TY - THES A1 - Lies, Barbara Christiane T1 - Untersuchung zur NO/cGMP-Signaltransduktion in der glatten Muskulatur von NO-GC-defizienten Mäusen T1 - Investigation of NO/cGMP signaltransduction in smooth muscle of NO-GC-deficient mice N2 - Die Stickstoffmonoxid (NO)/cGMP-Signaltransduktion besitzt eine entscheidende Rolle bei der Tonusregulation der glatten Muskulatur. Dabei ist NO neben seiner herausragenden Bedeutung für das vaskuläre System einer der wichtigsten inhibitorischen Neurotransmitter im Gastrointestinaltrakt. Die Wirkung von NO beruht hauptsächlich auf der Aktivierung der NO-sensitiven Guanylyl-Cyclase (NO-GC), die aus zwei Untereinheiten aufgebaut ist (α und ß). Die Deletion der ß1-Untereinheit in Mäusen resultiert in einem vollständigen NO-GC-Knockout (GCKO). Im Gastrointestinaltrakt ist die Expression von NO-GC in glatten Muskelzellen (SMC), interstitiellen Zellen von Cajal (ICC) und Fibroblasten-ähnlichen Zellen (FLC) nachgewiesen. In dieser Arbeit wurde die Bedeutung des NO/cGMP-Signalweges für die Regulation von Kontraktion und Relaxation innerhalb dieser drei Zelltypen anhand von zellspezifischen GCKO-Tieren untersucht. SMC- und ICC-spezifische GCKO-Tiere waren bereits vorhanden. FLC-spezifische GCKO-Tiere wurden generiert und mit den vorhandenen ICC- und SMC-GCKO-Linien gekreuzt, um Doppel- und Tripel-Knockout-Tiere zu erhalten. FLC-GCKO-Tiere zeigen eine NO-induzierte Relaxation glattmuskulären Gewebes, die der von WT-Tieren gleicht. Auch Gewebe von FLC/ICC- und FLC/SM-GCKO-Tieren kann durch NO relaxiert werden. Erst die Deletion der NO-GC in allen drei Zelltypen (Tripel-GCKO) führt zu einer Unterbrechung der NO-Relaxation, wie sie aus GCKO-Tieren bekannt ist. Überraschenderweise zeigt sich bei FLC-GCKO-Tieren eine beschleunigte Darmpassagezeit. Die Ergebnisse dieser Arbeit lassen darauf schließen, dass die NO-GC in allen drei Zelltypen des Gastrointestinaltrakts an der nitrergen Signaltransduktion beteiligt ist, wenn auch auf unterschiedliche Weise. Es besteht demnach eine Interaktion zwischen den verschiedenen Zelltypen, die durch weiterführende Versuche mit den vorhandenen Doppel-Knockout-Tieren sowie der Tripel-GCKO-Linie nähergehend untersucht werden muss. Der zweite Teil der Arbeit beschäftigte sich mit der Rolle der NO-GC im unteren Harntrakt. Dort liegt die NO-GC in verschieden Zelltypen vor. In Urethra-Gewebe wird die NO-GC ausschließlich in SMC exprimiert, während sie in der Harnblase einzig in interstitiellen Zellen, nicht aber in SMC, befindet. Funktionell hat dies zur Folge, dass die NO-induzierte Urethra-Relaxation ausschließlich von glatten Muskelzellen vermittelt wird. Die Harnblasenmuskulatur hingegen zeigt keine Relaxation auf NO-Gabe hin. Die Identifizierung der NO-GC-exprimierenden interstitiellen Zellen sowie ihre Funktion sind bislang ungeklärt. In einem dritten Projekt wurden Untersuchungen zur Effektivität der NO-GC-Inhibitoren ODQ und NS2028 durchgeführt. Die Ergebnisse zeigen, dass bei einem Einsatz der Inhibitoren nicht von einer vollständigen Hemmung der NO-GC ausgegangen werden sollte. Drei Faktoren beeinflussen nachhaltig die Inhibitor-Effektivität: (1) die Klasse des NO-Donors, (2) die Inkubationszeit mit dem Inhibitor und dem NO-Donor sowie (3) die Stärke der Vorkontraktion bei Versuchen mit Glattmuskelgewebe. Die Wahl dieser Parameter bestimmt, in welchem Ausmaß ODQ und NS2028 die NO-stimulierte NO GC inhibieren können. Aus diesem Projektteil resultiert, dass man den Einsatz dieser Inhibitoren nicht, wie vielfach in der Literatur vorzufinden, als Beweis für cGMP unabhängige Effekte nutzen sollte. N2 - The nitric oxide (NO)/cGMP signal transduction has a prominent role in the control of smooth muscle tone. Besides its outstanding function in vascular relaxation NO is a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. It acts predominantly via NO-sensitive guanylyl cyclase (NO-GC) which consists of two subunits (α and ß). Deletion of the ß1 subunit in the mouse leads to a global NO-GC knockout (GCKO). In the GI tract, expression of NO-GC is detected in smooth muscle cells (SMC), interstitial cells of Cajal (ICC) and fibroblast-like cells (FLC). Using cell-specific knock-out mice the impact of NO/cGMP-signaling on regulation of contraction and relaxation in the respective GI cell types was investigated. SMC- and ICC-specific GCKO mice already existed in our lab whereas FLC-specific GCKO mice were generated and then crossed to obtain double and triple mutants. GI smooth muscle from FLC-GCKO mice shows a WT-like relaxation towards NO. Also tissue from FLC/ICC- and FLC/SM-GCKO mice can be relaxed by addition of NO. Only deletion of NO-GC in all three cell types leads to an abolished relaxation as seen in GCKO tissue. Surprisingly, FLC-GCKO mice show an accelerated gut transit time in comparison to WT animals. These results lead to the conclusion that NO-GC in all three GI cell types mediates nitrergic signaling in smooth muscle, even though in different ways. There seems to be an interaction of the three cell types which needs to be further attended to by investigation of the double- and triple-GCKO mutants. The second part of this project engaged in the investigation of NO-GC in the lower urinary (LU) tract. Here, expression of NO-GC is detected in urethra and urinary bladder. Urethral NO-GC is expressed in SMC whereas in the urinary bladder NO-GC expression can only be detected in interstitial cells. As a consequence, NO-induced urethral relaxation is exclusively dependent on SMC. Bladder smooth muscle does not reveal NO-mediated relaxation. The identification and function of the NO-GC expressing interstitial cells remains to be further investigated. Investigation of the NO-GC inhibitors ODQ and NS2028 shows that their efficiency is dependent on three different factors: (1) class of NO donor, (2) incubation time of the inhibitor and the NO donor and (3) the strength of pre-contraction when using smooth muscle tissue. The choice of these parameters determines to which extent ODQ and NS2028 are able to inhibit NO-GC. For that reason use of these inhibitors should not be taken as proof of cGMP-independent effects. KW - Glatte Muskulatur KW - Gastrointestinaltrakt KW - NO-sensitive Guanylyl-Cyclase KW - unterer Harntrakt KW - NO-sensitive guanylyl cyclase KW - lower urinary tract KW - gastrointestinal tract KW - smooth muscle KW - Maus KW - Knockout KW - Stickstoffoxide KW - Cyclo-GMP KW - Signaltransduktion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85499 ER - TY - THES A1 - Groneberg, Dieter T1 - Funktion der NO-sensitiven Guanylyl-Cyclase in der glatten Muskulatur T1 - The function of NO-sensitive guanylyl cyclase in smooth muscle N2 - Die Stickstoffmonoxid (NO)-cGMP-Signalkaskade spielt eine entscheidende Rolle in der Kontrolle des glatten Muskeltonus. NO ist einer der wichtigsten vaskulären Faktoren für die Relaxation der Blutgefäße sowie für die Regulation des Blutdruckes und fungiert ebenfalls als wichtigster inhibitorischer Neurotransmitter im gastrointestinalen Trakt. Es wirkt hauptsächlich über die NO-sensitive Guanylyl-Cyclase (NO-GC), die aus zwei Untereinheiten aufgebaut ist (α und ß). Deletion der ß1-Untereinheit in Mäusen führt zu einem vollständigen NO-GC-Knockout (GCKO). GCKO-Mäuse zeigen keine NO-induzierte Relaxation der vaskulären und gastrointestinalen glatten Muskulatur. Die Mäuse zeigen eine arterielle Hypertonie und eine verlängerte Magen-Darm-Transportzeit, die in eine gastrointestinale Dysfunktion mündet. Allerdings erlaubt eine vollständige Deletion der NO-GC in den Mäusen keine Identifikation des Zell- bzw. Gewebe-Typs, der für den erhöhten Blutdruck und die gastrointestinale Dysfunktion verantwortlich ist. Um die relative Beteiligung der glatten Muskelzellen an der Hypertonie und der gestörten Darm-Motilität zu bestimmen, wurden Glattmuskel-spezifische Knockout-Mäuse für die ß1-Untereinheit der NO-GC (SM-GCKO) generiert. Die SM-GCKO-Mäuse entwickelten im Verlauf der Deletion eine arterielle Hypertonie in Kombination mit einem Verlust der NO-induzierten Glattmuskelrelaxation. Diese Daten zeigen, dass die Deletion der NO-GC in den glatten Muskelzellen völlig ausreichend ist, eine Hypertonie zu erzeugen. Überraschenderweise ist die Darm-Motilität der SM-GCKO-Mäuse im Vergleich zu den WT-Mäusen unverändert. In gastrointestinaler Muskulatur exprimieren neben den glatten Muskelzellen auch die interstitiellen Zellen von Cajal (ICC) die NO-GC. Mithilfe einer Cre-spezifischen Maus für ICC wurde eine Mauslinie generiert, der die NO-GC in beiden Zelltypen fehlt. Der gastrointestinale Phänotyp dieser Doppel-Knockouts ähnelt dem der totalen GCKO-Tiere: Die nitrerge Relaxation fehlt und die Magen-Darm-Transportzeit ist verlängert. Zusammenfassend führt eine Deletion der NO-GC in glatten Muskelzellen und gleichzeitig in den ICC zu einer vollständigen Unterbrechung der nitrergen Relaxation in GI Trakt. N2 - The nitric oxide (NO)-cGMP signaling pathway plays a prominent role in the control of smooth muscle tone. NO is one of the main vascular factors responsible for the relaxation of blood vessels, regulation of blood pressure and also acts as major inhibitory neurotransmitter in the gastrointestinal (GI) tract. It acts predominantly via NO-sensitive guanylyl cyclase (NO-GC) which is made up of 2 different subunits (α and ß). Deletion of the ß1 subunit in the mouse leads to a global NO-GC knockout (GCKO). GCKO mice do not reveal NO-induced relaxation of vascular and GI smooth muscle. They show hypertension and an increased gut transit time resulting in GI dysfunction. However, global deletion of NO-GC in mice does not allow identification of the cell/tissue type responsible for the elevated blood pressure and GI dysfunction. To determine the relative contribution of smooth muscle cells to the hypertension and GI dysfunction seen in NO-GC knockout mice were generated smooth muscle–specific knockout mice for the ß1 subunit of NO-GC (SM-GCKO) using a tamoxifen-inducible system. SM-GCKO animals develop hypertension over time in combination with a loss of NO-induced smooth muscle relaxation. In sum, these data provide evidence that deletion of NO-GC solely in smooth muscle is sufficient to cause hypertension. Surprisingly, NO-induced relaxation of GI smooth muscle was only slightly reduced in SM-GCKO mice and gut motility was unchanged compared to wild-type mice. Taken together, lack of NO-GC in smooth muscle cells does not impair NO induced relaxation of GI tissues or GI motility. To determine the cell type expressing NO-GC we used immunhistochemistry. We found that, in addition to smooth muscle, interstitial cells of Cajal (ICC) express NO GC. With a Cre specific mouse model for ICC we generated a mouse line lacking NO-GC in both smooth muscle and ICC. In these double knockouts we observed a phenotype similar to that seen in total GCKO mice including lack of nitrergic relaxation and increased gut transit time. In conclusion, lack of NO-GC in both SMC and ICC totally abolishes nitrergic signaling in GI tract. KW - Knockout KW - Glatte Muskulatur KW - Hypertonie KW - Motilität KW - Maus KW - knockout KW - smooth muscle KW - hypertension KW - motility KW - mouse Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67689 ER - TY - THES A1 - von Hayn, Kathrin T1 - Untersuchungen zur Ca2+-abhängigen Regulation von cAMP in intakten vaskulären Myocyten T1 - Analysis of the Ca2+-dependent regulation of cAMP in intact vascular smooth muscle cells N2 - Die Regulation des Tonus glatter Muskelzellen wird entscheidend von den beiden antagonistisch wirkenden second messengern cAMP und Ca2+ beeinflusst. Ein Ziel dieser Arbeit war herauszufinden, ob diese beiden Botenstoffe auch direkten Einfluss aufeinander haben können und welche Enzyme in diesem Fall an den Prozessen beteiligt sind. cAMP-Signale in intakten Zellen konnten wir in Echtzeit mit Hilfe des FRET-basierten cAMP-Sensors Epac1-camps beobachten; Ca2+-Signale durch Markieren der Zellen mit Fura-2. Anstiege der intrazellulären Ca2+-Konzentration in VSMCs wurden durch Aktivierung von endogen exprimierten, Gq-gekoppelten P2Y6-Rezeptoren mit Uridindiphosphat (UDP) ausgelöst. Durch eine zusätzliche in-vitro Kalibrierung des Epac1-camps konnten darüber hinaus absolute cAMP-Konzentrationen in einzelnen lebenden Zellen berechnet werden. Während ein Anstieg der Ca2+-Konzentration auf nicht vorstimulierte VSMCs keinen signifikante Einfluss auf die intrazellulären cAMP-Konzentrationen hatte, bewirkte die Aktivierung der purinergen Rezeptoren einen deutlichen Rückgang der intrazellulären cAMP-Konzentration in mit Isoproterenol vorstimulierten VSMCs. Dieser Effekt konnte sowohl durch die Komplexierung von Ca2+ mit BAPTA-AM als auch durch die Überexpression der Ca2+-insensitiven AC4 antagonisiert werden. Adenylatcyclase-Aktivitäts-Assays in VSMC-Membranen zeigten ebenfalls einen Rückgang der Cyclaseaktivität nach Zugabe von 2 und 5 μM freiem Ca2+. Die Hemmung der einzigen Ca2+-regulierbaren PDE1 mit dem selektiven PDE1-Inhibitor 8-Methoxymethyl-IBMX (8-MM-IBMX) hatte im Gegensatz dazu keinen Einfluss auf die durch UDP verursachte Änderung der cAMP-Konzentration in vorstimulierten VSMCs. Schließlich bewirkte die Herunterregulation der Ca2+-inhibierbaren AC5 und 6 mit siRNA einen signifikante Hemmung des durch UDP verursachten Effekts. Fasst man alle diese Ergebnisse zusammen, so lässt sich folgende Schlussfolgerung ziehen: Der durch purinerge Stimulation verursachte Rückgang der cAMP-Konzentration in mit Isoproterenol vorstimulierten VSMCs wird durch eine Hemmung der Ca2+-hemmbaren AC5 und 6 vermittelt. Dadurch sind zwei für die Regulation des Tonus wichtige Signalwege in VSMCs miteinander verbunden, die sich somit gegenseitig entscheidend beeinflussen können. Ein weiterer Bestandteil dieser Arbeit war die Entwicklung eines transgenen Mausmodells, das glattmuskelspezifisch den cAMP-Sensor Epac1-camps exprimiert. Mit Hilfe eines solchen Tiermodells könnten in Zukunft cAMP-Änderungen in intakten Geweben und vielleicht sogar in lebenden Tieren beobachtet werden. Durch Anwendung des Cre-loxP-Rekombinationssystems gelang es eine glatt¬muskelspezifische, für den Epac1-camps transgene Mauslinie zu generieren. Mit isolierten VSMCs dieser Tiere konnten bereits erste FRET-Messungen durchgeführt und agonistinduzierte cAMP-Änderungen beobachtet werden. N2 - Regulation of smooth muscle tone is crucially determined by the antangonistic second messengers cAMP and Ca2+. One aim of this work was to investigate, if these two mediators can also affect each other directly and which enzymes take part in these processes. For observing cAMP signals in living cells with a temporally high resolution, we used the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps. For monitoring changes in intracellular Ca2+, cells were labeled with Fura-2. Rises in intracellular Ca2+ were achieved by activation of on vascular smooth muscle cells (VSMCs) endogenously expressed Gq-coupled P2Y6 receptors with uridine diphosphate (UDP). Additional, in-vitro calibration of the Epac1-camps allowed the calculation of absolute cAMP concentrations in single living cells. An increase of Ca2+ concentrations in non-prestimulated VSMCs did not significantly influence intracellular cAMP concentrations. Activation of purinergic receptors of isoproterenol-prestimulated cells with UDP provoked a clear decrease of intracellular cAMP concentrations. This effect was blocked by the complexation of Ca2+ with BAPTA-AM as well as by overexpression of Ca2+-insensitive AC4. Furthermore, adenylyl cyclase activity assays in the presence of 2 and 5 μM free Ca2+ in VSMC membranes showed a decline in cyclase activity. Inhibition of PDE1, the only Ca2+-dependent phosphodiesterase (PDE), with the selective PDE1 inhibitor 8-methoxymethy-IBMX, in contrast, had no effect on UDP-evoked changes in cAMP concentrations in isoproterenol-prestimulated VSMCs. Finally, knockdown of Ca2+-inhibitable AC5 and 6 with siRNA significantly inhibited the UDP-evoked decrease in cAMP concentrations in isoproterenol-prestimulated VSMCs. To merge all these results, one can draw the following conclusion: The purinergically evoked decrease in cAMP concentrations in isoproterenol-prestimulated VSMCs is caused by an inhibition of AC5 and 6 which is mediated by Ca2+. This mechanism interlinks two essential antagonistic signaling pathways for the regulation of smooth muscle tone. An additional part of this work was to develop a transgenic mouse model, which expresses smooth-muscle-specifically Epac1-camps. In the future, these animals could provide the possibility to observe cAMP signals in intact tissues or even in living animals. With the help of the Cre-loxP recombination system, we achieved to generate such a smooth-muscle-specific transgene. Afterwards FRET measurements in isolated vascular smooth muscle cells of these animals were possible and we were also able to observe agonist-induced cAMP changes in these isolated cells. KW - Glatte Muskulatur KW - Cyclo-AMP KW - Calcium KW - Calcium KW - cAMP KW - vaskuläre glatte Muskelzellen KW - FRET KW - calcium KW - cAMP KW - vascular smooth muscle cells KW - FRET Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47709 ER -