TY - THES A1 - Willmann, Lukas T1 - Altersabhängige Makuladegeneration - Regeneration des retinalen Pigmentepithels durch Anregung zur Proliferation durch den Transkriptionsfaktor E2F2 T1 - Age-related macular degeneration - regeneration of retinal pigment epithelium by stimulation of proliferation by transcription factor E2F2 N2 - Altersbedingte Makuladegeneration (AMD) ist weltweit die häufigste Ursache von irreversibler Erblindung des alternden Menschen. Mit der anti-VEGF-Behandlung steht für die deutlich seltenere feuchte AMD eine zugelassene Therapie bereit, die deutlich häufigere trockene AMD entzieht sich aktuell jedoch jeglicher Therapie. Ein zentraler Pathomechanismus der AMD ist der progrediente Untergang des retinalen Pigmentepithels (RPE). Die Rarifizierung und letztendlich Atrophie des RPEs führt zum Untergang der funktionellen Einheit aus RPE, Photorezeptoren und Bruch’scher Membran und somit zum irreversiblen Funktionsverlust. Ein möglicher therapeutischer Ansatz, der progredienten Atrophie des RPEs entgegenzuwirken, ist, das prinzipiell post- mitotischen RPE zur Proliferation anzuregen. Grundlage unserer in vitro Untersuchungen ist das ARPE-19 Zellmodell. Um die Proliferation anzuregen wurden die RPE-Zellen mit E2F2, einem Zellzyklus- regulierendem Transkriptionsfaktor, transfiziert. Zunächst wurde ein nicht-proliferatives RPE-Zellmodell mit spontanem Wachstumsarrest etabliert. Innerhalb von zwei Wochen konnte die Ausbildung von Zonulae occludentes als Zeichen der Integrität des adhärenten Zellmonolayers beobachtet werden. Die chemische Transfektion von E2F2 unter einem CMV-Promoter führte zur Überexpression von E2F2-Protein. Der proliferationssteigernde Effekt von E2F2 konnte durch die Proliferationsmarker Cyclin D1 sowie Ki67, dem Anstieg der BrdU-Aufnahme und der nach Transfektion mit E2F2 zunehmenden Gesamtzellzahl nachgewiesen werden. Der Zellzahlerhöhung standen jedoch potentiell qualitative und funktionelle Einbußen entgegen. So zeigten sich nach Behandlung mit E2F2 die Zellviabilität reduziert und die Apoptoserate sowie die Permeabilität des Epithels erhöht. Diese Einschränkungen waren jedoch nur passager bis 7 Tage nach Transfektion sichtbar und reversibel. Unsere Ergebnisse weisen darauf hin, dass diese Defizite nicht durch E2F2 selbst, sondern durch das Transfektionsreagenz PEI bedingt waren. Weitere funktionelle Defizite könnten durch epithelial-mesenchymale Transition (EMT) verursacht werden. Hier zeigte sich durch E2F2 keine De-Differenzierung im Sinne einer typischen EMT-Marker- Expression. Die vorliegende Arbeit zeigt in einem in vitro Zellmodell die Grundlagen eines vielversprechenden Ansatzes zur Therapie der trockenen AMD: Durch Überexpression eines den Zellzyklus regulierenden Gens (hier E2F2) wurde die RPE-Regeneration angeregt. Analog zur schon zugelassenen Gentherapie des RPEs bei RPE65-assoziierten Netzhautdystrophien durch den Transfer von funktionstüchtigem RPE65-Gen mittels Adeno-assoziierten Viren könnte mittels E2F2, übertragen mit einem lentiviralen Verktor, eine Stimulation des RPEs zur Proliferation möglich sein. Entscheidend ist der möglichst gute Struktur- und Funktionserhalt des Photorezeptor-Bruch-Membran-RPE Komplexes. Eine Therapie sollte daher in frühen Krankheitsstadien erfolgen, um die Progression zu fortgeschrittenen Erkrankungsstadien mit irreversiblem Funktionsverlust zu verzögern oder zu verhindern. N2 - Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the ageing population worldwide. While for wet AMD an approved therapy is available in form of anti-VEGF treatment, the by far more common dry AMD is currently outside the scope of any therapy. A central pathomechanism of AMD is the progressive degeneration of the retinal pigment epithelium (RPE). Rarefication and finally atrophy of the RPE leads to the collapse of the functional unit consisting of RPE, photoreceptors and Bruch’s membrane, resulting in irreversible loss of function. A possible therapeutic strategy to prevent RPE atrophy is to stimulate the post-mitotic RPE to proliferate. The basis of our in vitro investigations is an ARPE-19 cell culture model. To stimulate proliferation, the RPE cells were transfected with E2F2, a cell cycle regulating transcription factor. First, a non-proliferative RPE cell model with spontaneous growth arrest was established. Within two weeks, the formation of zonulae occludentes was observed as a sign of the integrity of the adherent cell monolayer. Chemical transfection of E2F2 under a CMV promoter led to overexpression of E2F2 protein. The proliferation enhancing effect of E2F2 was demonstrated by proliferation markers cyclin D1 and Ki67, the increase in BrdU uptake, and the increase in total cell number after transfection with E2F2. However, the increase in cell proliferation was potentially offset by qualitative and functional losses. After treatment with E2F2, cell viability was reduced, and apoptosis rate and permeability of the epithelium were increased. These shortcomings were only temporarily detectable up to 7 days after transfection and were reversible. Our results suggest that these deficits were not caused by E2F2 itself, but by the transfection reagent PEI. Further functional deficits could be caused by epithelial-mesenchymal transition (EMT). Here, E2F2 did not show any de-differentiation in the form of typical EMT marker expression. The present study shows the basics of a promising approach for the therapy of dry AMD in an in vitro cell model: RPE regeneration was stimulated by overexpression of a gene regulating the cell cycle (here E2F2). Analogous to approved gene therapy of the RPE for RPE65-associated retinal dystrophies through transfer of functional RPE gene by adeno-associated viruses, a lentiviral vector delivering E2F2 could stimulate the RPE to proliferate. It is essential to preserve the structure and function of the photoreceptor-Bruch's membrane-RPE complex. Therapy therefore needs to take place in early stages of the disease to prevent or slow down progression to advanced stages with irreversible loss of function. KW - Netzhaut KW - Senile Makuladegeneration KW - In vitro KW - Regeneration KW - Makuladegeneration KW - E2F2 KW - transcription factor KW - RPE KW - retinal pigment epithelium KW - retina KW - Transkriptionsfaktor Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291833 ER - TY - THES A1 - Fey, Christina T1 - Establishment of an intestinal tissue model for pre-clinical screenings T1 - Etablierung eines Darmgewebemodells für Präklinische Screenings N2 - The small intestine represents a strong barrier separating the lumen from blood circulation thereby playing a major role in the absorption and the transport of pharmacological agents prior to their arrival on the respective target site. In order to gain more knowledge about specialized uptake mechanisms and risk assessment for the patient after oral admission of drugs, intestinal in vitro models demonstrating a close similarity to the in vivo situation are needed. In the past, cell line-based in vitro models composed of Caco-2 cells cultured on synthetic cell carriers represented the “gold standard” in the field of intestinal tissue engineering. Expressive advantages of these models are a reproducible, cost-efficient and standardized model set up, but cell function can be negatively influenced by the low porosity or unwanted molecular adhesion effects of the artificial scaffold material. Natural extracellular matrices (ECM) such as the porcine decellularized small intestinal submucosa (SIS) are used as alternative to overcome some common drawbacks; however, the fabrication of these scaffolds is time- and cost-intensive, less well standardized and the 3Rs (replacement, reduction, refinement) principle is not entirely fulfilled. Nowadays, biopolymer-based scaffolds such as the bacterial nanocellulose (BNC) suggest an interesting option of novel intestinal tissue engineered models, as the BNC shows comparable features to the native ECM regarding fiber arrangement and hydrophilic properties. Furthermore, the BNC is of non-animal origin and the manufacturing process is faster as well as well standardized at low costs. In this context, the first part of this thesis analyzed the BNC as alternative scaffold to derive standardized and functional organ models in vitro. Therefore, Caco-2 cells were cultured on two versions of BNC with respect to their surface topography, the unmodified BNC as rather smooth surface and the surface-structured BNC presenting an aligned fiber arrangement. As controls, Caco-2 in vitro models were set up on PET and SIS matrices. In this study, the BNC-based models demonstrated organ-specific properties comprising typical cellular morphologies, a characteristic tight junction protein expression profile, representative ultrastructural features and the formation of a tight epithelial barrier together with a corresponding transport activity. In summary, these results validated the high quality of the BNC-based Caco-2 models under cost-efficient conditions and their suitability for pre-clinical research purposes. However, the full functional diversity of the human intestine cannot be presented by Caco-2 cells due to their tumorigenic background and their exclusive representation of mature enterocytes. Next to the scaffold used for the setup of in vitro models, the cellular unit mainly drives functional performance, which demonstrates the crucial importance of mimicking the cellular diversity of the small intestine in vitro. In this context, intestinal primary organoids are of high interest, as they show a close similarity to the native epithelium regarding their cellular diversity comprising enterocytes, goblet cells, enteroendocrine cells, paneth cells, transit amplifying cells and stem cells. In general, such primary organoids grow in a 3D Matrigel® based environment and a medium formulation supplemented with a variety of growth factors to maintain stemness, to inhibit differentiation and to stimulate cell migration supporting long term in vitro culture. Intestinal primary spheroid/organoid cultures were set up as Transwell®-like models on both BNC variants, which resulted in a fragmentary cell layer and thereby unfavorable properties of these scaffold materials under the applied circumstances. As the BNC manufacturing process is highly flexible, surface properties could be adapted in future studies to enable a good cell adherence and barrier formation for primary intestinal cells, too. However, the application of these organoid cultures in pre-clinical research represents an enormous challenge, as the in vitro culture is complex and additionally time- and cost-intensive. With regard to the high potential of primary intestinal spheroids/organoids and the necessity of a simplified but predictive model in pre-clinical research purposes, the second part of this thesis addressed the establishment of a primary-derived immortalized intestinal cell line, which enables a standardized and cost-efficient culture (including in 2D), while maintaining the cellular diversity of the organoid in vitro cultures. In this study, immortalization of murine and human intestinal primary organoids was induced by ectopic expression of a 10- (murine) or 12 component (human) pool of genes regulating stemness and the cell cycle, which was performed in cooperation with the InSCREENeX GmbH in a 2D- and 3D-based transduction strategy. In first line, the established cell lines (cell clones) were investigated for their cell culture prerequisites to grow under simplified and cost-efficient conditions. While murine cell clones grew on uncoated plastic in a medium formulation supplemented with EGF, Noggin, Y-27632 and 10% FCS, the human cell clones demonstrated the necessity of a Col I pre coating together with the need for a medium composition commonly used for primary human spheroid/organoid cultures. Furthermore, the preceding analyses resulted in only one human cell clone and three murine cell clones for ongoing characterization. Studies regarding the proliferative properties and the specific gene as well as protein expression profile of the remaining cell clones have shown, that it is likely that transient amplifying cells (TACs) were immortalized instead of the differentiated cell types localized in primary organoids, as 2D, 3D or Transwell®-based cultures resulted in slightly different gene expression profiles and in a dramatically reduced mRNA transcript level for the analyzed marker genes representative for the differentiated cell types of the native epithelium. Further, 3D cultures demonstrated the formation of spheroid-like structures; however without forming organoid-like structures due to prolonged culture, indicating that these cell populations have lost their ability to differentiate into specific intestinal cell types. The Transwell®-based models set up of each clone exhibit organ-specific properties comprising an epithelial-like morphology, a characteristic protein expression profile with an apical mucus-layer covering the villin-1 positive cell layer, thereby representing goblet cells and enterocytes, together with representative tight junction complexes indicating an integer epithelial barrier. The proof of a functional as well as tight epithelial barrier in TEER measurements and in vivo-like transport activities qualified the established cell clones as alternative cell sources for tissue engineered models representing the small intestine to some extent. Additionally, the easy handling and cell expansion under more cost-efficient conditions compared to primary organoid cultures favors the use of these newly generated cell clones in bioavailability studies. Altogether, this work demonstrated new components, structural and cellular, for the establishment of alternative in vitro models of the small intestinal epithelium, which could be used in pre-clinical screenings for reproducible drug delivery studies. N2 - Der Dünndarm bildet eine starke Barriere aus, welche das Lumen vom Blutkreislauf trennt, und dadurch maßgeblich an der Absorption und dem Transport von pharmakologischen Wirkstoffen beteiligt ist, bevor diese ihren Wirkort erreichen. Um ein detaillierteres Wissen über die speziellen Aufnahmemechanismen zu erlangen und zur Risikoabschätzung für den Patienten nach oraler Aufnahme dieser Medikamente, sind intestinale in vitro Modelle erforderlich, die eine große Ähnlichkeit mit der Situation in vivo aufweisen. In der Vergangenheit stellten Caco-2 Zelllinien-basierte in vitro Modelle, die auf synthetischen Trägerstrukturen aufgebaut sind, den „Goldstandard“ auf dem Gebiet der intestinalen Geweberekonstruktion dar. Bedeutende Vorteile dieser Modelle sind der reproduzierbare, kosteneffiziente und standardisierte Modellaufbau, jedoch können die zellulären Funktionen durch die geringe Porosität oder die unerwünschten molekularen Adhäsionseffekte des künstlichen Trägermaterials negativ beeinflusst werden. Um einige häufige Nachteile zu überwinden werden natürliche extrazelluläre Matrizen (ECM) wie die porzine dezellularisierte Dünndarm-submukosa (SIS) verwendet, jedoch ist die Herstellung dieser Trägerstrukturen zeit- und kostenintensiv, weniger gut standardisiert und entspricht nicht ganzheitlich dem 3R-Prinzip (Replace = Vermeiden, Reduce = Verringern, Refine = Verbessern). Heutzutage ermöglichen biopolymer-basierte Trägerstrukturen wie die bakterielle Nanozellulose (BNC) die Entwicklung von neuartigen intestinalen Gewebemodellen, da die BNC eine große Ähnlichkeit hinsichtlich der Faseranordnung und der hydrophilen Eigenschaften mit der nativen ECM aufweist. Darüber hinaus ist die BNC nicht tierischen Ursprungs und der Herstellungsprozess schneller, gut standardisiert als auch kostengünstig. In diesem Zusammenhang wurde im ersten Teil dieser Arbeit nachgewiesen, dass die BNC als alternative Trägerstruktur für standardisierte und funktionelle Organmodelle in vitro geeignet ist. Dafür wurden Caco-2 Zellen auf zwei Varianten der BNC kultiviert, die sich in ihrer Oberflächentopographie unterscheiden, wobei die nicht-modifizierte BNC eine glatte Oberfläche und die oberflächen-strukturierte BNC eine ausgerichtete Faseranordnung aufweist. Als Kontrollen dienten Caco 2 zellbasierte in vitro Modelle, die auf PET- oder SIS Matrizes aufgebaut wurden. In dieser Studie wiesen die BNC-basierten Modelle die wichtigsten organ-spezifischen Eigenschaften auf, darunter eine typische zelluläre Morphologie, ein charakteristisches Expressionsprofil der Tight Junction Proteine, repräsentative ultrastrukturelle Merkmale und die Bildung einer dichten epithelialen Barriere verbunden mit einer entsprechenden Transportaktivität. Zusammenfassend bestätigten diese Ergebnisse die hohe Qualität der BNC-basierten Caco-2 Modelle unter kosteneffizienten Herstellbedingungen und ihre Eignung für präklinische Forschungszwecke. Allerdings kann die volle Funktionsvielfalt des menschlichen Darms durch Caco-2 Zellen aufgrund ihres kanzerogenen Ursprungs und der exklusiven Repräsentanz von Enterozyten nicht abgebildet werden. Neben der Trägerstruktur die für den Aufbau der in vitro Modelle verwendet wird, trägt auch die zelluläre Einheit zur Etablierung von funktionalen Modellen bei, weshalb es von großer Bedeutung ist, die zelluläre Vielfalt des Dünndarms in diesen Modellen in vitro nachzuahmen. In diesem Zusammenhang sind die primären intestinalen Organoide, die sich hauptsächlich aus Enterozyten, Becherzellen, enteroendokrinen Zellen, Paneth Zellen, Vorläuferzellen und Stammzellen zusammensetzen, von großem Interesse, da die zelluläre Komponente eine große Ähnlichkeit zum nativen Epithel aufweist. Derartige primäre Organoide werden üblicherweise in einer 3D-Matrigel® Umgebung und einer speziellen Formulierung des Mediums, die mit einer Vielzahl an Wachstumsfaktoren ergänzt wird, um das Stammzellpotenzial zu erhalten, die Differenzierung zu hemmen, die Zellmigration zu stimulieren und somit eine langfristige in vitro-Kultivierung zu unterstützt. Intestinale primäre Sphäroid-/Organoidkulturen wurden auf beiden BNC Varianten als Transwell®-ähnliche Modelle aufgebaut. Dabei zeigte sich eine fragmentierte Zellschicht was darauf schließen lässt, dass die Matrix unter diesen Bedingungen für den Modellaufbau ungeeignet ist. Da der BNC-Herstellungsprozess sehr flexibel ist, könnten die Oberflächen-eigenschaften in zukünftigen Studien angepasst werden, um so eine gute Zelladhäsion auch für primäre Darmzellen zu ermöglichen. Die Anwendung dieser Organoid-basierten Kulturen stellt jedoch für die präklinische Forschung eine enorme Herausforderung dar, da die Kultivierung komplex und zudem sehr zeit- und kosten-intensiv ist. Im Hinblick auf das hohe Potenzial der primären intestinalen Sphäroide/Organoide und der Notwendigkeit eines vereinfachten aber prädiktiven Modells für präklinische Forschungs-zwecke, befasste sich der zweite Teil der Arbeit mit der Etablierung einer primären immortalisierten intestinalen Zelllinie, die eine standardisierte und kosteneffiziente Kultur ermöglicht, wobei die zelluläre Vielfalt der in vitro Organoid-Kulturen erhalten bleibt. In dieser Studie wurden primäre Organoide aus dem murinen und dem menschlichen Dünndarm durch die ektopische Expression eines 10- (murin) bzw. 12 Komponenten (human) Pools von Genen, welche im Hinblick auf die Regulation der Stammzellen und dem Zellzyklus bekannt sind, in Zusammenarbeit mit der InSCREENeX GmbH in einer 2D- und 3D-basierten Transduktionsstrategie immortalisiert. In erster Linie wurden die etablierten Zelllinien (Zellklone) auf ihren Bedarf an Wachstumsfaktoren für die Kultivierung unter vereinfachten und kosteneffizienten Bedingungen hin untersucht. Während die murinen Zellklone auf unbeschichteten Kunststoff in einer Mediumformulierung mit hEGF, mNoggin, Y-27632 und 10% FCS wuchsen, zeigten die humanen Zellklone eine Notwendigkeit für eine Col I-Vorbeschichtung zusammen mit einer Zusammensetzung des Mediums, wie sie üblicherweise für primäre humane Sphäroide/Organoide verwendet wird. Darüber hinaus führten diese vorangegangenen Analysen dazu, dass nur ein humaner Zellklon und drei murine Zellklone umfänglich charakterisiert wurden. Studien zu proliferativen Eigenschaften und spezifischen Gen- sowie Proteinexpressionsprofilen dieser Klone haben gezeigt, dass vermutlich Vorläuferzellen (TACs) anstelle der differenzierten Zelltypen der primären Organoide immortalisiert wurden, da die Kultivierung in 2D, 3D oder in Transwell®-basierten Modellen zu einem geringfügig veränderten Genexpressionsprofil im Vergleich untereinander und zudem zu einem stark reduzierten mRNA-Transkriptionswert für die analysierten Markergene, welche die differenzierten Zelltypen des nativen Epithels repräsentieren, die Folge war. Weiterhin zeigte die 3D-Kultivierung die Bildung von Sphäroid-ähnlichen Strukturen, jedoch keine Organoid-ähnlichen Strukturen unter verlängerten Kultur-bedingungen, was darauf hinweist, dass diese Zellpopulationen ihre Eigenschaft zur Differenzierung hin zu spezifischen intestinalen Zelltypen eingebüßt haben. Die Transwell®-basierten Modelle, welche für jeden Klon etabliert wurden, weisen zudem Organ-spezifische Eigenschaften auf, wie eine epitheliale Morphologie, ein charakteristisches Protein-expressionsprofil mit einer apikalen Schleimschicht, welche den Villin-1 positiven Zelllayer bedeckt und somit den Nachweis erbringt, dass die entstandenen immortalisierten Zellpopulationen zu einem gewissen Anteil aus Becherzellen und Enterozyten bestehen. Zudem konnten repräsentative Tight-Junction Komplexe, die auf eine dichte epitheliale Barriere hinweisen, in entsprechenden Proteinexpressionsprofilanalysen nachgewiesen werden. Der Nachweis einer sowohl dichten als auch funktionellen epithelialen Barriere konnte weitergehend durch TEER-Messungen und in vivo-ähnliche Transportmechanismen für die etablierten Zellklone qualifiziert werden, wodurch diese Zellen als alternative Zellquelle für in vitro Modelle des Dünndarms verwendet werden können. Darüber hinaus begünstigt die einfache Handhabung und Zellexpansion unter kostengünstigeren Bedingungen im Vergleich zu primären Organoidkulturen den Einsatz dieser neu-generierten Zellklone für Bioverfügbarkeits-Studien. Zusammenfassend zeigte diese Arbeit neue Komponenten, strukturelle und zelluläre, für die Etablierung alternativer in vitro-Modelle des Dünndarmepithels, die in präklinischen Screenings für reproduzierbare Studien hinsichtlich der Medikamententestung verwendet werden können. KW - Dünndarm KW - In vitro KW - Tissue Engineering KW - intestinal in vitro model KW - bacterial nanocellulose KW - primary-cell-derived immortalized cell line KW - in vitro Modelle KW - Bakterielle Nanocellulose KW - Primär-basierte immortalisierte Zelllinie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244107 ER - TY - THES A1 - Bögelein, Anna T1 - Einfluss systemischer Therapeutika auf die CXCR4-Expression von Myelomzellen T1 - Influence of therapeutic agents on CXCR4 expression of myeloma cells N2 - Im Zuge der Bemühungen um neue, tumorspezifische Therapieansätze für die Myelomerkrankung hat sich der C-X-C-Chemokinrezeptor 4 (CXCR4) aufgrund seiner zentralen Rolle in der Tumorgenese als vielversprechender Angriffspunkt hervorgetan. Im Sinne eines theranostischen Konzepts wird der Rezeptor mithilfe eines radioaktiv markierten Liganden quantifiziert und anschließend von rezeptorspezifischen Radiotherapeutika als Zielstruktur genutzt. Die CXCR4-Expression ist allerdings ein höchst dynamischer Prozess mit großer inter- und intraindividueller Heterogenität, der u.a. durch eine begleitende Chemotherapie beeinflusst werden kann. Ob sich therapieinduzierte Veränderungen der Rezeptorexpression gezielt nutzen lassen, um die CXCR4-Expression zu optimieren und so die Effektivität der CXCR4-gerichteten Strategien zu steigern, wurde bislang nicht untersucht. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene, in der Myelomtherapie etablierte Substanzen sowohl einzeln als auch in Kombination hinsichtlich ihres Einflusses auf die CXCR4-Expression von MM-Zelllinien und primären MM-Zellen unter in vitro Bedingungen analysiert. In den durchgeführten Experimenten zeigte sich eine hohe Variabilität der CXCR4-Expression der MM-Zellen nach Therapieinduktion, die sich als substanz-, dosis- und zeitabhängig herausstellte. Die Ergebnisse bestätigten das große Potenzial der therapieinduzierten Modulation der CXCR4-Expression. Im weiteren Verlauf sind translationale Forschungsansätze gerechtfertigt, die die Übertragbarkeit der in vitro gewonnenen Ergebnisse auf die komplexen Vorgänge im lebenden Organismus überprüfen. Langfristiges Ziel ist der Entwurf eines patientenzentrierten, multimodalen Therapiekonzepts, welches das CXCR4-gerichtete theranostische Konzept mit einer individuell angepassten, medikamentösen MM-Therapie kombiniert. N2 - In the course of developing new tumor specific therapeutic approaches for non-yet curable myeloma disease C-X-C chemokine receptor 4 (CXCR4) has emerged as a promising target due to its crucial role in myeloma tumorigenesis. Within a theranostic concept CXCR4 is quantified using radioactively labeled ligands and afterwards targeted by receptor-specific radiopharmaceuticals. However, CXCR4 expression is a very dynamic process with a high inter- and intraindividual heterogeneity which can be influenced by concomitant chemotherapy. Whether therapy induced changes in receptor expression can be used to enhance CXCR4 expression and thus to improve efficacy of CXCR4-based theranostics has not been examined so far. In this context the present study evaluated the effect of several anti-myeloma drugs (bortezomib, cyclophosphamide, dexamethasone, doxorubicin, lenalidomide) on CXCR4 expression of different human myeloma cell lines as well as patient-derived CD138+ plasma cells under in vitro conditions. Findings disclosed a high variability of CXCR4 expression on myeloma cells after drug application which turned out to be substance-, dose- and time-dependent. The results confirmed the high potential of therapy-induced modulation of CXCR4 expression. In further course, translational research approaches are justified to verify the transferability of the in vitro findings to the complex macro- and microenvironment in vivo. Long-term goal is the development of a patient-centered, multimodal therapy concept which combines CXCR4 based theranostics with a personalized drug-based therapy. KW - Plasmozytom KW - In vitro KW - Multiples Myelom KW - Theranostik KW - CXCR4 KW - Gallium-68 Pentixafor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241746 ER - TY - THES A1 - Schüßler, Lion Maximilian T1 - Analyse der Wirksamkeit der SMAC Mimetics Birinapant, BV6 und LCL161 und der Zytostatika Docetaxel und Paclitaxel auf Zellen des Multiplen Myeloms T1 - Analysis of the effectiveness of the SMAC Mimetics Birinapant, BV6 and LCL161 and of the cytostatics Docetaxel and Paclitaxel on cells of multiple myeloma N2 - Die Zellen des Multiplen Myeloms (MM) zeichnen sich durch eine klonale Heterogenität aus, die eine kurative Therapie erschwert und zu Resistenzen gegenüber Medikamenten führt. Neue Substanzen, wie die Smac Mimetics Birinapant, BV6 und LCL161, sollen durch Nachahmung des in der Krebszelle reduziert vorkommenden Gegenspielers (SMAC/Diablo) der Apoptose-Inhibitoren (IAPs) die Apoptose der entarteten Zellen induzieren. In der vorliegenden Arbeit wurde die Wirksamkeit der Smac Mimetics Birinapant, BV6 und LCL161 und der Zytostatika Docetaxel und Paclitaxel auf 10 humane MM-Zellen in vitro untersucht. Es konnte bei einigen Zelllinien ein synergetischer Effekt auf die Reduktion der Zellzahl in einer Kombinationstherapie mit den Smac Mimetics und den Zytostatika nachgewiesen und teilweise Resistenzen überwunden werden. Weitere Forschungsarbeit zu Kombinationstherapien mit Smac Mimetics sollen deren Rolle und klinischen Nutzen in einer Therapiemöglichkeit bei rezidivierenden und refraktären MM-Patienten untersuchen. N2 - In multiple myeloma malignant plasma cells show a high level of clonal heterogeneity which leads to resistance to current medication and furthermore bad prognosis of treatment. New developed substances like Smac Mimetics Birinapant, BV6 and LCL161 shall induce apoptosis in multiple myeloma cells in imitating of the cellular protein SMAC/Diablo which is an antagonist of apoptosis inhibitors. This study investigates the in vitro effectiviness of the SMAC Mimetics Birinapant, BV6 and LCL161 and of the cytostatics Docetaxel and Paclitaxel on 10 human multiple myeloma cells. Some celllines showed in a combination treatement with Smac Mimetics and zytostatics a synergetic effect on cell viability and an overcoming of drug resistance. Further studies shall investigate the benefits and clinical use of combination treatment with Smac Mimetics for patients with recurrent and refractory multiple myeloma. KW - Plasmozytom KW - Cytostatikum KW - In vitro KW - Docetaxel KW - Taxol KW - Smac Mimetic KW - smac mimetic KW - Birinapant KW - BV6 KW - LCL161 KW - multiple myeloma Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208974 ER - TY - THES A1 - Baur, Florentin Philipp T1 - Establishment of a 3D tumour model and targeted therapy of BRAF-mutant colorectal cancer T1 - Entwicklung eines 3D Tumormodells und zielgerichtete Behandlung von BRAF-mutiertem kolorektalen Karzinom N2 - Cancer remains after cardiovascular diseases the leading cause of death worldwide and an estimated 8.2 million people died of it in 2012. By 2030, 13 million cancer deaths are expected due to the growth and ageing of the population. Hereof, colorectal cancer (CRC) is the third most common cancer in men and the second in women with a wide geographical variation across the world. Usually, CRC begins as a non-cancerous growth leading to an adenomatous polyp, or adenoma, arising from glandular cells. Since research has brought about better understanding of the mechanisms of cancer development, novel treatments such as targeted therapy have emerged in the past decades. Despite that, up to 95% of anticancer drugs tested in clinical phase I trials do not attain a market authorisation and hence these high attrition rates remain a key challenge for the pharmaceutical industry, making drug development processes enormously costly and inefficient. Therefore, new preclinical in vitro models which can predict drug responses in vivo more precisely are urgently needed. Tissue engineering not only provides the possibility of creating artificial three-dimensional (3D) in vitro tissues, such as functional organs, but also enables the investigation of drug responses in pathological tissue models, that is, in 3D cancer models which are superior to conventional two-dimensional (2D) cell cultures on petri dishes and can overcome the limitations of animal models, thereby reducing the need for preclinical in vivo models. In this thesis, novel 3D CRC models on the basis of a decellularised intestinal matrix were established. In the first part, it could be shown that the cell line SW480 exhibited different characteristics when grown in a 3D environment from those in conventional 2D culture. While the cells showed a mesenchymal phenotype in 2D culture, they displayed a more pronounced epithelial character in the 3D model. By adding stromal cells (fibroblasts), the cancer cells changed their growth pattern and built tumour-like structures together with the fibroblasts, thereby remodelling the natural mucosal structures of the scaffold. Additionally, the established 3D tumour model was used as a test system for treatment with standard chemotherapeutic 5-fluorouracil (5-FU). The second part of the thesis focused on the establishment of a 3D in vitro test system for targeted therapy. The US Food and Drug Administration has already approved of a number of drugs for targeted therapy of specific types of cancer. For instance, the small molecule vemurafenib (PLX4032, Zelboraf™) which demonstrated impressive response rates of 50–80% in melanoma patients with a mutation of the rapidly accelerated fibrosarcoma oncogene type B (BRAF) kinase which belongs to the mitogen active protein kinase (MAPK) signalling pathway. However, only 5% of CRC patients harbouring the same BRAF mutation respond to treatment with vemurafenib. An explanation for this unresponsiveness could be a feedback activation of the upstream EGFR, reactivating the MAPK pathway which sustains a proliferative signalling. To test this hypothesis, the two early passage cell lines HROC24 and HROC87, both presenting the mutation BRAF V600E but differing in other mutations, were used and their drug response to vemurafenib and/or gefitinib was assessed in conventional 2D cell culture and compared to the more advanced 3D model. Under 3D culture conditions, both cell lines showed a reduction of the proliferation rate only in the combination therapy approach. Furthermore, no significant differences between the various treatment approaches and the untreated control regarding apoptosis rate and viability for both cell lines could be found in the 3D tumour model which conferred an enhanced chemoresistance to the cancer cells. Because of the observed unresponsiveness to BRAF inhibition by vemurafenib as can be seen in the clinic for patients with BRAF mutations in CRC, the cell line HROC87 was used for further xenografting experiments and analysis of activation changes in the MAPK signalling pathway. It could be shown that the cells presented a reactivation of Akt in the 3D model when treated with both inhibitors, suggesting an escape mechanism for apoptosis which was not present in cells cultured under conventional 2D conditions. Moreover, the cells exhibited an activation of the hepatocyte growth factor receptor (HGFR, c-Met) in 2D and 3D culture, but this was not detectable in the xenograft model. This shows the limitations of in vivo models. The results suggest another feedback activation loop than that to the EGFR which might not primarily be involved in the resistance mechanism. This reflects the before mentioned high attrition rates in the preclinical drug testing. N2 - Krebs ist nach Herz- und Kreislauferkrankungen die führende Todesursache weltweit und 2012 starben daran geschätzt 8,2 Millionen Menschen. Für das Jahr 2030 werden 13 Millionen Krebstote erwartet, was auf das Bevölkerungswachstum und deren Überalterung zurückzuführen ist. Dabei ist das kolorektale Karzinom (engl. colorectal cancer, CRC) der dritthäufigste Krebs bei Männern und der zweithäufigste bei Frauen. Für gewöhnlich entwickelt sich CRC aus einem nicht-kanzerösen Wachstum, das zu einem adenomatösen Polyp bzw. Adenom führt, welches aus Drüsenzellen hervorgeht. Da die Forschung in den vergangenen Jahrzehnten ein besseres Verständnis für die Mechanistik der Krebsentstehung hervorgebracht hat, entstanden neuartige Behandlungsformen, wie die zielgerichtete Krebstherapie. Hohe Versagensraten, welche den Medikamentenentwicklungsprozess sehr kostenaufwendig und ineffizient machen, bleiben eine entscheidende Herausforderung für die pharmazeutische Industrie. Deshalb werden dringend neue präklinische in vitro Modelle, die bessere in vivo Wirkungsvorhersagen liefern, benötigt. Das Tissue Engineering bietet die Möglichkeit künstliche dreidimensionale (3D) in vitro Gewebe herzustellen, z.B. funktionelle Organe, aber es ermöglicht auch, die Reaktion auf ein Medikament in pathologischen Gewebemodellen, wie beispielsweise Krebsmodelle, zu untersuchen. Diese sind der konventionellen zweidimensionalen (2D) Zellkultur in Petrischalen überlegen und können die begrenzten Möglichkeiten von Tiermodellen erweitern, was zudem die Notwendigkeit für präklinische in vivo Modelle vermindert. In der vorliegenden Arbeit wurden neuartige 3D CRC Modelle auf Basis einer dezellularisierten intestinalen Matrix entwickelt. Im ersten Teil konnte gezeigt werden, dass die Zelllinie SW480 verschiedene Charakteristika bezüglich des Wachstums in der konventionellen 2D Zellkultur oder der 3D Umgebung aufwies. Im Gegensatz zu den mesenchymalen Eigenschaften der Zellen in der 2D Zellkultur, zeigten sie im 3D Modell einen betonteren epithelialen Charakter. Durch das Hinzufügen von Fibroblasten änderten die Krebszellen ihr Wachstumsverhalten und sie bildeten zusammen tumorartige Strukturen aus, wobei die natürlichen Strukturen der Darmmatrix, Krypten und Villi, umgebaut wurden. Zusätzlich wurde das entwickelte 3D Tumormodell als Testsystem für das Standardchemotherapeutikum 5-Fluorouracil (5-FU) herangezogen. Der zweite Teil der Dissertation konzentrierte sich auf die Entwicklung eines 3D in vitro Testsystems für die zielgerichtete Behandlung. Es gibt schon eine Reihe von der US Food and Drug Administration zugelassenen Medikamente für die zielgerichtete Behandlung spezifischer Tumorentitäten, wie z.B. Vemurafenib (PLX4032, Zelboraf™), das eindrucksvolle Ansprechraten von 50–80% bei Melanompatienten mit BRAF-Mutation erzielt. Trotzdem sprechen nur 5% der CRC-Patienten mit der gleichen BRAF-Mutation auf die Behandlung mit Vemurafenib an. Gründe für diese Unempfindlichkeit könnte eine Rückkoppelung zum aufwärtsgelegenen EGFR sein, der das Signal zur Proliferation aufrecht erhält. Um diese Hypothese zu überprüfen, wurden die zwei Zelllinien HROC24 und HROC87, die beide die BRAF V600E-Mutation tragen aber sich in anderen Mutationen unterscheiden, mit Vemurafenib und/oder Gefitinib behandelt und das Ansprechen auf die Substanzen in der herkömmlichen 2D Zellkultur sowie im fortschrittlicheren 3D Modell verglichen. In 3D Kulturbedingungen zeigten beide Zelllinien eine Senkung der Proliferation nur im Kombinationstherapie-Ansatz. Außerdem wurden bei den 3D Modellen keine signifikanten Unterschiede zwischen den verschiedenen Behandlungsansätzen und der unbehandelten Kontrolle, hinsichtlich der Apoptoserate und Viabilität, gefunden. Das deutet auf eine erhöhte Chemoresistenz der Krebszellen in der 3D Umgebung hin. Wegen der vorhandenen Unempfindlichkeit der Zelllinie HROC87 gegenüber der BRAF-Inhibierung mit Vemurafenib, wie es auch in der Klinik im Fall von Patienten mit BRAF-Mutation des CRC beobachtet werden kann, wurden diese Zellen für weitere Xenograft-Experimente und Analysen von Aktivierungsunterschieden im MAPK-Signaltransduktionsweg herangezogen. Weiterhin zeigten die Zellen eine Aktivierung des „hepatocyte growth factor receptor“ (HGFR, c-Met) in 2D und 3D Zellkultur, der jedoch nicht im Xenograft-Modell zu sehen war, was die limitierte Übertragbarkeit von Ergebnissen des Tiermodells auf den Menschen verdeutlicht. Dies spiegelt wiederum die obenstehend erwähnten hohen Versagensraten in der präklinischen Medikamententestung wider. Zusammengefasst kann das Tissue Engineering Möglichkeiten zur Herstellung und Entwicklung neuartiger 3D Testsysteme bieten, welche besser die in vivo Situation abbilden. Für eine Medikamententestung in Übereinstimmung mit personalisierter Medizin eröffnet das 3D Tumormodell vielversprechende Wege, welche in Zukunft das präklinische Screening verbessern sowie die hohen Versagensraten und Tierversuche vermindern könnten. KW - Dickdarmtumor KW - Therapie KW - BRAF-mutant KW - colorectal cancer KW - targeted therapy KW - 3D tumour model KW - BRAF-mutiert KW - kolorektales Karzinom KW - zielgerichtete Behandlung KW - 3D Tumormodell KW - In vitro KW - 3D KW - tumour Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174129 ER - TY - THES A1 - Griffoni, Chiara T1 - Towards advanced immunocompetent skin wound models for in vitro drug evaluation T1 - Auf dem Weg zu fortschrittlichen immunkompetenten Hautwundmodellen für die in vitro-Medikamentenbewertung N2 - Current preclinical models used to evaluate novel therapies for improved healing include both in vitro and in vivo methods. However, ethical concerns related to the use of animals as well as the poor physiological translation between animal and human skin wound healing designate in vitro models as a highly relevant and promising platforms for healing investigation. While current in vitro 3D skin models recapitulate a mature tissue with healing properties, they still represent a simplification of the in vivo conditions, where for example the inflammatory response originating after wound formation involves the contribution of immune cells. Macrophages are among the main contributors to the inflammatory response and regulate its course thanks to their plasticity. Therefore, their implementation into in vitro skin could greatly increase the physiological relevance of the models. As no full-thickness immunocompetent skin model containing macrophages has been reported so far, the parameters necessary for a successful triple co-culture of fibroblasts, keratinocytes and macrophages were here investigated. At first, cell source and culture timed but also an implementation strategy for macrophages were deter-mined. The implementation of macrophages into the skin model focused on the minimization of the culture time to preserve immune cell viability and phenotype, as the environment has a major influence on cell polarization and cytokine production. To this end, incorporation of macrophages in 3D gels prior to the combination with skin models was selected to better mimic the in vivo environment. Em-bedded in collagen hydrogels, macrophages displayed a homogeneous cell distribution within the gel, preserving cell viability, their ability to respond to stimuli and their capability to migrate through the matrix, which are all needed during the involvement of macrophages in the inflammatory response. Once established how to introduce macrophages into skin models, different culture media were evaluated for their effects on primary fibroblasts, keratinocytes and macrophages, to identify a suitable medium composition for the culture of immunocompetent skin. The present work confirmed that each cell type requires a different supplement combination for maintaining functional features and showed for the first time that media that promote and maintain a mature skin structure have negative effects on primary macrophages. Skin differentiation media negatively affected macrophages in terms of viability, morphology, ability to respond to pro- and anti-inflammatory stimuli and to migrate through a collagen gel. The combination of wounded skin equivalents and macrophage-containing gels con-firmed that culture medium inhibits macrophage participation in the inflammatory response that oc-curs after wounding. The described macrophage inclusion method for immunocompetent skin creation is a promising approach for generating more relevant skin models. Further optimization of the co-cul-ture medium will potentially allow mimicking a physiological inflammatory response, enabling to eval-uate the effects novel drugs designed for improved healing on improved in vitro models. N2 - Aktuelle präklinische Modelle zur Bewertung neuartiger Therapien für eine verbesserte Heilung um- fassen sowohl in vitro als auch in vivo Methoden. Ethische Bedenken im Zusammenhang mit der Ver- wendung von Tieren sowie die schlechte physiologische Übersetzung zwischen tierischer und mensch- licher Hautwundheilung bezeichnen In-vitro-Modelle jedoch als hochrelevante und vielversprechende Plattformen für die Heilungsforschung. Während die aktuellen in vitro 3D-Hautmodelle ein reifes Ge- webe mit heilenden Eigenschaften rekapitulieren, stellen sie dennoch eine Vereinfachung der in vivo- Bedingungen dar, bei denen beispielsweise die nach der Wundbildung entstehende Entzündungsreak- tion den Beitrag von Immunzellen beinhaltet. Makrophagen gehören zu den Hauptverursachern der Entzündungsreaktion und regulieren ihren Verlauf durch ihre Plastizität. Daher könnte ihre Implemen- tierung in die in vitro Haut die physiologische Relevanz der Modelle deutlich erhöhen. Da bisher kein volldickes, immunkompetentes Hautmodell mit Makrophagen berichtet wurde, wurden hier die für eine erfolgreiche Dreifach-Cokultur von Fibroblasten, Keratinozyten und Makrophagen notwendigen Parameter untersucht. Zuerst wurden die Zellquelle und die Kultur zeitlich festgelegt, aber auch eine Implementierungsstrategie für Makrophagen festgelegt. Die Implementierung von Makrophagen in das Hautmodell konzentrierte sich auf die Minimierung der Kultivierungszeit, um die Lebensfähigkeit und den Phänotyp der Immunzellen zu erhalten, da die Umgebung einen großen Einfluss auf die Zell- polarisation und Zytokinproduktion hat. Zu diesem Zweck wurde die Integration von Makrophagen in 3D-Gelen vor der Kombination mit Hautmodellen ausgewählt, um die in vivo-Umgebung besser nach- ahmen zu können. Eingebettet in Kollagenhydrogele zeigten Makrophagen eine homogene Zellvertei- lung im Gel, die die Zelllebensfähigkeit bewahrt, auf Reize reagiert und durch die Matrix wandert, die alle bei der Beteiligung von Makrophagen an der Entzündungsreaktion benötigt werden. Nachdem festgestellt worden war, wie Makrophagen in Hautmodelle eingeführt werden können, wurden ver- schiedene Kulturmedien hinsichtlich ihrer Auswirkungen auf Primärfibroblasten, Keratinozyten und Makrophagen untersucht, um eine geeignete Medienzusammensetzung für die Kultur immunkompe- tenter Haut zu identifizieren. Die vorliegende Arbeit bestätigte, dass jeder Zelltyp eine andere Supple- mentkombination zur Aufrechterhaltung der Funktionsmerkmale benötigt und zeigte erstmals, dass Medien, die eine reife Hautstruktur fördern und aufrechterhalten, negative Auswirkungen auf die pri- mären Makrophagen haben. Hautdifferenzierungsmedien wirkten sich negativ auf die Makrophagen in Bezug auf Lebensfähigkeit, Morphologie, Fähigkeit, auf pro- und antiinflammatorische Reize zu rea- gieren und durch ein Kollagengel zu wandern aus. Die Kombination aus verwundeten Hautäquivalen- ten und makrophagenhaltigen Gelen bestätigte, dass das Kulturmedium die Teilnahme der Makro- phage an der Entzündungsreaktion, die nach der Wunde auftritt, hemmt. Die beschriebene Makrophagen-Einschlussmethode zur immunkompetenten Hautbildung ist ein vielversprechender An- satz zur Generierung relevanterer Hautmodelle. Eine weitere Optimierung des Co-Kulturmediums wird es möglicherweise ermöglichen, eine physiologische Entzündungsreaktion nachzuahmen und die Aus- wirkungen neuartiger Medikamente zur verbesserten Heilung auf verbesserte In-vitro-Modelle zu be- werten. KW - skin model KW - macrophages KW - wound healing KW - immunocompetent skin KW - Haut KW - In vitro KW - Wundheilung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192125 ER - TY - THES A1 - Jannasch, Maren Annika T1 - In vitro Fremdkörpermodellsysteme zur Vorhersage von biomaterialinduzierten Immunreaktionen T1 - In vitro foreign body model systems for prediction of immune reactions to biomaterials N2 - Die Implantation eines Medizinprodukts in den menschlichen Körper ruft eine Immunreaktion hervor, die zur fibrösen Einkapselung führen kann. Makrophagen in direktem Kontakt mit der Oberfläche des Implantats erfassen sensorisch den Fremdkörper und übersetzten das Signal in die Freisetzung zahlreicher löslicher Mediatoren. Das generierte Entzündungsmilieu moduliert die Heilungsreaktion und kann zur Anreicherung von Fibroblasten sowie zur Erhöhung der Matrixsyntheserate in der Wundumgebung führen. Eine dichte fibröse Kapsel um ein Medizinprodukt beeinträchtigt den Ersatz von Körperstrukturen, das Unterstützen physiologischer Körperfunktionen sowie die Effizienz einer medizinischen Therapie. Zur Identifizierung potenzieller Biomaterialkandidaten mit optimalen Eigenschaften ist jedoch eine evidenzbasierte Entscheidungsfindung notwendig und diese wiederum muss durch geeignete Testmethoden unterstützt werden. Zur Erfassung lokaler Effekte nach Implantation eines Biomaterials begründet die Komplexi-tät der ablaufenden Fremdkörperreaktion die Anwendung von Tiermodellen als Goldstandard. Die Eingliederung von in vitro Modellsystemen in standardisierte Testverfahren scheitert oft an der Verfügbarkeit validierter, verlässlicher und reproduzierbarer Methoden. Demnach ist kein standardisiertes in vitro Testverfahren beschrieben, das die komplexen dreidimensionalen Gewebsstrukturen während einer Fremdkörperreaktion abbildet und sich zur Testung über längere Kontaktphasen zwischen Blutkomponenten und Biomaterialien eignet. Jedoch können in vitro Testungen kosten- und zeiteffizienter sein und durch die Anwendung humaner Zellen eine höhere Übertragbarkeit auf den Menschen aufweisen. Zusätzlich adressiert die Präferenz zu in vitro Testmethoden den Aspekt „Reduzierung“ der 3R-Prinzipien „Replacement, Reduction, Refinement“ (Ersatz, Reduzierung, Verbesserung) von Russel und Burch (1959) zu einer bewussten und begründeten Anwendung von Tiermodellen in der Wissenschaft. Ziel von diesem Forschungsvorhaben war die Entwicklung von humanen in vitro Modellsystemen, die den Kontakt zu Blutkomponenten sowie die Reaktion des umliegenden Bindegewebes bei lokaler Implantation eines Biomaterials abbilden. Referenzmaterialien, deren Gewebsantwort nach Implantation in Tiere oder den Menschen bekannt ist, dienten als Validierungskriterium für die entwickelten Modellsysteme. Die Anreicherung von Zellen sowie die Bildung extrazellulärer Matrix in der Wundumgebung stellen wichtige Teilprozesse während einer Fremdkörperreaktion dar. Für beide Teilprozesse konnte in einem indirekten zellbasierten Modellsystem der Einfluss einer zellvermittelten Konditionierung wie die Freisetzung von löslichen Mediatoren durch materialadhärente Makrophagen auf die gerichtete Wanderung von Fibroblasten sowie den Umbau eines dreidimensionalen Bindegewebsmodells aufgezeigt werden. Des Weiteren ließ sich das Freisetzungsprofil von Zytokinen durch materialständige Makrophagen unter verschiedenen Testbedingungen wie der Kontamination mit LPS, der Oberflächenbehandlung mit humanem Blutplasma und der Gegenwart von IL-4 bestimmen. Die anschließende vergleichende statistische Modellierung der generierten komplexen multifaktoriellen Datenmatrix ermöglichte die Übersetzung in eine Biomaterialbewertung. Dieses entwickelte Testverfahren eignete sich einerseits zur Validierung von in vitro Testbedingungen sowie andererseits zur Bewertung von Biomaterialien. Darüber hinaus konnte in einem dreidimensionalen Fremdkörpermodell die komplexe dreidimensionale Struktur der extrazellulären Matrix in einer Wunde durch die Kombination unterschiedlicher Zell- und Matrixkomponenten biomimetisch nachgebaut werden. Diese neuartigen dreidimensionalen Fremdkörpermodelle ermöglichten die Testung von Biomaterialien über längere Testphasen und können in anschließenden Studien angewandt werden, um dynamische Prozesse zu untersuchen. Zusammenfassend konnten in dieser Arbeit drei unterschiedliche Teststrategien entwickelt werden, die (I) die Bewertung von Teilprozessen ermöglichen, (II) die Identifizierung verlässlicher Testbedingungen unterstützen und (III) biomimetisch ein Wundgewebe abbilden. Wesentlich ist, dass biomimetisch ein dreidimensionales Gewebemodell entwickelt werden konnte, das eine verlässliche Unterscheidungskapazität zwischen Biomaterialien aufweist. N2 - The implantation of a medical product into the human body induces an immune reaction, which may lead to its fibrous encapsulation. Macrophages in direct contact to the surface sense the foreign body and translate the signal in the secretion of multiple soluble mediators. This generated inflammatory milieu modulates the healing reaction, may induce the accumulation of fibroblasts and lead in the wound microenvironment to an increased matrix synthesis rate. A dense fibrous capsule surrounding a medical product is able to impair the replacement of body structures, the support of physiological body functions as well as the efficiency of a medical therapy. To identify potential biomaterial candidates with optimal characteristics an evidence-based decision making process is necessary and furthermore affords the support by appropriate test procedures. To study local effects after implantation of biomaterials, the complexity of the foreign body reaction justifies the application of animal models as gold standard. The integration of in vitro test procedures into standardized test strategies often fails by the availability of validated, reliable and reproducible methods. According to that there is no standardized test procedure, which resembles the three-dimensional tissue structures during a foreign body reaction and is suited for longer contact phases in between blood components and biomaterials. In vitro tests are often more cost and time efficient and show as well by applying human cells a high transferability on human beings. Additionally the preference to in vitro test procedures addresses the “reduction” aspect of the Russel and Burch’s (1959) 3R-principles “replace-ment, reduction and refinement” to a conscious and reasoned use of animal models in science. Aim of this research project was the development of human in vitro model systems, which resemble the contact to blood components and the reaction of the surrounding soft tissue following implantation of a biomaterial. Reference materials, whose tissue integration after implantation in animals or humans is described, were applied for the developed model systems as validation criterion. The accumulation of cells and the synthesis of extracellular matrix in the surrounding wound are relevant sub processes during a foreign body reaction. In an indirect cell-based model system the influence of the cell-mediated conditioning initiated by the material-induced and macrophage-mediated liberation of soluble mediators was shown on both sub processes the aligned migration of fibroblasts as well as the remodeling of a three-dimensional tissue model. Additionally, the cytokine secretion profile by material-adherent macrophages was characterized under different test conditions such as the contamination with LPS, the surface treatment with human plasma and the presence of IL-4. The following comparative statistical modelling allowed a transformation of the generated complex multi-factorial data matrix to a biomaterial ranking. The here developed test procedure was suitable for the validation of in vitro test conditions as well as the evaluation of the reference biomaterials. Last, by the combination of different cells and matrix structures the complex three-dimensional structure of the extracellular matrix in a wound was biomimetically reconstructed. Those novel three-dimensional foreign body models enabled the testing of biomaterials over longer test phases and might be applied in following studies to investigate dynamic processes. Summarizing in this research project three different test strategies were developed, which (I) enable the evaluation of sub processes, (II) support the identification of reliable test conditions and (III) biomimetically reconstruct a wound tissue. Most important is, that a three-dimensional tissue model was biomimetically developed, which showed a reliable discriminatory capacity in between biomaterials. KW - Biomaterial KW - Zellkultur KW - In vitro KW - Fremdkörpermodell KW - Gewebemodell Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162893 ER - TY - THES A1 - Gläser, Katharina T1 - Einfluss hochfrequenter Felder des Mobilfunks auf das blutbildende System in vitro T1 - Effects of radiofrequency radiation on the human hematopoietic system in vitro N2 - Elektromagnetische Felder (EMF) sind in der Umwelt des Menschen allgegenwärtig. Unter Verwendung unterschiedlicher Frequenzen bilden sie die Grundlage zahlreicher Technologien und begegnen uns im Alltag in einer Vielzahl von Anwendungen. Eine sehr wichtige Anwendung von EMF ist die mobile Kommunikation. Die hierfür verwendeten Frequenzen liegen im hochfrequenten Bereich und variieren mit dem Mobilfunkstandard. Weit verbreitet ist die GSM- und UMTS-Modulation der zweiten (2G) und dritten Generation (3G). Zum neuesten Mobilfunkstandard zählt LTE (4G). Aus statistischen Daten geht hervor, dass derzeit weltweit mehr als sieben Milliarden Mobilfunk-Endgeräte existieren. Die weitverbreitete und stetig ansteigende Verwendung dieser Technologien verdeutlicht, dass viele Menschen, darunter auch zunehmend Kinder und Jugendliche, regelmäßig einer Exposition gegenüber EMF ausgesetzt sind. Die wichtigste Expositionsquelle stellt dabei das Mobiltelefon dar, da sich in diesem Szenario die Quelle sehr nah am menschlichen Körper befindet. In der Vergangenheit wurden zahlreiche in-vitro- und in-vivo-Untersuchungen sowie epidemiologische Studien durchgeführt, um potentielle, nicht-thermische Effekte von Mobilfunkstrahlung auf biologische Systeme beurteilen zu können. Ein vollständiger Konsens konnte auf der Basis der erhaltenen Ergebnisse jedoch nicht erzielt werden, sodass weiterhin Bedenken zum schädlichen Potential dieser nichtionisierenden Strahlung bestehen. Insbesondere wurden Fragestellungen zu Langzeiteffekten sowie zu Effekten, die speziell bei Kindern eine besondere Rolle spielen, bisher nicht ausreichend adressiert. Kinder können empfindlicher auf Umwelteinflüsse reagieren und sind im Vergleich zu Erwachsenen teilweise höher gegenüber EMF exponiert. Dies gilt vor allem für Kopfregionen, in denen sich das aktive, für die Hämatopoese verantwortliche Knochenmark befindet. Vor diesem Hintergrund war es das Ziel der vorliegenden Arbeit, den Einfluss von Mobilfunkstrahlung auf das humane blutbildende System zu untersuchen. Im Fokus standen dabei humane hämatopoetische Stammzellen, die mit Frequenzen der Mobilfunkstandards GSM (900 MHz), UMTS (1.950 MHz) und LTE (2.535 MHz) jeweils über einen kurzen (4 h) und einen langen (20 h) Zeitraum und mit unterschiedlichen Intensitäten (0 W/kg, 0,5 W/kg, 1 W/kg, 2 W/kg und 4 W/kg) exponiert wurden. Vergleichende Experimente erfolgten mit Zellen der Promyelozyten-Zelllinie HL-60. Mögliche Effekte wurden mit den Endpunkten Apoptose, oxidativer Stress, Zellzyklus, DNA-Schaden und –Reparatur sowie Differenzierung und Epigenetik in Form von Histonacetylierung bewertet. In keinem der genannten Endpunkte konnten klare Effekte durch Mobilfunkstrahlung ausgemacht werden, weder für die hämatopoetischen Stammzellen, noch für die Zelllinie HL-60. Die einzige Veränderung wurde bei der Quantifizierung von DNA-Schäden beobachtet. Hier zeigte sich nach der Kurzzeitexposition der Stammzellen mit der Modulation GSM eine kleine, aber statistisch signifikante Abnahme der DNA-Schäden verglichen mit der Scheinexposition. Diese Beobachtung ließ sich in weiteren Replikaten jedoch nicht reproduzieren und wurde daher als nicht biologisch relevant eingestuft. Insgesamt konnte mit dieser Arbeit gezeigt werden, dass durch Mobilfunkstrahlung mit Frequenzen der verbreiteten Modulationen GSM, UMTS und LTE sowie SAR-Werten, die unterhalb und oberhalb des empfohlenen Sicherheitsstandards liegen und typischerweise bei Handytelefonaten auftreten, keine Effekte in Zellen des blutbildenden Systems unter den gegebenen Versuchsbedingungen induziert wurden. Ein besonderer Fokus lag hierbei auf der Reproduzierbarkeit der Ergebnisse. Weiterhin wurden zum ersten Mal humane hämatopoetische Stammzellen für derartige Untersuchungen eingesetzt. Dies hat insofern eine besondere Bedeutung, als hämatopoetische Stammzellen aufgrund ihrer multipotenten Eigenschaften eine breitere Analyse mit Hinblick auf die Kanzerogenese und auf das Immunsystem ermöglichen. Um über die Mobilfunk-Untersuchungen hinaus die hämatopoetischen Stammzellen besser charakterisieren zu können, sowie die Sensitivität von Blutzellen mit unterschiedlichem Differenzierungsstatus zu analysieren, wurden sie anderen Zellen des blutbildenden Systems (undifferenzierte und differenzierte HL-60-Zellen und TK6-Zellen) gegenübergestellt. Eine Behandlung der verschiedenen Zelltypen mit mutagenen Substanzen zeigte, dass sich die hämatopoetischen Stammzellen in den meisten der untersuchten Endpunkte von den Zelllinien unterschieden. Deutliche Abweichungen zeigten sich beim oxidativen Stress, der DNA-Reparatur und der Histonacetylierung; kein Unterschied konnte dagegen bei den DNA-Schäden beobachtet werden. Eine erste Interpretation der erhaltenen Ergebnisse ist auf der Grundlage der unterschiedlichen Eigenschaften von Zellen mit abweichendem Differenzierungsstatus möglich. Um jedoch eine eindeutige Aussage treffen zu können, müssten noch weitere Untersuchungen durchgeführt werden. N2 - Electromagnetic fields (EMF) are ubiquitous in the human environment. By using different frequencies, they form a basis for numerous technologies and are present in multiple applications of our everyday life. One very important application of EMF is mobile communication, where the frequencies vary depending on the modulation standard. The most common standards are the second (2G) and the third (3G) generation standard GSM and UMTS, respectively. The latest modulation type is the fourth generation standard (4G) LTE. Statistical data reveal that there are currently more than seven billion mobile phone subscriptions. With the widespread use of these technologies, many people, including an increasing number of children, are continuously exposed to EMF. Given its close proximity to the human body, the mobile phone is the main source of EMF exposure. A huge number of in vitro, in vivo and epidemiological studies have been performed in the past to investigate potential, non-thermal effects of mobile phone radiation on biological systems. However, no complete consensus has been reached, leading to ongoing concerns about the harmful potential of this type of non-ionizing radiation. Furthermore, two major concerns regarding long-term effects and children-specific effects were not thoroughly addressed so far. Children might react in a more sensitive way towards environmental influences and partially absorb more radiofrequency radiation than adults. This particularly applies to head regions where the active bone marrow, which is responsible for hematopoiesis, is located. The aim of the present study was to investigate effects of radiofrequency fields emitted by mobile phones on cells of the human hematopoietic system. The focus was on human hematopoietic stem cells which were exposed to modulated GSM (900 MHz), UMTS (1,950 MHz) and LTE (2,535 MHz) radiofrequency fields with SAR values ranging from 0 to 4 W/kg for short (4 h) and long (20 h) time periods. Comparative investigations were performed with cells of the promyelocytic cell line HL-60. Studied endpoints included apoptosis, oxidative stress, cell cycle, DNA damage and DNA repair, differentiation and epigenetics in terms of histone acetylation. In all but one of these end points, no clear effect of mobile phone radiation could be detected, neither in hematopoietic stem cells nor in HL-60 cells. The only alteration was observed when quantifying DNA damage. Compared to the sham exposure, a small but statistically significant decrease in DNA damage was found after exposure of hematopoietic stem cells to the GSM modulation for short time period. This observation could not be reproduced in subsequent replicate experiments, and was thus considered not biologically relevant. Overall, these investigations demonstrate that mobile phone radiation at frequencies used in the major technologies GSM, UMTS and LTE and with SAR values below and above the recommended safety limits did not induce effects in cells of the human hematopoietic system under the prevailing conditions. A particular focus was on the reproducibility of the results. Furthermore, for the first time human hematopoietic stem cells were subject for such investigations. This is of particular importance, since hematopoietic stem cells enable a broader analysis with respect to cancerogenesis and the immune system based on their multipotent characteristics. Moreover, in order to better characterize the hematopoietic stem cells as well as analyze the sensitivity of hematopoietic cells differing in their differentiation status, hematopoietic stem cells were compared to other cells of the hematopoietic system (i.e. undifferentiated and differentiated HL-60 cells and TK6 cells). Upon treatment with mutagenic substances, a clear distinction was observed between the stem cells and the other cell types for the majority of the investigated endpoints. Significant differences were revealed for oxidative stress, DNA repair and histone acetylation, whereas no difference was observed for DNA damage. A first interpretation of the results obtained can be made on the basis of the different characteristics of cells with a different differentiation status. However, in order to make a distinct statement, additional investigations need to be performed. KW - Mobilfunk KW - Elektromagnetische Felder KW - radiofrequency radiation KW - Nichtionisierende Strahlung KW - Hämatopoese KW - In vitro KW - Humane Hämatopoetische Stammzellen KW - Apoptose KW - Gentoxizität KW - Oxidativer Stress KW - Zellzyklus KW - Differenzierung KW - Epigenetik KW - human hematopoietic stem cells KW - apoptosis KW - genotoxicity KW - oxidative stress KW - differentiation KW - epigenetics KW - Hämatopoetische Stammzellen KW - Blutbildendes System Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145733 ER - TY - THES A1 - Riaño, Rubén Felipe T1 - BTN3A1 in the immune response of Vγ9Vδ2 T cells T1 - BTN3A1 in der Immunantwort der Vγ9Vδ2 T Zellen N2 - Human Vγ9Vδ2 T cells are the main γδ T cell subset in the circulation, accounting for up to 5% of the total peripheral blood lymphocyte population. They have been suggested to be important in response to tumors and infections. Their immune mechanisms encompass cell killing via cytotoxicity and secretion of pro-inflammatory cytokines such as IFNγ and tumor necrosis factor (TNF). The main stimulators of Vγ9Vδ2 T cells are isopentenyl pyrophosphate (IPP) and (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), denominated phosphoantigens (PAg). A major advance in the understanding of PAg detection and Vγ9Vδ2 T cell activation has been the identification of the butyrophlin 3A (BTN3A) proteins as key mediators in these processes. In humans, three isoforms constitute the BTN3A family: BTN3A1, BTN3A2, and BTN3A3; and their genes are localized on the short arm of chromosome 6. The role of BTN3A1 has been highlighted by BTN3A-specific monoclonal antibody 20.1 (mAb 20.1), which has an agonist effect and causes proliferation, expansion, and activation of primary human Vγ9Vδ2 T cells. On the other hand, BTN3A-specific monoclonal antibody 103.2 (mAb 103.2) is antagonistic, inhibiting the Vγ9Vδ2 T cell response. The actual mechanism underlying both PAg- and mAb 20.1-mediated activation is not completely elucidated, but the importance of BTN3A1 is clear. The main objective of this dissertation was to characterize the role of BTN3A1 in the PAg-dependent and PAg-independent Vγ9Vδ2 T cell activation and to evaluate its contribution in the response to influeza A virus infected cells. This research work demonstrated, by using Vγ9Vδ2 TCR MOP-transduced murine cells (reporter cells), that human chromosome 6 (Chr6) is mandatory for PAg-induced stimulation, but not for stimulation with mAb 20.1. The reporter cells responded to mAb 20.1 in cultures with BTN3A1-transduced Chinese hamster ovary cells (CHO BTN3A1) as antigen presenting cells. Nevertheless, for PAg-dependent activation the presence of Chr6 in CHO BTN3A1 was mandatory. Although reporter cells expressing clonotypically different Vγ9Vδ2 TCRs showed similar PAg response, they clearly differed in the mAb 20.1 response. The reporter cell line transduced with Vγ9Vδ2 TCR D1C55 demonstrated essentially no response to mAb 20.1 compared to Vγ9Vδ2 TCR MOP cells. These findings were further supported by experiments performed with human PBMCs-derived Vγ9Vδ2 T cell clones. The results indicate heterogeneity in the PAg- and 20.1-dependent responses, in terms of CD25 and CD69 expression, among three different Vγ9Vδ2 T cells clones. Co-cultures of reporter cells with Raji RT1BI and PAg plus mAb 20.1 or single chain antibody 20.1 (sc 20.1) revealed no additive or synergistic activating effects. In contrast, mAb 20.1 or sc 20.1 inhibited the PAg-mediated activation of the reporter cells. The comparison of the relative contribution of the isoforms BTN3A2 and BTN3A3, in the activation of Vγ9Vδ2 T cells, was undertaken by overexpression of these isoforms in CHO cells. The results showed that BTN3A2 contributes to both PAg- and mAb-induced Vγ9Vδ2 T cell activation. On the contrary, BTN3A3 does not support PAg-mediated γδ T cell response. Additionally, mutations in the proposed PAg- and mAb 20.1-binding sites of the extracellular BTN3A1 domain were generated by means of site-directed mutagenesis. These mutations revoked the mAb 20.1-induced Vγ9Vδ2 T cell activation, but not that induced by PAg. Finally, co-cultures of Vγ9Vδ2 TCR MOP-transduced murine reporter cells with influenza A/PR/8/34-infected cells, or infection of PBMCs with this virus strain indicated that BTN3A1 might be dispensable for the Vγ9Vδ2 T cell response against influenza A. The data of this research work points out that: i) in addition to BTN3A1, other Chr6-encoded genes are necessary for Vγ9Vδ2 T cell activation with PAg; ii) clonotypical (CDR3) differences influence the PAg- and mAb 20.1-mediated Vγ9Vδ2 T cell activation; iii) the PAg- and mAb 20.1-induced responses are not synergistic and interfere with each other; iv) BTN3A2 and BTN3A3 isoforms differ in the ability to support PAg- or mAb 20.1-dependent Vγ9Vδ2 T cell activation; v) the importance of the intracellular B30.2 domain of BTN3A1, in the Vγ9Vδ2 T cell activation, might be higher than that of the extracellular domain; and vi) in spite of the importance of BTN3A1 in the activation of Vγ9Vδ2 T cells, it is possible that many molecules with redundant functions are involved in the elimination of influenza virus infection by these cells. In summary, it is possible to hypothesize a model in which BTN3A1 detects prenyl pyrophosphates in the cytoplasm via its B30.2 domain and in association with another protein(s). The binding of PAg to this domain induces a multimerization of BTN3A1 or a conformational change of its extracellular domain (mimicked by mAb 20.1). These modifications might be recognized by the Vγ9Vδ2 TCR or by an associated T cell protein. In the case that the TCR directly recognizes BTN3A1, the intensity of the response will depend on the Vγ9Vδ2 TCR clonotype. Future research will allow to gain a better understanding of BTN3A1, its interaction with other proteins, its actual role in the activation of Vγ9Vδ2 T cells, and its importance in specific models of cancer or infection. This knowledge will be necessary to transform these cells into effective tools in the clinic. N2 - Im Menschen stellen Vγ9Vδ2 T Zellen die größte Subpopulation an γδ T Zellen im Blut dar und machen bis zu 5% der Gesamtpopulation peripherer Blutlymphozyten aus. Sie spielen eine wichtige Rolle bei der Bekämpfung von Tumoren und Infektionen. Ihre Immunantwort umfasst cytotoxische Aktivität sowie Sekretion proinflammatorischer Zytokine wie IFNγ und dem Tumor Necrosis Faktor (TNF). Vγ9Vδ2 T Zellen werden am stärksten durch Isopentenylpyrophosphat (IPP) und (E)-4-hydroxy-3-methyl-but-2-enylpyrophosphat (HMBPP) stimuliert, welche als Phosphoantigene (PAg) bezeichnet werden. Ein großer Schritt für das Verständnis der Phosphoantigenerkennung und Vγ9Vδ2 T Zellaktivierung war die Identifzierung der Schlüsselrolle, die Butyrophilin 3A (BTN3A) Proteinen in diesen Prozessen zukommt. Im Menschen existieren drei Isoformen von BTN3A (BTN3A1, BTN3A2 und BTN3A3), deren Gene auf dem kurzen Arm von Chromosom 6 lokalisiert sind. Die Rolle von BTN3A1 wurde durch den BTN3A spezifischen monoklonalen Antikörper 20.1 (mAk 20.1) besonders hervorgehoben, der eine agonistische Wirkung besitzt und Proliferation, Expansion, sowie Aktivierung primärer humaner Vγ9Vδ2 T Zellen hervorruft. Zudem existiert ein antagonistischer BTN3A spezifischer monoklonale Antikörper 103.2 (mAk 103.2), welcher Vγ9Vδ2 T Zellantworten inhibiert. Die der PAg- und mAk 20.1 vermittelten Aktivierung zugrunde liegenden Mechanismen wurden noch nicht vollständig aufgeklärt, die bedeutende Rolle von BTN3A1 in diesem Prozess ist jedoch eindeutig. Das Ziel dieser Arbeit war es, die Rolle von BTN3A1 in der PAg abhängigen sowie unabhängigen Vγ9Vδ2 T Zellaktivierung zu charakterisieren und ihren Beitrag zu der Immunantwort gegen mit Influenza A Virus infizierte Zellen zu ermitteln. Durch die Nutzung Vγ9Vδ2 TCR MOP transduzierter muriner Zellen als Reporterzellen konnte gezeigt werden, dass das humane Chromosom 6 (Chr6) zwar für die PAg abhängige Stimulation, nicht jedoch für die Aktivierung durch mAk 20.1 zwingend notwendig ist. In Kultur mit BTN3A1 transduzierten “chinese hamster ovary” (CHO) Zellen antworteten die Reporterzellen auf mAk 20.1. Für eine PAg abhängige Aktivierung war jedoch zusätzlich die Anwesenheit des humanen Chr6 in CHO BTN3A1 Zellen Voraussetzung. Obwohl Reporterzellen, die Vγ9Vδ2 TCRs verschiedener Klonotypen exprimierten, ähnliche PAg Antworten zeigten, unterschieden sie sich in der mAk 20.1 Antwort klar. Die mit Vγ9Vδ2 TCR D1C55 transduzierten Reporterzellen zeigten im Vergleich zu Vγ9Vδ2 TCR MOP Zellen nahezu keine mAk 20.1 abhängige Antwort. Diese Befunde wurden auch durch Experimente gestützt, die mit humanen, aus PBMCs gewonnenen Vγ9Vδ2 T Zellklonen durchgeführt wurden. Deren Resultate weisen, bezüglich der CD25 und CD69 Expression, auf eine heterogene PAg- und 20.1 abhängige Antwort der drei unterschiedlichen Vγ9Vδ2 T Zellklone hin. Kokulturen von Reporterzellen mit Raji RT1BI und PAg plus mAk 20.1 oder dem Einzelkettenantikörper 20.1 (sc 20.1) zeigten keine additive oder synergistische aktivierende Wirkung, vielmehr wurde die PAg vermittelte Aktivierung der Reporterzellen durch mAk 20.1 oder sc 20.1 inhibiert. Mittels Überexpression der beiden Isoformen BTN3A2 und BTN3A3 in CHO Zellen, wurde deren jeweiliger Beitrag zur Aktivierung von Vγ9Vδ2 T Zellen verglichen. Die Ergebnisse zeigten, dass BTN3A2 sowohl zu PAg als auch mAk induzierten Vγ9Vδ2 T Zellaktivierung beiträgt. BTN3A3 hingegen unterstützt die PAg vermittelte γδ T Zellaktivierung nicht. Weiterhin wurden, mittels gerichteter Mutagenese, in den vorgeschlagenen PAg- und mAk 20.1 Bindungsstellen der extrazellulären BTN3A1 Domäne Mutationen generiert. Diese verhinderten die mAk 20.1-, jedoch nicht die PAg vermittelte Vγ9Vδ2 T Zellaktivierung. Zuletzt zeigten Kokulturen von Vγ9Vδ2 TCR MOP transduzierten murinen Reporterzellen und Influenza A/PR/8/34 infizierten Zellen, sowie eine Infektion von PBMCs mit diesem Virusstamm, dass BTN3A1 für die Vγ9Vδ2 T Zellantwort gegen Influenza A entbehrlich sein könnte. Die Ergebnisse dieser Arbeit zeigen, dass i) zusätzlich zu BTN3A1, andere auf Chr6 befindliche Gene für die PAg abhängige Aktivierung von Vγ9Vδ2 T Zellen nötig sind; ii) klonotypische (CDR3) Unterschiede die PAg und mAk 20.1 vermittelte Vγ9Vδ2 T Zellaktivierung beeinflussen; iii) die PAg- and mAk 20.1 induzierten Antworten sich nicht verstärken, sondern beeinträchtigen; iv) sich die Isoformen BTN3A2 und BTN3A3 in der Fähigkeit, die PAg- oder mAk 20.1 abhängige Vγ9Vδ2 T Zellaktivierung zu unterstützen, unterscheiden; v) die intrazelluläre B30.2 Domäne von BTN3A1 eine größere Bedeutung für die Vγ9Vδ2 T Zellaktivierung haben könnte als die extrazelluläre; und dass vi) trotz der Bedeutung von BTN3A1 für die Aktivierung von Vγ9Vδ2 T Zellen, die Möglichkeit besteht, dass viele Moleküle mit redundanter Funktion bei der Eliminierung von Influenza Viren durch diese Zellen eine Rolle spielen. Zusammenfassend lässt sich als Hypothese ein mögliches Modell aufstellen, in dem BTN3A1 in Assoziation mit einem oder mehreren zusätzlichen Proteinen zytoplasmatische Prenylpyrophosphate mittels der B30.2 Domäne detektiert. Die Bindung der PAg an diese Domäne würde dann eine Multimerisierung von BTN3A1 oder eine Konformationsänderung der extrazellulären Domäne (wie auch durch mAk 20.1 herbeigeführt) induzieren. Diese Modifizierungen könnten vom Vγ9Vδ2 TCR oder von einem assoziierten T Zellprotein erkannt werden. Für den Fall einer direkten Erkennung von BTN3A1 durch den TCR würde der Grad der T Zellantwort vom Vγ9Vδ2 TCR Klonotyp abhängen. Zukünftige Forschung wird ein besseres Verständnis von BTN3A1, dessen Proteininteraktionen, dessen Rolle in der Vγ9Vδ2 T Zellaktivierung, und dessen Bedeutung in spezifischen Krebs- oder Infektionsmodellen ermöglichen. Wissen, das benötigt wird, um diese Zellen effizient in klinischen Therapien einzusetzen. KW - gamma delta T cells KW - Vgamma9Vdelta2 T cells KW - phosphoantigen KW - HMBPP KW - IPP KW - butyrophilin 3A KW - human chromosome 6 KW - monoclonal antibody 20.1 KW - monoclonal antibody 103.2 KW - influenza A virus KW - T cell activation KW - T-Lymphozyt KW - Immunmodulation KW - In vitro Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142084 ER - TY - THES A1 - Appelt-Menzel, Antje T1 - Etablierung und Qualifizierung eines humanen Blut-Hirn-Schranken-Modells unter Verwendung von induziert pluripotenten und multipotenten Stammzellen T1 - Establishment and qualification of a human blood-brain barrier model by use of human induced pluripotent stemm cells an multipotent stem cells N2 - Die Blut-Hirn-Schranke (BHS) stellt eine der dichtesten und wichtigsten Barrieren zwischen Blutzirkulation und Zentralnervensystem (ZNS) dar. Sie besteht aus spezialisierten Endothelzellen, welche die zerebralen Kapillaren auskleiden und durch sehr dichte Tight Junctions (TJs) miteinander verbunden sind. Weitere Komponenten der dynamischen Blut-Hirn-Schrankenbarriere stellen Perizyten, Astrozyten, Neurone und Mikrogliazellen dar, welche zusammen mit der extrazellulären Matrix der Basalmembran der Gehirnkapillaren und den zuvor genannten Endothelzellen ein komplexes regulatorisches System, die so genannte neurovaskuläre Einheit bilden (Hawkins und Davis 2005). Die Hauptfunktionen der BHS lassen sich in drei Untergruppen untergliedern, die physikalische, metabolische und Transport-Barriere (Neuhaus und Noe 2010). Hauptsächlich dient die BHS der Aufrechterhaltung der Homöostase des ZNS und dem Schutz vor neurotoxischen Substanzen sowie Pathogenen, wie Bakterien und Viren. Zudem ist sie auch für die Versorgung der Neuronen mit Nährstoffen und regulierenden Substanzen sowie den Efflux von Stoffwechselendprodukten des ZNS zurück ins Blut verantwortlich. Für die Entwicklung von Medikamenten zur Behandlung von neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Parkinson und Multiple Sklerose oder Gehirntumoren, stellt die Dichtigkeit der BHS gegenüber Substanzen und die hohe metabolische Aktivität der Endothelzellen aber ein großes Problem dar. Viele Medikamente sind nicht in der Lage in ausreichender Konzentration die BHS zu überwinden, um an ihren Wirkort zu gelangen oder werden vor dem Transport metabolisiert und die Wirksamkeit dadurch eingeschränkt. Weiterhin spielen auch Defekte der BHS eine entscheidende Rolle in der Beeinflussung der Pathogenese vieler ZNS-Erkrankungen. Aufgrund des hohen Bedarfs an geeigneten Testsystemen in der Grundlagen- sowie präklinischen Forschung für Medikamentenentwicklung und Infektionsstudien wurden eine Vielzahl unterschiedlicher BHS-Modelle entwickelt. Neben in silico-, azellulären in vitro- und in vivo-Modellen sind auch zahlreiche zellbasierte Modelle der BHS entwickelt worden. Standardisierte Modelle auf Basis immortalisierter Zelllinien jedoch weisen nur eine inhomogene TJ-Expression auf und verfügen meist über eine geringe Barriereintegrität, erfasst über transendotheliale elektrische Widerstände (TEER) unter 150 · cm2 (Deli et al. 2005). Im Vergleich dazu wurden in Tierexperimenten TEER-Werte von mehr als 1500 · cm2 an der BHS gemessen (Butt et al. 1990; Crone und Olesen 1982). Die Verfügbarkeit humaner primärer BHS-Zellen ist sehr limitiert und ihr Einsatz nicht nur im Hinblick auf ethische Aspekte bedenklich. Humane Gehirnzellen können z. B. aus Biopsie- oder Autopsiematerial von Patienten mit Epilepsie oder Gehirntumoren isoliert werden. Allerdings besteht hier das Risiko, dass die isolierten Zellen krankheitsbedingt verändert sind, was die Eigenschaften der BHS-Modelle erheblich beeinflussen kann. Eine Alternative, die diese Probleme umgeht, ist die Verwendung von humanen induziert pluripotenten Stammzellen (hiPSCs), um standardisierte humane BHS-Modelle unter reproduzierbaren Bedingungen bereitzustellen. Im Rahmen dieser Arbeit ist es gelungen, hiPSCs in vitro nach etablierten und standardisierten Methoden in Endothelzellen der BHS, neurale Stammzellen (hiPS-NSCs) sowie Astrozyten (hiPS-A) zu differenzieren (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013;Reinhardt et al. 2013) und zum Aufbau der Modelle einzusetzen. Die Endothelzellen wurden mit Hilfe protein- und genbasierter Nachweismethoden auf das Vorhandensein von endothelzellspezifischen TJ-Markern sowie spezifischen Transportern untersucht und funktionell charakterisiert. Die Kryokonservierung der hiPS-EC-Progenitoren, die im Rahmen der vorliegenden Arbeit entwickelt wurde, ermöglicht eine größere räumliche und zeitliche Flexibilität beim Arbeiten mit den stammzellbasierten Modellen sowie das Anlegen standardisierter Zellbanken. Weiterhin wurden multipotente NSCs aus fetalen Gehirnbiopsien isoliert (fNSCs) und als Kontrollkulturen zu den hiPS-NSCs für den Aufbau von BHS-Modellen eingesetzt. Mit dem Ziel die in vivo-BHS bestmöglich zu imitieren und die Modelleigenschaften zu optimieren, wurde ein Set aus zehn unterschiedlichen BHS-Modellen basierend auf primären Zellen, hiPSCs und fNSCs analysiert. Der Aufbau der BHS-Modelle erfolgte unter Verwendung von Transwellsystemen. Durch die systematische Untersuchung des Einflusses der unterschiedlichen Zelltypen der neurovaskulären Einheit auf die Barriereintegrität und Genexpression des BHS-Endothels, konnten die Quadrupel-Kulturen mit Perizyten, Astrozyten und hiPS-NSCs als die Kultur mit den physiologischsten Eigenschaften identifiziert werden. Auf Grund der signifikant erhöhten TEER-Werte von bis zu 2500 · cm2 und einer um mindestens 1,5-fachen Steigerung der Genexpression BHSrelevanter Transporter und TJ-Moleküle gegenüber den Monokulturen, wurden diese Modelle für weiterführende Studien ausgewählt. Das Vorhandensein eines komplexen, in vivo-ähnlichen TJ-Netzwerkes, bestehend aus Occludin, Claudin 1, 3, 4 und 5, konnte mittels quantitativer Realtime-PCR, Western Blot sowie ultrastruktureller Analyse in der Gefrierbruch- und Raster-Elektronenmikroskopie nachgewiesen werden. Neben der Begrenzung der parazellulären Permeabilität, welche über die geringe Permeation von FITC-Dextran (4 kDa und 40 kDa), Fluoreszein und Lucifer Yellow nachgewiesen wurde, stellt die BHS ebenfalls eine Barriere für den transzellulären Transport von Substanzen dar. Eine Beurteilung der Modelle hinsichtlich der Qualifikation für die Nutzung im Wirkstoffscreening wurde mit Hilfe von Transportversuchen unter dem Einsatz von BHS-relevanten Referenzsubstanzen durchgeführt. Die Klassifikation der Testsubstanzen erfolgte analog ihrer Permeationsgeschwindigkeiten: Diazepam und Koffein gelten als schnell transportierte Wirkstoffe, Ibuprofen, Celecoxib und Diclofenac werden mit einer mittleren Geschwindigkeit über die BHS transportiert und Loratadin sowie Rhodamin 123 sind langsam permeierende Substanzen. Innerhalb der Versuche mit den Quadrupelkulturen wurde diese Reihenfolge bestätigt, lediglich für Koffein wurde ein signifikant niedrigerer Permeationskoeffizient verglichen mit der Monokultur erzielt. Der Einsatz der hiPSC-Technologie ermöglicht es zudem, aus einer Stammzelllinie große Mengen an humanen somatischen Zelltypen zu generieren und für gezielte Anwendungen bereitzustellen. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass mit Hilfe eines eigens für diese Zwecke konstruierten Rührreaktorsystems eine reproduzierbare Expansion der hiPSCs unter definierten Bedingungen ermöglicht wurde. Basierend auf dieser Grundlage ist nun ein Hochdurchsatz-Screening von Medikamenten denkbar. Die in dieser Arbeit präsentierten Daten belegen die Etablierung eines stammzellbasierten in vitro- Quadrupelmodels der humanen BHS, welches über in vivo-ähnliche Eigenschaften verfügt. Die Anforderungen, die an humane BHS-Modelle gestellt werden, wie die Reproduzierbarkeit der Ergebnisse, eine angemessene Charakterisierung, welche die Untersuchung der Permeabilität von Referenzsubstanzen einschließt, die Analyse der Expression von BHS-relevanten Transportermolekülen sowie die solide und physiologische Morphologie der Zellen, wurden erfüllt. Das etablierte BHS-Modell kann in der Pharmaindustrie für die Entwicklung von Medikamenten eingesetzt werden. Ausreichend qualifizierte Modelle können hier in der präklinischen Forschung genutzt werden, um Toxizitäts- und Transportstudien an neu entwickelten Substanzen durchzuführen und eine bessere in vitro-in vivo-Korrelation der Ergebnisse zu ermöglichen oder Mechanismen zu entwickeln, um die BHS-Barriere gezielt zu überwinden. N2 - The blood-brain barrier (BBB) presents one of the tightest and most important barriers between the blood circulation and the central nervous system (CNS). The BBB consists of specialized endothelial cells, which line the cerebral capillaries and are connected through very dense tight junctions (TJs). Together with pericytes, astrocytes, neurons, microglial cells and the extracellular matrix of the basal membrane of the brain capillaries, they form a dynamic and complex regulatory system, the so-called neurovascular unit (Hawkins and Davis 2005). The main functions of the BBB can be divided into three subgroups, the physical-, metabolic- and transport-barrier (Neuhaus and Noe 2010). The BBB mainly serves to maintain the homeostasis of the CNS and for protection against neurotoxical substances and pathogens, such as bacteria and viruses. Moreover, the BBB ensures the supply of neurons with nutrients and regulatory substances. Furthermore, it is responsible for the efflux of CNS metabolism waste products. For the development of drugs applied for the treatment of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis or even brain tumors, the tightness of the BBB models towards substances and the high metabolic activity of the endothelial cells pose a problem. Numerous drugs cannot overcome the BBB in sufficient enough concentration to reach the target location or they are metabolized before transportation and thus become less effective. Moreover, defects of the BBB play a decisive role in the manipulation of the pathogenesis of numerous CNS diseases. Due to the high demand for test systems in basic and preclinical research of drug development and infection studies, a range of different BBB models have been developed. Besides the in silico, acellular in vitro and in vivo models, numerous cell-based BBB models have been developed. However, standardized models based on immortalized cell lines show only inhomogeneous TJ expression and possess low barrier integrity which is detected through transendothelial electrical resistance (TEER) below 150 · cm2 (Deli et al. 2005). In comparison, the TEER values in animal tests reached more than 1500 · cm2 at the BBB (Butt et al. 1990; Crone and Olesen 1982). The availability of human primary BBB cells is highly limited. Moreover, using human primary BBB cells is an extremely serious matter, not only in respect of ethical aspects. Human brain cells can, for instance, be isolated from biopsy or autopsy material obtained from patients suffering epilepsy or brain cancer. However, there is the risk that the isolated cells are altered due to disease, which may significantly change the features of the BBB models. An alternative to avoid such problems and to provide standardized human BBB models by the use of reproducible conditions, is the application of human induced pluripotent stem cells (hiPSCs). In this context, it has been successful to differentiate hiPSCs in vitro – under established and reproducible methods – into endothelial cells of the BBB (hiPS-ECs), neural stem cells (hiPS-NSCs) as well as astrocytes (hiPS-A) (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013; Reinhardt et al. 2013) and to use them for model establishment. The endothelial cells were examined for the existence and the functionality of endothelial-specific markers as well as specific transporters by protein- and gene-based methods. Within this work, the croypreservation of hiPS-EC progenitors was established. This will allow an increase of the spatial and temporal flexibility while working with the stem cell based models as well as the establishment of standardized cell banks. Furthermore, multipotent NSCs, isolated from fetal brain biopsies (fNSCs), were used as a control population for hiPSC-NSCs and for BBB modelling. In order to imitate the in vivo BBB in the best possible way and to optimize model characteristics, a set of ten different BBB models based on primary cells, hiPSCs and fNSCs was analyzed. Model establishment was done by the use of transwell systems. By the systematically analysis of the influence of the different neurovascular unit cell types on barrier integrity and on endothelial cell gene expression, the quadruple culture with pericytes, astrocytes and hiPS-NSCs was identified demonstrating the most physiological properties. Due to the significant increase of TEER results up to 2500 · cm2 as well as the at least 1.5-fold increase in gene expression of BBB relevant transporter and TJ markers compared to the mono-cultures, this model was selected for further studies. The presence of a complex in vivo-like TJ network, based on occludin, claudin 1, 3, 4 and 5 was detected by quantitative reale time PCR, Western blot analyses as well as on ultrastructural level by freeze fracture electron microscopy and transmission electron microscopy. Beside the limitation of the paracellular permeability, proven by the low permeation of FITC dextran (4 kDa and 40 kDa), fluorescein and Lucifer yellow, the BBB represents also a barrier for transcellular transported substances. A model evaluation, to assess the models qualification to be used for drug screenings, was proven by transport studies based on BBB relevant reference substances. The classification of the test substances was made analog their permeation rates: diazepam and caffeine are classified as fast, ibuprofen, celecoxib and diclofenac as medium, and loratadine and rhodamine 123 as slow permeating substances. Within our tests, this ranking based on literature data could be confirmed by using the quadruple-culture models, only caffeine was transported with a significantly decreased permeation coefficient compared to the mono-cultures. Furthermore, the implementation of the hiPSC technology allows the generation of a large quantity of human somatic cell types form only one single stem cell line and their provision for specific applications. Within this work it was shown, that by the use of an in-house constructed stirred tank bio-reactor, providing defined culture conditions, a reproducible expansion of hiPSCs was enabled. On this basis, a high throughput drug screening might be possible. The data presented within this work demonstrate the establishment of a stem cell based in vitro quadruple-model of the human BBB with in vivo-like characteristics. All minimal requirements for human BBB modeling, including the reproducibility of the results, adequate characterization with regard on the permeability of reference components, expression of BBB transporters as well as the robust and physiological morphology are fulfilled. The established BBB model can be used in pharmaceutical drug development. In preclinical research adequate qualified models are asked for toxicity and transport studies with new developed substances in order to allow a better in vitro-in vivo correlation of the results. Moreover, the model can be used to develop mechanisms to selectively overcome the barrier. KW - Blut-Hirn-Schranke KW - Stammzelle KW - Zelldifferenzierung KW - In vitro KW - Endothelzelle KW - induziert pluripotente Stammzelle KW - multipotente Stammzelle KW - in vitro Modell KW - Neurovaskuläre Einheit KW - Neurale Stammzellen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134646 ER -