materials. In the first chapters, thinfilm and interface systems are build from diindeno[1,2,3-cd:1’,2’,3’-lm]perylene (DIP) and N,N’-bis-(2-ethylhexyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDIR-CN2) layers, in the third chapter bulk systems consist of 4,4’,4”-tris[(3-methylphenyl)phenylamino] triphenylamine (m-MTDATA), 4,7-diphenyl-1,10-phenanthroline (BPhen) and tris-(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane (3TPYMB). These were investigated by aggregate-based calculations. Careful selection of methods and incorporation of geometrical relaxation and environmental effects allows for a precise energetical assignment of excitations. The biggest issue was a proper description of charge-transfer excitations, which was resolved by the application of ionization potential tuning on aggregates. Subsequent characterization of excitations and their interplay condenses the picture. Therefore, we could assign important features of the experimental spectroscopic data and explain differences between systems. The last chapter in this work covers the analysis of single molecule spectroscopy on methylbismut. This poses different challenges for computations, such as multi-reference character of low-lying excitations and an intrinsic need for a relativistic description. We resolved this by combining complete active space self-consistent field based methods with scalarrelativistic density-functional theory. Thus we were able to confidently assign the spectroscopic features and explain underlying processes. N2 - Im ersten Teil dieser Arbeit (Referenz [4]) wurden Anregungen in DIP und PDIR-CN2 Aggregaten berechnet und charakterisiert, um Signale experimenteller TR-SHG Spek- tren zuzuweisen und zugrundeliegende Prozesse aufzuklären. Der Fokus des ersten Ka- pitels liegt auf der zeitlichen Entwicklung der Populationen der angeregten Zusände in den individuellen Materialien. Diese Anregungen haben Frenkel Charakter und konn- ten deswegen mit standard RS-Funktionalen beschrieben werden. Die Umgebung wur- de durch atomare Punktladungen modelliert. Absoptionsspektren konnten zugewiesen werden, allerdings mit einer systematischen Abweichung in den Anregungsenergien. Diese Zuweisung wurde diskutiert mit Blick auf Größe der untersuchten Aggregate, Relaxationseffekte und den Funktional-inherenten Fehler. Die Signale in den TR-SHG Spektren wurden hauptächlich auf Aggregateffekte zurückgeführt. Dazu gehören (De- )Lokalisierungsprozesse, Population von tiefliegenden Fallenzuständen und Relaxation zum Grundzustand. Zusätzlich konnten wir Vibrationsprogressionen durch Schwingun- gen der Monomere erklären ... KW - Theoretische Chemie KW - Organischer Halbleiter KW - Ab-initio-Rechnung KW - Dichtefunktionalformalismus KW - DFT KW - Spektroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286552 ER - TY - THES A1 - Betzold, Simon T1 - Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisphärischen Mikrokavitäten mit eingebetteten organischen Halbleitern T1 - Strong light-matter interaction and polariton condensation in hemispherical microcavities with embedded organic semiconductors N2 - Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind. N2 - Cavity exciton-polaritons (polaritons) are hybrid quasiparticles which are formed due to the strong coupling of excitons with cavity photons. These quasiparticles exhibit a variety of interesting properties, rendering them very promising for both fundamental research and the development of novel opto-electronic devices. Once a suitably high particle density is reached, the system undergoes the transition into a state of exciton-polariton condensation, which leads to the emission of laser-like light. Organic semiconductors as active emitter material hold enormous potential in this context, as their excitons show both large oscillator strengths and high binding energies. Therefore it is possible to generate extremely stable polaritons using organic semiconductors even at ambient conditions. An important prerequisite for the implementation of integrated devices based on polaritons is the controlled spatial confinement and the realization of arbitrary potential landscapes. The present work deals with the development and investigation of suitable platforms for the generation of exciton-polaritons and polariton condensates in hemispheric microcavities with embedded organic semiconductors. KW - Exziton-Polariton KW - Organischer Halbleiter KW - Fourier-Spektroskopie KW - Laser KW - Optischer Resonator KW - FDTD Simulation KW - Hemisphärische Kavität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266654 ER - TY - THES A1 - Grüne, Jeannine T1 - Spin States and Efficiency-Limiting Pathways in Optoelectronic Materials and Devices T1 - Spinzustände und Effizienz-limitierende Pfade in optoelektronischen Materialien und Bauelementen N2 - This thesis addresses the identification and characterization of spin states in optoelectronic materials and devices using multiple spin-sensitive techniques. For this purpose, a systematic study focussing on triplet states as well as associated loss pathways and excited state kinetics was carried out. The research was based on comparing a range of donor:acceptor systems, reaching from organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) to organic photovoltaics (OPV) employing fullerene and multiple non-fullerene acceptors (NFAs). By developing new strategies, e.g., appropriate modeling, new magnetic resonance techniques and experimental frameworks, the influence of spin states in the fundamental processes of organic semiconductors has been investigated. Thereby, the combination of techniques based on the principle of electron paramagnetic resonance (EPR), in particular transient EPR (trEPR) and optically detected magnetic resonance (ODMR), with all-optical methods, such as transient electroluminescence (trEL) and transient absorption (TA), has been employed. As a result, excited spin states, especially molecular and charge transfer (CT) states, were investigated in terms of kinetic behavior and associated pathways, which revealed a significant impact of triplet states on efficiency-limiting processes in both optoelectronic applications. N2 - Diese Dissertation befasst sich mit der Identifizierung und Charakterisierung von Spinzuständen in optoelektronischen Materialien und Bauelementen unter Verwendung mehrerer spinsensitiver Techniken. Dazu wurde eine systematische Studie mit Schwerpunkt auf Triplett-Zuständen sowie den damit verbundenen Verlustpfaden und der Kinetik der zugehörigen angeregten Zustände durchgeführt. Der Schwerpunkt lag auf dem Vergleich einer Reihe von Donor:Akzeptor-Systemen, die von organischen Leuchtdioden (engl. organic light emitting diodes, OLEDs), basierend auf thermisch aktivierter verzögerter Fluoreszenz (engl. thermally activated delayed fluorescence, TADF), bis hin zu organischer Photovoltaik (OPV), unter Verwendung von Fulleren- und mehreren Nicht-Fulleren-Akzeptoren (NFAs), reichten. Durch die Entwicklung neuer Strategien, z.B. adäquater Modellierung, neuer Techniken im Bereich der Magnetresonanz und experimenteller Konzepte, konnte der Einfluss von Spinzuständen auf die grundlegenden Prozesse organischer Halbleiter untersucht werden. Dabei wurden Techniken, die auf dem Prinzip der Elektronenspinresonanz (engl. electron paramagnetic resonance, EPR) basieren, insbesondere transientes EPR (trEPR) und optisch detektierte Magnetresonanz (ODMR), mit rein optischen Methoden, wie transienter Elektrolumineszenz (trEL) und transienter Absorption (TA), kombiniert. Resultierend wurden angeregte Spinzustände, insbesondere molekulare und Ladungstransferzustände, im Hinblick auf das kinetische Verhalten und assoziierten Exzitonpfaden untersucht, wobei ein bedeutender Einfluss von Triplett-Zuständen auf Effizienz-limitierende Prozesse in beiden optoelektronischen Anwendungen aufgezeigt wurde. KW - Elektronenspinresonanz KW - Organischer Halbleiter KW - Organic Light Emitting Diode KW - Organic Photovoltaic KW - Electron Paramagnetic Resonance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293405 ER - TY - THES A1 - Hammer, Sebastian Tobias T1 - Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors T1 - Einfluss der Kristallstruktur auf angeregte Zustände in kristallinen organischen Halbleitern N2 - This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs. N2 - Ziel dieser Arbeit war es, den Einfluss der zugrunde liegenden Kristallstruktur und der damit einhergehenden molekularen Anordnung auf die angeregten Zustände in molekularen Aggregaten zu untersuchen. Zu diesem Zweck wurden zwei Modellsysteme ausgewählt. Der optisch anregbare und detektierbare Ladungstransferzustand im Donor-Akzeptor Komplex Pentacen-Perfluoropentacen (PEN-PFP) und die Möglichkeit, hoch definierte kristalline Grenzflächen herzustellen, ermöglichten detaillierte Einblicke in die räumlich anisotrope Ausbildung des Ladungstransferzustands. Durch Ausnutzen der gewonnenen Erkenntnisse beim Design von Bauteilen auf Basis dieser Donor-Akzeptor Grenzflächen konnte gezeigt werden, wie wichtig die morphologische Kontrolle ist, um das Auftreten von Fallenzuständen in Zusammenhang mit solchen Ladungstransferprozessen zu minimieren und damit die elektronischen Bauteileigenschaften zu verbessern. Für Zinkphthalocyanin (ZnPc) und dem ihm eigenen Polymorphismus konnte der Einfluss der molekularen Packung auf angeregte Zustände untersucht werden, ohne die chemische Struktur zu verändern. Durch die Kombination von Strukturuntersuchungen, optischer Absorptions- und Emissionsspektroskopie und Franck-Condon Modellierungen wurde der Ursprung der Emission der angeregten Zustände in der strukturellen \(\alpha \) und \(\beta \)Phase über einen großen Temperaturbereich von 4 K bis 300 K offen gelegt. Mithilfe der erlangten Einsichten wurde die Kinetik des \(\alpha \rightarrow \beta\) Phasenübergangs erster Ordnung charakterisiert und zur Herstellung von dual-lumineszenten OLEDs verwendet. KW - Organischer Halbleiter KW - Phthalocyanin KW - Pentacen KW - Ladungstransfer KW - Optoelektronik KW - Exziton KW - Charge-Transfer KW - Donor-Acceptor Interface Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244019 ER - TY - THES A1 - Kolb, Verena T1 - Einfluss metallischer Nanostrukturen auf die optoelektronischen Eigenschaften organischer Halbleiter T1 - Impact of metal nanostructures on the optoelectronic properties of organic semiconductors N2 - Opto-elektronische Bauelemente auf Basis organischer Moleküle haben in den letzten Jahren nicht nur in Nischenbereichen, wie der Kombination organischer Photovoltaik mit gebäudeintegrierten Konzepten, sondern vor allem auch in der Entwicklung von kommerziell verfügbaren OLED (organische lichtemittierende Dioden) Bauteilen, wie 4K TV-Geräten und Handy Displays, an Bedeutung gewonnen. Im Vergleich zu anorganischen Bauteilen weisen jedoch vor allem organische Solarzellen noch weitaus geringere Effizienzen auf, weswegen die Erforschung ihrer Funktionsweise und der Einflüsse der einzelnen Bestandteile auf mikroskopischer Ebene für die Weiterentwicklung und Verbesserung des Leistungspotentials dieser Technologie unabdingbar ist. \\ Um dies zu erreichen, wurde in dieser Arbeit die Wechselwirkung zwischen der lokalisierten Oberflächenplasmonenresonanz (LSPR) metallischer Nanopartikel mit den optischen Anregungen organischer Dünnschichten in dafür eigens präparierten opto-elektronischen Hybrid-Bauteilen aus kleinen Molekülen untersucht. Durch die Implementierung und Kopplung an solche plasmonischen Nanostrukturen kann die Absorption bzw. Emission durch das lokal um die Strukturen erhöhte elektrische Feld gezielt beeinflusst werden. Hierbei ist der spektrale Überlapp zwischen LSPR und den Absorptions- bzw. E\-missions\-spek\-tren der organischen Emitter entscheidend. In dieser Arbeit wurden durch Ausnutzen dieses Mechanismus sowohl die Absorption in organischen photovoltaischen Zellen erhöht, als auch eine verstärkte Emission in nanostrukturierten OLEDs erzeugt. \\ Besonderer Fokus wurde bei diesen Untersuchungen auf mikroskopische Effekte durch neu entstehende Grenzflächen und die sich verändernden Morphologien der aktiven organischen Schichten gelegt, da deren Einflüsse bei optischen Untersuchungen oftmals nur unzureichend berücksichtigt werden. In der Arbeit wurden daher die nicht zu vernachlässigenden Folgen der Einbringung von metallischen Nanostrukturen auf die Morphologie und Grenzflächen zusammen mit den spektralen Veränderungen der Absorptions- und Emissionscharakteristik organischer Moleküle analysiert und in Zusammenhang gebracht, wodurch eine Verbesserung der Effizienzen opto-elektronischer Bauteile erreicht werden soll. N2 - In recent years, opto-electronic devices based on organic molecules have drawn increasing attention, not only in niche markets like building-integrated photovoltaics, but also in the development of organic light emitting diodes (OLEDs) for 4K TV and smartphone displays. Compared to devices based on inorganic semiconductors, especially, organic solar cells lack in efficiency. Therefore, the investigation and understanding of microscopic effects influencing the overall performance are crucial for further efficiency improvements of these technologies.\\ These circumstancs have motivated the topic of this thesis namely the investigation of the electromagnetic interaction between metallic nanostructures and molecular semiconductors, the latter constituting the key unit in organic opto-electronics thin film devices. The unique properties of metal nanostructures and nanoparticles, in particular, their localized surface plasmon resonances (LSPR) and the accompanying enhancement of the local electrical field and the scattering of incoming light are able to enhance both, the absorption and the emission of organic molecules in close proximity. \\ In this thesis, both phenomena were used to enhance the absorption of small molecule organic solar cells, as well as the emission in nanostructured OLEDs. Especially, the effect of artificially generated interfaces and the induced change in morphology due to nanoparticles are investigated with respect to the optical properties of the organic emitters and absorbers. \\ KW - Nanostruktur KW - Organischer Halbleiter KW - Oberflächenplasmonen KW - organische Halbleiter KW - localized surface plasmon KW - organic semiconductor KW - Silber KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170279 ER - TY - THES A1 - Hansen, Nis Hauke T1 - Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und Dünnschichten T1 - Microscopic charge transport mechanisms and exciton annihilation in organic thin films and single crystals N2 - Um die Natur der Transportdynamik von Ladungsträgern auch auf mikroskopischen Längenskalen nicht-invasiv untersuchen zu können, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: löschen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen Dünnschicht durch die injizierten und akkumulierten Löcher in einer Transistorgeometrie analysiert. Diese Zusammenführung zweier Methoden - der elektrischen Charakterisierung von Dünnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die Änderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungsträgern. Dadurch werden räumlich aufgelöste Informationen über die Ladungsverteilung und deren Spannungsabhängigkeit im Transistorkanal zugänglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngrößen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngrößen alleine ermöglichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen möglich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten können. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungsträgerrekombination, Triplett-Übergänge oder Rekombination an Störstellen oder metallischen Grenzflächen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zuständen mit Elektronen und Löchern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare Überlapp sowie die Reorganisationsenergie in derselben Größenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie ermöglichen die Analyse der räumlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen. N2 - In order to study charge transport in organic thin-film transistors on a microscopic length scale noninvasively, photoluminescence quenching by injected holes in transistor geometry was analyzed. The combination of these two techniques – the electrical characterization of transistors and the photoluminescence spectroscopy – captures the variation of radiative recombination of excitons, which results from the interaction with the accumulated charge carriers. Thereby, spatially resolved information about the charge distribution and its voltage dependence in the transistor channel become accessible. By comparison with the macroscopic electrical parameters, such as the threshold voltage or the turn-on voltage, the mode of operation of the transistors can thus be described in more detail than the characteristic values alone permit. In addition, the quantification of these microscopic interactions becomes possible, which can occur, for example, as a loss channel in organic photovoltaic cells and organic light-emitting diodes. The delimitation to other dissipative processes, such as exciton-exciton annihilation, charge carrier recombination, triplet transitions or recombination at impurities or metallic interfaces, allows the detailed analysis of the interaction of optically excited states with electrons and holes. The second focus of this work is on the transport properties of the naphthalene diimide Cl2-NDI in which the molecular overlap as well as the reorganization energy are of the same order of magnitude of approximately 0.1 eV. In order to close experimentally on the microscopic transport, after the optimization of crystal growth, single crystal transistors are produced by means of which the mobility along different crystallographic directions can be measured as a function of the temperature. The single crystal nature of the samples and the special transistor geometry allow the analysis of the spatial anisotropy of the current flow. The measured mobility tensor is then compared with simulated tensors based on Levich-Jortner rates to infer the central charge transfer mechanism. KW - Organischer Halbleiter KW - Ladungstransport KW - organic field-effect transistor KW - photoluminescence spectroscopy KW - electronic transport KW - single crystal KW - Organischer Feldeffekttransistor KW - Photolumineszenzspektroskopie KW - Elektronischer Transport KW - Einkristall Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143972 ER - TY - THES A1 - Väth, Stefan Kilian T1 - On the Role of Spin States in Organic Semiconductor Devices T1 - Die Rolle von Spin Zuständen in organischen Halbleiterbauteilen N2 - The present work addressed the influence of spins on fundamental processes in organic semiconductors. In most cases, the role of spins in the conversion of sun light into electricity was of particular interest. However, also the reversed process, an electric current creating luminescence, was investigated by means of spin sensitive measurements. In this work, many material systems were probed with a variety of innovative detection techniques based on electron paramagnetic resonance spectroscopy. More precisely, the observable could be customized which resulted in the experimental techniques photoluminescence detected magnetic resonance (PLDMR), electrically detected magnetic resonance (EDMR), and electroluminescence detected magnetic resonance (ELDMR). Besides the commonly used continuous wave EPR spectroscopy, this selection of measurement methods yielded an access to almost all intermediate steps occurring in organic semiconductors during the conversion of light into electricity and vice versa. Special attention was paid to the fact that all results were applicable to realistic working conditions of the investigated devices, i.e. room temperature application and realistic illumination conditions. N2 - Die vorliegende Arbeit behandelt den Einfluss der Elektronenspins auf grundlegende Prozesse in organischen Halbleitern. In den meisten Fällen wurde der Spineinfluss während der Umwandlung von Sonnenlicht in Elektrizität untersucht. Zusätzlich wurde in einer Studie der gegenteilige Prozess behandelt. Dabei wurde der Einfluss der Spins auf die Umwandlung von elektrischem Strom in Licht betrachtet. Es wurden viele verschiedene Materialsysteme verwendet, die mit einer Vielzahl an Methoden vermessen wurden, welche alle auf dem Prinzip der Elektronenspinresonanz beruhen. Dabei wurde stets die Messgröße variiert, was zu den verwendeten Messmethoden Photolumineszenz detektierte Magnetresonanz (PLDMR), elektrisch detektierte Magnetresonanz (EDMR) und Elektrolumineszenz detektierte Magnetresonanz (ELDMR) geführt hat. Zusam- men mit der gewöhnlichen Elektronenspinresonanz Spektroskopie führt diese Auswahl an vielfältigen Messmethoden dazu, dass so gut wie alle Zwischenschritte bei der Umwand- lung von Licht in Elektrizität als auch von Elektrizität in Licht untersucht werden können. Besonderes Augenmerk wurde darauf gelegt, dass alle Messungen auf realistische Bedingungen übertragbar sind, d.h. bei Raumtemperatur und unter normalen Beleuchtungsstärken und -wellenlängen. Zu Beginn der Arbeit wurde ein kurzer Überblick über die historische Entwicklung von organischen Solarzellen gegeben, zusammen mit der Erläuterung von grundlegenden Prozessen in den untersuchten Bauteilen, stets auch hinsichtlich der vorkommenden Spinzustände. Desweiteren wurde die Solarzellencharakterisierung und die Morphologie der aktiven Schicht diskutiert. Das darauf folgende Kapitel behandelte die theoretische Beschreibung des Magnetfeldeffekts auf Spinzustände und diverse Wechselwirkungsmechanismen. Darüber hinaus wurde diskutiert, wie Mikrowellen die vom Magnetfeld ausgerichteten Spins beeinflussen können. Zu guter Letzt wurden verschiedene Modelle vorgestellt, mit deren Hilfe sich die erzielten Ergebnisse interpretieren lassen. Das nächste Kapitel beschreibt schließlich detailliert die experimentellen Feinheiten, wie verwendete Materialien, Probenherstellung und verschiedene Spektrometer Konfigurationen. Das erste Ergebnis Kapitel beschreibt den Einfluss des Zusatzmittels 1,8-Dijodoktan auf das Materialsystem PTB7:PC70BM. Dies wurde mit Hilfe von konventioneller Elek- tronenspinresonanz untersucht, welche es ermöglicht zwischen Elektronen auf dem Akzeptor- und Polaronen auf dem Donormaterial zu unterscheiden. Ergänzend dazu wurden Röntgenphotoelektronenspektroskopiemessungen durchgeführt, welche zu dem Ergebnis führten, dass Jod trotz Hochvakuumtrocknung mit der relativen hohen Konzentration von (7.3±2.1)·1019 1 in dem Material verbleibt. Zudem bleibt Jod wahrscheinlich bevorzugt in der Akzeptorphase. Es wurde außerdem kein elektronischer Doping- effekt gefunden. Nichtsdestotrotz wird dieses Ergebnis einen Einfluss auf die zukünftige Wahl des Zusatzmittels haben. Kapitel 6 handelt von der Entstehung von Triplett Exzitonen in dem Materialsystem p-DTS(FBTTh2)2:PC70BM, wobei das Donormaterial aus löslichen kleinen Molekülen besteht, anstatt aus Polymeren. Mit Hilfe von PLDMR Messungen konnten die Entstehungsmechanismen Elektronenrücktransfer, sowie inter system crossing den verschiedenen Proben zugeordnet werden. Der genaue Mechanismus hängt jedoch stark von der Morphologie des untersuchten Materialsystems ab. Durch den Nachweis von Triplett Exzitonen bei Raumtemperatur konnte die Relevanz der Ergebnisse auch bei realen Bedingungen bestätigt werden. Vergleicht man das Triplett Vorkommen mit den So- larzelleneffizienzen konnte keine Korrelation erkannt werden. Daraus ergibt sich, dass Triplett Exzitonen für das untersuchte Materialsystem keine Effizienz limitierende Größe darstellen. Zum Abschluss wurde die Ausrichtung der Moleküle auf dem Substrat mit Hilfe von winkelabhängigen Messungen bestätigt. Der Einfluss des Zusatzmittels Galvinoxyl auf die Funktionsweise von organischen Solarzellen wird in Kapitel 7 untersucht. Es wurden PLDMR durchgeführt, die gezeigt haben, dass Galvinoxyl in der Lage ist Spin Zustände zu verändern, wie von der Literatur vorhergesagt. Aufgrund dessen handelt es sich um einen konkurrierenden Prozess gegenüber den erzeugten Spin resonanten Bedingungen. Durch die Messung an verschiedenen Doping Konzentrationen konnte ein Optimum von 3.2 % für das Materialsystem P3HT:PC60BM bestimmt werden. Trotzallem ist es unwahrscheinlich, dass der sehr große Anstieg des Photostroms in mit Galvinoxyl gedopten Solarzellen auf spinabhängige Prozesse zurückzuführen ist. Die Quantifizierung von spinabhängigen Prozessen in organischen Solarzellen bein- haltet viele Schwierigkeiten. Durch die Kombination des EDMR Messprinzips mit der Ladungsträgerextraktionsmethode OTRACE war es jedoch möglich, einen spinabhängigen Rekombinationsanteil von (0.012±0.009)% bei Raumtemperatur und (0.052±0.031)% bei 200 K für das Materialsystem P3HT:PC70BM zu bestimmen. Darüber hinaus wurde eine Interpretation eingeführt, die in der Lage ist, das Zustandekommen des EDMR Signals zu erklären. Im letzten Ergebnisteil (Kapitel 9) wurde der Fokus darauf gelegt, wie Spins die Funktionsweise von organischen Leuchtdioden (OLEDs) beeinflussen, die auf thermisch aktivierter verzögerter Lumineszenz (TADF) basieren. Dabei wurden verschiedene Detektionsverfahren verwendet, wobei sich heraus gestellt hat, dass ELDMR das einzig verwendbare darstellt. Damit konnten durch temperaturabhängige Messungen der energetische Unterschied zwischen dem Singulett- und Triplett Exciplex Zustand ∆EST bestimmt werden. Es ergaben sich (20.5±1.2) meV für THCA:BPhen und (68.3±5.4) meV für m-MTDATA:BPhen. Durch diese Messungen wurde zum ersten Mal zweifelsfrei der Einfluss von Spins in der Entstehung der Elektrolumineszenz von TADF OLEDs gezeigt. Aufgrund der Diskussion von möglichen Gründen, die für die verschiedenen Werte von ∆EST verantwortlich sind, konnten neue Vorgaben für zukünftige Materialkombinationen und -synthese gefunden werden. Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit einen bedeutenden Beitrag geliefert hat, um spinabhängige Prozesse in organischen Halbleitern aufzuklären. Darauf aufbauend werden Folgestudien vielleicht eines Tages sämtliche spinabhängigen Prozesse in diesen viel versprechenden Materialsystemen erklären können. KW - Organischer Halbleiter KW - Elektronenspin KW - Polymerhalbleiter KW - Organic Semiconductors KW - Electron Spin Resonance KW - Elektronenspinresonanz KW - Spin KW - Spin-eins-System Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141894 ER - TY - THES A1 - Kraus, Hannes T1 - Optically Detected Magnetic Resonance on Organic and Inorganic Carbon-Based Semiconductors T1 - Optisch detektierte Magnetresonanz an organischen und anorganischen kohlenstoffbasierten Halbleitern N2 - In dieser Arbeit werden drei verschiedene kohlenstoffbasierte Materialsysteme behandelt: (i) Organische Halbleiter und kleine Moleküle, in Kombination mit Fullerenen für Anwendungen in der organischen Photovoltaik (OPV), (ii) Halbleitende Einzelwand-Kohlenstoffnanoröhren und (iii) Siliziumkarbid (SiC), dessen Defekte erst seit kurzem als Kandidaten für Quantenapplikationen gehandelt werden. Alle Systeme wurden mit optisch detektierter Magnetresonanzspektroskopie (ODMR) untersucht. Im OPV-Kapitel, die intrinsischen Parameter und Orientierungen von Exzitonen mit hohem Spin wurden für die Materialsysteme P3HT, PTB7 und DIP untersucht. Speziell der Einfluss von Ordnung diesen organischen Systemen wurde diskutiert. Der zweite Teil des Kapitels beschäftigt sich mit Triplettgeneration mittels Elektronenrücktransfer im leistungsfähigen Materialsystem PTB7:PC71BM. Das Kohlenstoffnanoröhren-Kapitel zeigt zuert den ersten zweifelsfreien Nachweis von Triplettexzitonen in halbleitenden (6,5) Einzelwandkohlenstoffnanoröhren (SWNT), mittels ODMR-Spektroskopie. Ein Modell für die Anregungskinetik, die intrinsischen Parameter des Exzitons und Abhängigkeit von der Orientierung der Röhren wurden diskutiert. Der letzte Teil der Arbeit gilt Spinzentren in Siliziumkarbid. Nach einer kurzen Einführung in das Materialsystem wird die Spinmultiplizität für die V2 und V3 Siliziumfehlstellen, sowie eines Frenkelpaars und eines noch nicht zugeordneten Defekts (UD) in 6H SiC, weiterhin für die V2 Fehlstelle und das Frenkelpaar in 4H SiC, durchgängig zu S=3/2 festgestellt. Das spinpolarisierte Befüllen der 3/2-Zustände des Grundzustands der Siliziumfehlstellen erlaubt stimulierte Mikrowellenemission. Ausserdem wurde für UD und Frenkelpaar in 6H SiC eine große Temperaturabhängigkeit der Nullfeldparameter festgestellt, während die Siliziumfehlstellen temperaturunabhängig sind. Anwendung des UD und Frenkelpaars als Temperatursensor, und der Vakanzen als Vektormagnetometer wurden diskutiert. N2 - In this work, three different material systems comprising carbon were researched: (i) Organic polymers and small molecules, in conjunction with fullerene molecules for applications in organic photovoltaics (OPV), (ii) single walled semiconducting carbon nanotubes and (iii) silicon carbide (SiC), whose defect color centers are recently in the limelight as candidates for quantum applications. All systems were analyzed using the optically detected magnetic resonance (ODMR) spectroscopy. In the OPV chapter, first the intrinsic parameters and orientations of high spin excitons were analyzed in the materials P3HT, PTB7 and DIP. Specifically the influence of ordering in these organic systems was adressed. The second part of the OPV chapter is concerned with triplet generation by electron back transfer in the high-efficiency OPV material combination PTB7:PC71BM. The carbon nanotube chapter first shows the way to the first unambiguous proof of the existence of triplet excitons in semiconducting (6,5) single-walled carbon nanotubes (SWNT) by ODMR spectroscopy. A model for exciton kinetics, and also orientation and intrinsic parameters were propoesed. The last part of this work is devoted to spin centers in silicon carbide (SiC). After a brief introduction, the spin multiplicity of the V2 and V3 silicon vacancies, and also of a Frenkel pair and an unassigned defect UD in 6H SiC, and of the V2 vacancy and the Frenkel pair in 4H SiC, was shown to be S=3/2. The spin polarized pumping of the 3/2 manifold of the quartet ground state of the silicon vacancies allows stimulated microwave emission. Furthermore, in 6H SiC, the UD and Frenkel pair were shown to have a large dependence of their intrinsic zero field interaction parameters on the temperature, while the vacancies are temperature independent. The application of the UD and Frenkel pair as temperature sensor, and of the vacancies as a vector magnetic field sensor is discussed. KW - ODMR-Spektroskopie KW - Organischer Halbleiter KW - quantum center KW - Siliciumcarbid KW - Nanoröhre Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106308 ER - TY - THES A1 - Gorenflot, Julien François T1 - Optical study of the excited states in the semiconducting polymer poly(3-hexylthiophene) for photovoltaic applications T1 - Untersuchung angeregter Zustände des halbleitenden Polymers Poly(3-hexylthiophene) mittels optischer Spektroskopie für Anwendungen in der Photovoltaik N2 - In the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the first obstacle to overcome for photocurrent generation in organic solar cell and the reason for the use of two materials, whose heterojunction act as a driving force for charge separation. We developed an original photoluminescence-detected field-induced exciton quenching method to investigate this energy. Absorption and photoluminescence spectra of pure P3HT show that, while both amorphous and crystalline domains participate in absorption, the energy is then transferred to the crystalline domains, from where the photoluminescence is exclusively originating. The field dependence of this photoluminescence showed that an energy of no less than 420 meV is necessary to split excitons into non photon-emitting species. Comparing those results with energy levels obtained by absorption and photoelectron spectroscopies, confirmed that the formation of those species is only a first step toward dissociation into free charges. Indeed, photoemission spectroscopy and the onset of photocurrent upon increasing the photon energy in a pure P3HT solar cell, concomitantly show that the energy level of a pair of free polarons is located 0.7 eV above the one of the exciton. The comprehensive analysis of those results originating from those different method enable us to draw a global picture of the states and energies involved in free polarons generation in pure material. This work has been widely acknowledged by the scientific community, published in Physical Review B in 2010 [1] and presented in national [2] and international [3] conferences. The spectroscopy of excited states is used to detect the presence of wanted species (charges) and potentially unwanted neutral species upon photoexcitation. As such, it offers us the possibility to qualify the efficiency of charge generation and, if any, identify the competing processes and the generation of unwanted species. In the frame of the European Marie Curie Research Network SolarNType,[4] this possibility was used - in combination with morphological, charge transport and devices characterizationsn - to study a number of new donor:acceptor blends. Thanks to those techniques, we were able to not only quantify the potential of those blends, but also to provide the chemist laboratories with a precious and detailed feedback on the strengths and weakness of the molecules, regarding charge generation, transport and extraction. The detailed study of terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application was published in the peer review journal Synthetic Metals and was chosen to illustrate the cover page of the issue [5]. Finally, in the last chapter, we have used time resolved photoinduced absorption to improve the understanding of the charge carrier loss mechanisms in P3HT:PCBM active layers. This comprehension is of prime importance because, the fact that this recombination is far weaker than expected from the Langevin theory, enable polarons to travel further without recombining and thus to build thicker and more efficient devices. A comprehensive analysis of steady-state PIA spectra of pure P3HT, indicates that probing at 980 nm at a temperature between 140 and 250 K enables to monitor specifically polaron densities in both neat P3HT and P3HT:PCBM. Applying this finding to transient absorption enabled us to monitor, for the first time, the bimolecular recombination in pure P3HT, and to discover that - in sharp contrast with the blend - this recombination was in agreement with the Langevin theory. Moreover, it enables us to pinpoint the important role played by the existence of two materials and of energetical traps in the slow recombination and high recombination orders observed in the blend. This work has been published in the Journal of Applied Physics.[6] Those new insights in the photophysics of polymer:fullerene photoactive layers could have a strong impact on the future developement of those materials. Consistent measurements of the binding energy of excitons and intermediate species, would enable to clarify the role played by excess thermal energy in interfacial states dissociation. Better understanding of blends morphology and its influence on solar cells parameters and in particular on recombination could enable to reproduce the conditions of limited recombination on material systems offering some promising performances but with only limited active layer thicknesses. However, due to the number of parameters involved, further experimentation is required, before we can reach a quantitative modeling of bimolecular recombination. [1] Deibel et al., Phys. Rev. B, 81:085202, 2010 [2] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [3] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014 N2 - In der vorliegenden Arbeit wurden die zugrundeliegenden Mechanismen, die während der Photostromgeneration in Polymer:Fulleren-Solarzellen stattfinden, von der Exzitonengeneration bis zur Ladungsträgerextraktion, mittels spektroskopischer Methoden untersucht. Nach der Absorption eines Photons ist die Exzitonenbindungsenergie das erste zu überwindende Hindernis, um einen Photostrom in organischen Halbleitern zu generieren. Diese begründet die Notwendigkeit, zwei unterschiedliche Halbleitermaterialien zu implementieren, deren energetischer Offset die treibende Kraft für Exzitonentrennung am Heterogrenzfläsche bildet. Zur Erforschung dieser Energie haben wir eine neuartige Methode entwickelt, mit welcher wurden Einfluss eines elektrischen Feldes auf die Exzitonen durch Photolumineszenzmessungen quantifizieren können. Aus Absorptions- und Photolumineszenzspektren ist ersichtlich, dass im reinen P3HT sowohl amorphe als auch kristalline Bereiche zur Absorption beitragen. Daraufhin erfolgt ein anschließender effektiver. Energietransfer zu den kristallinen Domänen, der durch die ausschließlich in diesen Bereichen auftretende Photolumineszenz nachgewiesen wird. Diese Exzitonen sind als interchain excitons bekannt, die bereits bei 0.42 eV; in nicht emittierende Spezies dissoziiert werden können, wie unsere feldabhängigen Photolumineszenzmessungen zeigen. Mit Hilfe komplementärer Methoden konnten wir nachweisen, dass diese Dissoziation nur ein erster Schritt zur Generation freier Ladungsträger ist. So konnte durch Photoelektronenspektroskopie 10 und Messungen der externen Quanteneffizienz gezeigt werden, dass die Erstellung freier Ladungsträger 0.7 eV benötigt. Die zusammenführende Analyse dieser Ergebnisse ermöglicht die Erstellung eines umfassenden Bildes der für die Photostromgeneration relevanten Energieniveaus in reinem P3HT. Desweiteren wurden die Ergebnisse dieser Arbeit national [1] als auch international [2] auf Konferenzen präsentiert und im Jahr 2010 in Physical Review B [3] publiziert. Die Tatsache, dass diese bereits über 50 mal zitiert wurden, verdeutlicht die große Bedeutung der erlangten Resultate. Durch die Verwendung der Quasi-Steady-State-Spektroskopie angeregter Spezies können unter Beleuchtung erwünschte (Ladungsträger) und unerwünschte (neutrale) Zustände detektiert werden. Im Rahmen des EU-Projekts "SolarNType" [4] wurden dazu mehrere, als Elektronenakzeptor dienende, Moleküle teilnehmender Institutionen untersucht. Mit Hilfe unserer spektroskopischen Methode und durch ergänzende Messungen des Ladunsträgerstransports sowie der Morphologie und Strom-Spannungs-Charakteristiken der Solarzellen waren wir im Stande, nicht nur das Potential dieser Moleküle zu beurteilen, sondern auch unseren Projektmitarbeitern detaillierte und wertvolle Informationen über die Stärken und Schwächen der von ihnen synthetisierten Materialien zu geben. Die detaillierte Untersuchung von terrylene-3,4:11,12-bis(dicarboximide) als Elektronenakzeptor, welche wir für das Max-Planck-Institut in Mainz erstellten, wurde im Jahr 2012 in Synthetic Metals publiziert und für die Titelseite ausgewählt. [5] Im letzten Abschnitt werden die Ergebnisse transienter photoinduzierter Absorptionsmessungen diskutiert, welche zur Bestimmung der Rekombination freier Ladunsträger in P3HT:PCBM Mischschichten durchgeführt wurden. Diese Rekombination ist dafür bekannt, nicht der Langevin-Theorie zu folgen, was für Solarzellen von großer Bedeutung ist. Anstelle von Rekombination zweiter Ordnung nach der Langevin-Theorie, rekombinieren Ladungsträger in dieser Materialkombination unter höherer Ordnung und einem starken zusätzlichen Reduktionsfaktor. Dies hat zur Folge, dass die Ladungsträger weiter difundieren können, was die Erstellung dickerer und daher effizienterer Solarzellen ermöglicht. Durch umfassende Analysen der P3HT Quasi-Steady-State-Spektren wurde einspektraler sowie thermischer Bereich identifiziert, in dem in reinem P3HT ausschließlich Polaronen für die Absorption verantwortlich sind. Die Verwendung dieser Ergebnisse in transienten Absorptionsmessungen ermöglichte es erstmals, das Rekombinationsverhalten in reinen sowie mit PCBM gemischten P3HT Schichten zu vergleichen. Es zeigt sich, dass die Abnahme der Ladungsträgerdichte in reinem P3HT der Langevin-Theorie perfekt folgt. Demzufolge scheint die beobachtete limitierte Rekombination in gemischten P3HT:PCBM-Schichten aus der Präsenz zweier unterschiedlicher Materialien zu resultieren. Nach der Betrachtung mehrerer möglicher Mechanismen kommen wir zu dem Schluss, dass eine Kombination von energetischem Trapping und Phasenseparation für dieses Verhalten verantwortlich ist. Diese Ergebnisse wurden im Jahr 2014 in the Journal of Applied Physics publiziert. [6] Die erlangten neuen Einblicke in die photophysischen Eigenschaften von Polymer:Fulleren-Mischschichten besitzen große Bedeutung für die weitere Entwicklung in diesem Bereich. Systematische Messungen der Bindungsenergien von Exzitonen sowie Polaronenpaaren scheinen eine vielversprechende Methode zu sein, die Bedeutung der Exzitonen-Überschussenergie für die Photostromgeneration zu verstehen. Ein besseres Verständnis der Mischungsmorphologie sowie ihren Einfluss auf die bimolekulare Rekombinationsdynamik bahnt den Weg zur Steigerung der Leistung in vielversprechenden Materialsystemen, die bisher durch die limitierte Dicke der Solarzellen eingeschränkt ist. Allerdings bedingt die große Anzahl an Faktoren, die in diesen Rekombinationsmechanismen eine Rolle spielen, weitere fundierte experimentelle Ergebnisse, bevor eine quantitative Modellierung der Prozesse erreicht werden kann. [1] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [2] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [3] Deibel et al., Phys. Rev. B, 81:085202, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014 KW - Organische Solarzelle KW - Fotovoltaik KW - Organischer Halbleiter KW - Renewable energies KW - Solar energy KW - Excited states spectroscopy KW - Organic semiconductors KW - Semiconductors physics KW - Plastic electronics KW - Excitons KW - Experimental physics KW - Disordered semiconductor KW - Charges recombination KW - Spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116730 ER - TY - THES A1 - Gieseking, Björn T1 - Excitation Dynamics and Charge Carrier Generation in Organic Semiconductors T1 - Anregungsdynamik und Ladungsträgergenerierung in organischen Halbleitern N2 - The transport of optically excited states, called excitons, as well as their conversion into charges define the two major steps allowing for the operation of organic photovoltaic (OPV) devices. Hence, a deep understanding of these processes, the involved mechanisms as well as possible loss channels is crucial for further improving the efficiency of organic solar cells. For studying the aforementioned processes spectroscopic methods like absorption and emission measurements are useful tools. As many of the processes take place on a sub-nanosecond (ns) timescale ultrafast spectroscopic methods are required. Due to this reason two experiments based on a femtosecond laser system were built and employed in this work, namely picosecond (ps) time-resolved photoluminescence (PL) and transient absorption (TA) spectroscopy. By analyzing the PL decay dynamics in the prototypical organic semiconductor rubrene, the feasibility of a new approach for improving the efficiency of organic solar cells by harvesting triplet excitons generated by singlet fission was examined. Singlet fission describes a process where two triplet excitons are generated via a photoexcited singlet exciton precursor state if the energy of the two triplets is comparable with the energy of the singlet. For this purpose the influence of characteristic length scales on the exciton dynamics in different rubrene morphologies exhibiting an increasing degree of confinement was analyzed. The results show that the quenching at interfacial states efficiently suppresses the desired fission process if these states are reached by excitons during migration. Since interfacial states are expected to play a significant role in thin film solar cells and are easily accessible for the migrating excitons, the results have to be considered for triplet-based OPV. While the aforementioned approach is only investigated for model systems so far, the efficiency of disordered organic bulk heterojunction (BHJ) solar cells could be significantly enhanced in the last couple of years by employing new and more complex copolymer donor materials. However, little is known about the photophysics and in particular the excitation dynamics of these systems. By carrying out a systematic optical study on the prominent copolymer PCDTBT and its building blocks we were able to identify the nature of the two characteristic absorption bands and the coupling mechanism between these levels. The latter mechanism is based on an intrachain partial charge transfer between two functional subunits and our time-resolved measurements indicate that this coupling governs the photophysical properties of solar cells based on these copolymers. The efficient coupling of functional subunits can be seen as a key aspect that guarantees for the success of the copolymer approach. Another important issue concerns the optimization of the morphology of BHJ solar cells. It arises from the discrepancy between the exciton diffusion length \mbox{($\approx$ 10 nm)} and the absorption length of solar irradiation ($\approx$ 100 nm). Due to this reason, even for devices based on new copolymer materials, processing parameters affecting the morphology like annealing or employing processing additives are of major importance. In our combined optical, electrical and morphological study for solar cells based on the high-efficient copolymer PBDTTT-C we find a direct correlation between additive content and intermixing of the active layer. The observed maximum in device efficiency can be attributed to a morphology guaranteeing for an optimized balance between charge generation and transport. Our results highlight the importance of understanding the influence of processing parameters on the morphology of the BHJ and thus on the efficiency of the device. N2 - Der Transport optischer Anregungen, genannt Exzitonen, sowie deren Umwandlung in Ladungsträger stellen die beiden wesentlichen Mechanismen dar, welche die Funktion von organischer Photovoltaik (OPV) erst ermöglichen. Daher ist ein genaues Verständnis dieser Prozesse, der beteiligten Mechanismen sowie möglicher Verlustkanäle von essentieller Bedeutung, um die Effizienz organischer Solarzellen weiter zu steigern. Für die Untersuchung der genannten Vorgänge bieten sich grundsätzlich spektroskopische Methoden, wie etwa die Untersuchung der Absorptions- und Emissioncharakteristiken, an. Da sich viele der erwähnten Prozesse auf der sub-Nanosekunden (ns) Zeitskala abspielen, werden für deren Unteruchung hoch-zeitaufgelöste Messmethoden benötigt. Aus diesem Grund wurden im Rahmen dieser Arbeit zwei Messmethoden, basierend auf einem Femtosekunden-Lasersystem aufgebaut und verwendet. Hierbei handelt es sich um die Picosekunden (ps) zeitaufgelöste Photolumineszenz-Spektroskopie (PL) und die transiente Absorptionsspektroskopie (TA). Anhand des prototypischen organischen Halbleiters Rubren habe ich mich mit der Fragestellung beschäftigt, inwieweit ein alternativer Ansatz zur Erhöhung der Effizienz von organischen Solarzellen, basierend auf der Nutzung von Triplet Exzitonen, welche durch Singlet Fission generiert wurden, genutzt werden könnte. Bei der Singlet Fission werden aus einem optisch angeregten Singlet Exziton zwei Triplet Exzitonen erzeugt, unter der Voraussetzung, dass die Summe der Energien der beiden Triplets in etwa der Energie des Singlet Exzitons entspricht. Hierfür wurde der Einfluss von charakteristischen Längenskalen auf die Exzitonendynamik in verschiedenen Rubren-Morphologien, die ein zunehmend begrenztes Anregungsvolumen aufweisen, untersucht. Dabei zeigt sich, dass durch den Einfluss von Grenzflächenzuständen der erwünschte Singlet Fission Prozess effizient unterdrückt wird, sollten diese Zustände von Exzitonen während ihrer Migration erreicht werden. Dieser Sachverhalt ist bei einer möglichen Realisierung von Triplet-basierter OPV zu berücksichtigen, da in Dünnschicht-Solarzellen solche Grenzflächenzustände eine relevante Rolle spielen und für Exzitonen gut zugänglich sind. Während der oben genannte Ansatz bis jetzt nur für Modellsysteme untersucht wird, konnte die Effizienz ungeordneter organischer ''bulk heterojunction'' (heterogemisch, BHJ) Solarzellen in den vergangenen Jahren durch die Verwendung neuer, komplexerer Donormaterialen signifikant gesteigert werden. Allerdings war eine genaue Kenntnis der dahinter stehenden Photophysik und insbesondere der Anregungsdynamik dieser Systeme nicht vorhanden. Anhand einer systematischen optischen Studie am prominenten Copolymer PCDTBT und seiner Bausteine konnte die Natur der angeregten Zustände und deren Kopplungsmechanismus, basierend auf einem teilweisen Ladungsübertrag zwischen zwei funktionalen Gruppen des Copolymers identifiziert werden. Die Ergebnisse der zeitaufgelösten Messungen deuten darauf hin, dass dieser interne Kopplungsmechanismus die Photophysik von organischen Solarzellen, basierend auf diesen Copolymeren bestimmt. Diese effiziente Kopplung ist ein wesentlicher Grund für den Erfolg des Copolymerkonzeptes. Ein weiterer wichtiger Aspekt betrifft die Optimierung der Morphologie der aktiven Schicht von BHJ Solarzellen, welcher sich aus der Diskrepanz zwischen Exzitonendiffusionslänge ($\approx$ 10 nm) und Absorptionslänge des Sonnenlichts \mbox{($\approx$ 100 nm)} ergibt. Aus diesem Grund sind auch bei BHJ Zellen, basierend auf neuartigen Copolymeren die Prozessparameter, welche die Morphologie beeinflussen --- wie das Ausheizen der Zelle oder die Zugabe von Additiven --- von großer Bedeutung. Unsere kombinierte optische, elektrische und morphologische Studie an Solarzellen, basierend auf dem hocheffizienten Copolymer PBDTTT-C zeigt dabei einen direkten Zusammenhang von Additivkonzentration und Durchmischungsgrad der aktiven Schicht. Das beobachtete Effizienzmaximum ergibt sich dabei für diejenige Morphologie, welche ein optimiertes Gleichgewicht zwischen Erzeugung und Transport von Ladungsträgern aufweist. Die Ergebnisse verdeutlichen, wie wichtig das Verständnis der Auswirkungen einzelner Prozessparameter auf die Morphologie und damit die Effizienz von BHJ Solarzellen ist. KW - Organische Solarzelle KW - Photovoltaik KW - Organischer Halbleiter KW - Charge Carrier Generation KW - Singlet Fission KW - Experimental Physics KW - Ultrafast Spectroscopy KW - Organic Semiconductors KW - Organic Photovoltaics KW - Excitons Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101625 ER -