TY - THES A1 - Kanmegne Tamga, Dan Emmanuel T1 - Modelling Carbon Sequestration of Agroforestry Systems in West Africa using Remote Sensing T1 - Modellierung der Kohlenstoffbindung von agroforstwirtschaftlichen Systemen in Westafrika mittels Fernerkundung N2 - The production of commodities such as cocoa, rubber, oil palm and cashew, is the main driver of deforestation in West Africa (WA). The practiced production systems correspond to a land managment approach referred to as agroforestry systems (AFS), which consist of managing trees and crops on the same unit of land.Because of the ubiquity of trees, AFS reported as viable solution for climate mitigation; the carbon sequestrated by the trees could be estimated with remote sensing (RS) data and methods and reported as emission reduction efforts. However, the diversity in AFS in relation to their composition, structure and spatial distribution makes it challenging for an accurate monitoring of carbon stocks using RS. Therefore, the aim of this research is to propose a RS-based approach for the estimation of carbon sequestration in AFS across the climatic regions of WA. The main objectives were to (i) provide an accurate classification map of AFS by modelling the spatial distribution of the classification error; (ii) estimate the carbon stock of AFS in the main climatic regions of WA using RS data; (iii) evaluate the dynamic of carbon stocks within AFS across WA. Three regions of interest (ROI) were defined in Cote d'Ivoire and Burkina Faso, one in each climatic region of WA namely the Guineo-Congolian, Guinean and Sudanian, and three field campaigns were carried out for data collection. The collected data consisted of reference points for image classification, biometric tree measurements (diameter, height, species) for biomass estimation. A total of 261 samples were collected in 12 AFS across WA. For the RS data, yearly composite images from Sentinel-1 and -2 (S1 and S2), ALOS-PALSAR and GEDI data were used. A supervised classification using random forest (RF) was implemented and the classification error was assessed using the Shannon entropy generated from the class probabilities. For carbon estimation, different RS data, machine learning algorithms and carbon reference sources were compared for the prediction of the aboveground biomass in AFS. The assessment of the carbon dynamic was carried between 2017 and 2021. An average carbon map was genrated and use as reference for the comparison of annual carbon estimations, using the standard deviation as threshold. As far as the results are concerned, the classification accuracy was higher than 0.9 in all the ROIs, and AFS were mainly represented by rubber (38.9%), cocoa (36.4%), palm (10.8%) in the ROI-1, mango (15.2%) and cashew (13.4%) in ROI-2, shea tree (55.7%) and African locust bean (28.1%) in ROI-3. However, evidence of misclassification was found in cocoa, mango, and shea butter. The assessment of the classification error suggested that the error level was higher in the ROI-3 and ROI-1. The error generated from the entropy was able to reduced the level of misclassification by 63% with 11% of loss of information. Moreover, the approach was able to accuretely detect encroachement in protected areas. On carbon estimation, the highest prediction accuracy (R²>0.8) was obtained for a RF model using the combination of S1 and S2 and AGB derived from field measurements. Predictions from GEDI could only be used as reference in the ROI-1 but resulted in a prediction error was higher in cashew, mango, rubber and cocoa plantations, and the carbon stock level was higher in African locust bean (43.9 t/ha), shea butter (15 t/ha), cashew (13.8 t/ha), mango (12.8 t/ha), cocoa (7.51 t/ha) and rubber (7.33 t/ha). The analysis showed that carbon stock is determined mainly by the diameter (R²=0.45) and height (R²=0.13) of trees. It was found that crop plantations had the lowest biodiversity level, and no significant relationship was found between the considered biodiversity indices and carbon stock levels. The assessment of the spatial distribution of carbon sources and sinks showed that cashew plantations are carbon emitters due to firewood collection, while cocoa plantations showed the highest potential for carbon sequestration. The study revealed that Sentinel data could be used to support a RS-based approach for modelling carbon sequestration in AFS. Entropy could be used to map crop plantations and to monitor encroachment in protected areas. Moreover, field measurements with appropriate allometric models could ensure an accurate estimation of carbon stocks in AFS. Even though AFS in the Sudanian region had the highest carbon stocks level, there is a high potential to increase the carbon level in cocoa plantations by integrating and/or maintaining forest trees. N2 - Die Produktion von Rohstoffen wie Kakao, Kautschuk, Ölpalmen und Cashew ist die Hauptursache fur die Entwaldung in Westafrika (WA). Die verwendeten Produktionssyteme entsprechen einem Landbewirtschaftungskonzept, welches als Agroforstsysteme (AFS) bezeichnet wird und darin besteht, Baume und Nutzpflanzen auf der gleichen Landeinheit zu bewirtschaften. Aufgrund der kohlenstoffbindung durch Baumen sind AFS als praktikable Losung fur den Klimaschutz anerkannt, die Vielfalt der AFS in Bezug auf ihre Zusammensetzung, Struktur un raumliche Verteilung erschwert jedoch eine genaue Schatzung der Kohlenstoffvorrate. Hier konnen Daten und Methoden der satellitenbasierten Erdbeobachtung ansetzten. Ziel dieser Forschungsarbeit ist es daher, einen fernerkundungs-basierten Ansatz fur die Schatzung der Kohlenstoffbindung in AFS in den Klimaregionen von WA vorzuschlagen. Die Hauptziele waren (i) die Erstellung einer genauen Klassifizierungskarte von AFS durch Modellierung der raumlichen verteilung des Klassifizierungsfehlers; (ii) die Shatzung des Kohlenstoffbestands von AFS in den wichtigsten Klimaregionen von WA unter Verwendung von Fernerkundungs-daten (RS); (iii) die Bewertung der raumlichen Verteilung von Kohlenstoffquellen und -senken innerhalb von AFS in ganz WA. Fur jede Klimaregion in West Afrika wurden drei Regionen von Interesse (ROI) festgelegt, namlich die guineisch-kongolesische (ROI 1), die guineische (ROI 2) und die sudanesische Region (ROI 3) in Côte d'Ivoire und Burkina Faso, und es wurden drei Feldkampagnen zur Datenerhebung durchgefuhrt. Die gesammelten Daten bestanden aus Referenzpunkten fur die Bildklassifizierung und biometrischen Messungen (Durchmesser, Hohe, Artname) zur Schatzung der Biomasse. Insgesamt wurden 261 Proben in 12 AFS in ganz WA gesammelt. Fur die RS-Daten wurden jahrliche Komposite von Sentinel-1 und -2 (s1 und S3), ALOS-PALSAR und GEDI-Daten verwendet. Es wurde eine uberwachte Klassifizierung mit Random Forest (RF) algorithmus durch gefuhrt, und der Klassifizierungsfehler wurde anhand der aus den Klassenwahrscheinlichkeiten generierten Shannon-Entropie bewertet. Fur die Kohlenstoffschatzung wurden verschiedene RS-Daten, Algorithmen fur maschinelles Lernen und Kohlenstoff-Referenzquellen fur die Vorhesage des Kohlenstoffs in AFS verglichen. Die Bewertung der raumlichen Verteilung von Kohlenstoffsenken und -quellen basierte auf der Bewertung von Anomalien in der Kohlenstoffdynamik zwischen 2017 und 2021. Es wurde eine Karte zum durchschnittliche gebundenen Kohkenstoff erstellt, und die jahrliche Differenz wurde verwendet, um Kohlenstoffsenken und -quellen zu identifizieren. Die Klassifizierungsgenauigkeit war in allen ROI hoher als 0.9, in der Region dominierten Kautschuk (38.9%), Kakao (36.4%), Palme (10.8%) in ROI-1, Mango (15.2%) und Cashew (13.4%) in ROI-2, Sheabaum (55.7%) und Johannisbrot (28.1%) in ROI-3. Hinweise auf eine Fehlklassifizierung wurden vor allem bei Kakao, Mango un Sheabutter gefunden. Die Bewertung des Klassifizierungsfehlers ergab, dass das Fehlerniveau in ROI-3 und ROI-1 hoher war. Der aus der Entropie generiete Fehler konnte das Ausmass der Fehlklassifizierung reduzieren, ohne die gut klassifizierten Pixel zu beeintrachtigen. Ausserdem war der Ansatz in der Lage, Eingriffe in Schutzgebiete zuverlassig un akkurat zu erkennen. Was die Kohlenstoffschatzung betrifft, so wrude die hochste Vorhersagegenauigkeit (R²> 0.8)bei der Kombination von S1 und S2 mit Random Forest und AGB aus Feldmessungen erzielt. Vorhersagen von GEDI konnten nur als Referenz in der ROI verwendet werden, fuhrten aber zu einem Vorhersagefehler bei Cashew-, Mango-, Kautschuk- und Kakaoplantagen hoher war und der Kohlenstoffbestand bei Johannisbrot (43.9t/ha), Sheabutter (15 t/ha), Cashew (13.8 t/ha), Mango (12.8t/ha), Kakao (7.51 t/ha) und Kautschuk (7.33 t/ha) hoher war. Die Analyse zeigte, dass der Kohlenstoffbestand hauptsachlich durch den Durchmesser (R²=0.45) und die Hohe (R²=0.13) der Baume beeinflusst wird. Zudem wurde festgestellt, dass Plantagenkulturen die geringste Biodiversitat aufweisen, und es wurde kein signifikanter Zusammenhang zwischen Biodiversitatsindizes und Kohlenstoffvorraten festgestellt. Die Bewertung der raumlichen Verteilung von Kohlenstoffquellen und -senken zeigte, dass Cashew ein Kohlenstoffemittent ist, da in dieser Region Brennholz gesammelt wird, wahrend Kakaoplantagen wichtige Kohlenstoffsenken sind. Die Studie ergab zudem, dass Sentinel-Daten zur Unterstutzung eines RS-basierten Ansatzes fur die Modellierung der Kohlenstoffbindung in AFS verwendet werden konnten. Die Entropie konnte zur Kartierung von Anbauplantagen und zur uberwachen von Schutzgebiete verwendet werden. Daruber hinaus gewahrleisten feldmessungen mit geeigneten allometrischen Modellen eine genaue Schatzung der Kohlenstoffvorrate in AFS. Die AFS in der sudanesischen Region weisen die hochsten Kohlenstoffvorrate auf, aber es besteht die Moglichkeit, den Kohlenstoffgehalt in Kakaoplantagen durch die Integration und/oder Erhaltung von Waldbaumen zu erhoehen. KW - Sequestrierung KW - Fernerkundung KW - Westafrika KW - carbon sequestration KW - agroforestry systems KW - remote sensing KW - West Africa Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-369269 ER - TY - JOUR A1 - Reinermann, Sophie A1 - Asam, Sarah A1 - Gessner, Ursula A1 - Ullmann, Tobias A1 - Kuenzer, Claudia T1 - Multi-annual grassland mowing dynamics in Germany BT - spatio-temporal patterns and the influence of climate, topographic and socio-political conditions JF - Frontiers in Environmental Science N2 - Introduction: Grasslands cover one third of the agricultural area in Germany and are mainly used for fodder production. However, grasslands fulfill many other ecosystem functions, like carbon storage, water filtration and the provision of habitats. In Germany, grasslands are mown and/or grazed multiple times during the year. The type and timing of management activities and the use intensity vary strongly, however co-determine grassland functions. Large-scale spatial information on grassland activities and use intensity in Germany is limited and not openly provided. In addition, the cause for patterns of varying mowing intensity are usually not known on a spatial scale as data on the incentives of farmers behind grassland management decisions is not available. Methods: We applied an algorithm based on a thresholding approach utilizing Sentinel-2 time series to detect grassland mowing events to investigate mowing dynamics in Germany in 2018–2021. The detected mowing events were validated with an independent dataset based on the examination of public webcam images. We analyzed spatial and temporal patterns of the mowing dynamics and relationships to climatic, topographic, soil or socio-political conditions. Results: We found that most intensively used grasslands can be found in southern/south-eastern Germany, followed by areas in northern Germany. This pattern stays the same among the investigated years, but we found variations on smaller scales. The mowing event detection shows higher accuracies in 2019 and 2020 (F1 = 0.64 and 0.63) compared to 2018 and 2021 (F1 = 0.52 and 0.50). We found a significant but weak (R2 of 0–0.13) relationship for a spatial correlation of mowing frequency and climate as well as topographic variables for the grassland areas in Germany. Further results indicate a clear value range of topographic and climatic conditions, characteristic for intensive grassland use. Extensive grassland use takes place everywhere in Germany and on the entire spectrum of topographic and climatic conditions in Germany. Natura 2000 grasslands are used less intensive but this pattern is not consistent among all sites. Discussion: Our findings on mowing dynamics and relationships to abiotic and socio-political conditions in Germany reveal important aspects of grassland management, including incentives of farmers. KW - remote sensing KW - Sentinel-2 KW - time series KW - cutting KW - management KW - pasture KW - meadow KW - Earth observation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320700 SN - 2296-665X VL - 11 ER - TY - JOUR A1 - Kunz, Julius A1 - Ullmann, T. A1 - Kneisel, C. A1 - Baumhauer, R. T1 - Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada JF - Arctic, Antarctic, and Alpine Research N2 - The development of retrogressive thaw slumps (RTS) is known to be strongly influenced by relief-related parameters, permafrost characteristics, and climatic triggers. To deepen the understanding of RTS, this study examines the subsurface characteristics in the vicinity of an active thaw slump, located in the Richardson Mountains (Western Canadian Arctic). The investigations aim to identify relationships between the spatiotemporal slump development and the influence of subsurface structures. Information on these were gained by means of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). The spatiotemporal development of the slump was revealed by high-resolution satellite imagery and unmanned aerial vehicle–based digital elevation models (DEMs). The analysis indicated an acceleration of slump expansion, especially since 2018. The comparison of the DEMs enabled the detailed balancing of erosion and accumulation within the slump area between August 2018 and August 2019. In addition, manual frost probing and GPR revealed a strong relationship between the active layer thickness, surface morphology, and hydrology. Detected furrows in permafrost table topography seem to affect the active layer hydrology and cause a canalization of runoff toward the slump. The three-dimensional ERT data revealed a partly unfrozen layer underlying a heterogeneous permafrost body. This may influence the local hydrology and affect the development of the RTS. The results highlight the complex relationships between slump development, subsurface structure, and hydrology and indicate a distinct research need for other RTSs. KW - retrogressive thaw slump KW - permafrost KW - spatiotemporal slump development KW - near-surface geophysics KW - remote sensing Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350147 SN - 1523-0430 VL - 55 IS - 1 ER - TY - JOUR A1 - Reiners, Philipp A1 - Sobrino, José A1 - Kuenzer, Claudia T1 - Satellite-derived land surface temperature dynamics in the context of global change — a review JF - Remote Sensing N2 - Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites. KW - remote sensing KW - land surface temperature KW - temperature KW - dynamics KW - global change KW - climate change KW - global warming KW - earth observation KW - review Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311120 SN - 2072-4292 VL - 15 IS - 7 ER - TY - JOUR A1 - Klein, Igor A1 - Cocco, Arturo A1 - Uereyen, Soner A1 - Mannu, Roberto A1 - Floris, Ignazio A1 - Oppelt, Natascha A1 - Kuenzer, Claudia T1 - Outbreak of Moroccan locust in Sardinia (Italy): a remote sensing perspective JF - Remote Sensing N2 - The Moroccan locust has been considered one of the most dangerous agricultural pests in the Mediterranean region. The economic importance of its outbreaks diminished during the second half of the 20th century due to a high degree of agricultural industrialization and other human-caused transformations of its habitat. Nevertheless, in Sardinia (Italy) from 2019 on, a growing invasion of this locust species is ongoing, being the worst in over three decades. Locust swarms destroyed crops and pasture lands of approximately 60,000 ha in 2022. Drought, in combination with increasing uncultivated land, contributed to forming the perfect conditions for a Moroccan locust population upsurge. The specific aim of this paper is the quantification of land cover land use (LCLU) influence with regard to the recent locust outbreak in Sardinia using remote sensing data. In particular, the role of untilled, fallow, or abandoned land in the locust population upsurge is the focus of this case study. To address this objective, LCLU was derived from Sentinel-2A/B Multispectral Instrument (MSI) data between 2017 and 2021 using time-series composites and a random forest (RF) classification model. Coordinates of infested locations, altitude, and locust development stages were collected during field observation campaigns between March and July 2022 and used in this study to assess actual and previous land cover situation of these locations. Findings show that 43% of detected locust locations were found on untilled, fallow, or uncultivated land and another 23% within a radius of 100 m to such areas. Furthermore, oviposition and breeding sites are mostly found in sparse vegetation (97%). This study demonstrates that up-to-date remote sensing data and target-oriented analyses can provide valuable information to contribute to early warning systems and decision support and thus to minimize the risk concerning this agricultural pest. This is of particular interest for all agricultural pests that are strictly related to changing human activities within transformed habitats. KW - agricultural pests KW - food security KW - remote sensing KW - locust outbreak KW - abandoned land KW - Sentinel-2 KW - Dociostaurus maroccanus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297232 SN - 2072-4292 VL - 14 IS - 23 ER - TY - JOUR A1 - Ansah, Christabel Edena A1 - Abu, Itohan-Osa A1 - Kleemann, Janina A1 - Mahmoud, Mahmoud Ibrahim A1 - Thiel, Michael T1 - Environmental contamination of a biodiversity hotspot — action needed for nature conservation in the Niger Delta, Nigeria JF - Sustainability N2 - The Niger Delta belongs to the largest swamp and mangrove forests in the world hosting many endemic and endangered species. Therefore, its conservation should be of highest priority. However, the Niger Delta is confronted with overexploitation, deforestation and pollution to a large extent. In particular, oil spills threaten the biodiversity, ecosystem services, and local people. Remote sensing can support the detection of spills and their potential impact when accessibility on site is difficult. We tested different vegetation indices to assess the impact of oil spills on the land cover as well as to detect accumulations (hotspots) of oil spills. We further identified which species, land cover types, and protected areas could be threatened in the Niger Delta due to oil spills. The results showed that the Enhanced Vegetation Index, the Normalized Difference Vegetation Index, and the Soil Adjusted Vegetation Index were more sensitive to the effects of oil spills on different vegetation cover than other tested vegetation indices. Forest cover was the most affected land-cover type and oil spills also occurred in protected areas. Threatened species are inhabiting the Niger Delta Swamp Forest and the Central African Mangroves that were mainly affected by oil spills and, therefore, strong conservation measures are needed even though security issues hamper the monitoring and control. KW - nature conservation KW - NDVI KW - pollution KW - remote sensing KW - species KW - vegetation indices KW - oil spill Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297214 SN - 2071-1050 VL - 14 IS - 21 ER - TY - JOUR A1 - Kacic, Patrick A1 - Kuenzer, Claudia T1 - Forest biodiversity monitoring based on remotely sensed spectral diversity — a review JF - Remote Sensing N2 - Forests are essential for global environmental well-being because of their rich provision of ecosystem services and regulating factors. Global forests are under increasing pressure from climate change, resource extraction, and anthropologically-driven disturbances. The results are dramatic losses of habitats accompanied with the reduction of species diversity. There is the urgent need for forest biodiversity monitoring comprising analysis on α, β, and γ scale to identify hotspots of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal resolutions. Concepts of remotely sensed spectral diversity have been identified as promising methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review provides a first time focus on the three spectral diversity concepts “vegetation indices”, “spectral information content”, and “spectral species” for forest biodiversity monitoring based on airborne and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify multispectral sensors as primary data source which underlines the focus on optical diversity as a proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral information content. In recent years, the spectral species concept has raised attention and has been applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral communities. Novel remote sensing processing capacities and the provision of complementary remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future. KW - forest KW - biodiversity KW - alpha diversity KW - beta diversity KW - gamma diversity KW - spectral variation hypothesis KW - spectral diversity KW - optical diversity KW - satellite data KW - remote sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290535 SN - 2072-4292 VL - 14 IS - 21 ER - TY - JOUR A1 - Ha, Tuyen V. A1 - Huth, Juliane A1 - Bachofer, Felix A1 - Kuenzer, Claudia T1 - A review of Earth observation-based drought studies in Southeast Asia JF - Remote Sensing N2 - Drought is a recurring natural climatic hazard event over terrestrial land; it poses devastating threats to human health, the economy, and the environment. Given the increasing climate crisis, it is likely that extreme drought phenomena will become more frequent, and their impacts will probably be more devastating. Drought observations from space, therefore, play a key role in dissimilating timely and accurate information to support early warning drought management and mitigation planning, particularly in sparse in-situ data regions. In this paper, we reviewed drought-related studies based on Earth observation (EO) products in Southeast Asia between 2000 and 2021. The results of this review indicated that drought publications in the region are on the increase, with a majority (70%) of the studies being undertaken in Vietnam, Thailand, Malaysia and Indonesia. These countries also accounted for nearly 97% of the economic losses due to drought extremes. Vegetation indices from multispectral optical remote sensing sensors remained a primary source of data for drought monitoring in the region. Many studies (~21%) did not provide accuracy assessment on drought mapping products, while precipitation was the main data source for validation. We observed a positive association between spatial extent and spatial resolution, suggesting that nearly 81% of the articles focused on the local and national scales. Although there was an increase in drought research interest in the region, challenges remain regarding large-area and long time-series drought measurements, the combined drought approach, machine learning-based drought prediction, and the integration of multi-sensor remote sensing products (e.g., Landsat and Sentinel-2). Satellite EO data could be a substantial part of the future efforts that are necessary for mitigating drought-related challenges, ensuring food security, establishing a more sustainable economy, and the preservation of the natural environment in the region. KW - drought KW - drought impact KW - agricultural drought KW - hydrological drought KW - meteorological drought KW - earth observation KW - remote sensing KW - Southeast Asia KW - Mekong Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286258 SN - 2072-4292 VL - 14 IS - 15 ER - TY - JOUR A1 - Sogno, Patrick A1 - Klein, Igor A1 - Kuenzer, Claudia T1 - Remote sensing of surface water dynamics in the context of global change — a review JF - Remote Sensing N2 - Inland surface water is often the most accessible freshwater source. As opposed to groundwater, surface water is replenished in a comparatively quick cycle, which makes this vital resource — if not overexploited — sustainable. From a global perspective, freshwater is plentiful. Still, depending on the region, surface water availability is severely limited. Additionally, climate change and human interventions act as large-scale drivers and cause dramatic changes in established surface water dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires informed decision making based on reliable environmental data. Monitoring inland surface water dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in a number of ways by using optical as well as active and passive microwave sensors. In this review, we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic foci, and their spatial distribution. We observe that a wide array of available sensors and datasets, along with increasing computing capacities, have shaped the field over the last years. Multiple global analysis-ready products are available for investigating surface water area dynamics, but so far none offer high spatial and temporal resolution. KW - remote sensing KW - surface water KW - dynamics KW - global change KW - earth observation KW - hydrology KW - biosphere KW - anthroposphere KW - review Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275274 SN - 2072-4292 VL - 14 IS - 10 ER - TY - JOUR A1 - Reinermann, Sophie A1 - Gessner, Ursula A1 - Asam, Sarah A1 - Ullmann, Tobias A1 - Schucknecht, Anne A1 - Kuenzer, Claudia T1 - Detection of grassland mowing events for Germany by combining Sentinel-1 and Sentinel-2 time series JF - Remote Sensing N2 - Grasslands cover one-third of the agricultural area in Germany and play an important economic role by providing fodder for livestock. In addition, they fulfill important ecosystem services, such as carbon storage, water purification, and the provision of habitats. These ecosystem services usually depend on the grassland management. In central Europe, grasslands are grazed and/or mown, whereby the management type and intensity vary in space and time. Spatial information on the mowing timing and frequency on larger scales are usually not available but would be required in order to assess the ecosystem services, species composition, and grassland yields. Time series of high-resolution satellite remote sensing data can be used to analyze the temporal and spatial dynamics of grasslands. Within this study, we aim to overcome the drawbacks identified by previous studies, such as optical data availability and the lack of comprehensive reference data, by testing the time series of various Sentinel-2 (S2) and Sentinal-1 (S1) parameters and combinations of them in order to detect mowing events in Germany in 2019. We developed a threshold-based algorithm by using information from a comprehensive reference dataset of heterogeneously managed grassland parcels in Germany, obtained by RGB cameras. The developed approach using the enhanced vegetation index (EVI) derived from S2 led to a successful mowing event detection in Germany (60.3% of mowing events detected, F1-Score = 0.64). However, events shortly before, during, or shortly after cloud gaps were missed and in regions with lower S2 orbit coverage fewer mowing events were detected. Therefore, S1-based backscatter, InSAR, and PolSAR features were investigated during S2 data gaps. From these, the PolSAR entropy detected mowing events most reliably. For a focus region, we tested an integrated approach by combining S2 and S1 parameters. This approach detected additional mowing events, but also led to many false positive events, resulting in a reduction in the F1-Score (from 0.65 of S2 to 0.61 of S2 + S1 for the focus region). According to our analysis, a majority of grasslands in Germany are only mown zero to two times (around 84%) and are probably additionally used for grazing. A small proportion is mown more often than four times (3%). Regions with a generally higher grassland mowing frequency are located in southern, south-eastern, and northern Germany. KW - earth observation KW - remote sensing KW - harvests KW - cutting events KW - grazing KW - pasture KW - meadow KW - optical KW - SAR KW - PolSAR KW - InSAR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267164 SN - 2072-4292 VL - 14 IS - 7 ER -